Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Langmuir ; 40(12): 6571-6581, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38466081

RESUMO

Graphene is a two-dimensional honeycomb-like nanomaterial generated by carbon atoms in sp2 hybridized orbitals to form a hexagonal lattice structure with excellent electrical, optical, and mechanical properties. The solution process method has been widely used to realize large-area patterned graphene structures for high-performance devices. In the method, graphene usually needs to be dispersed in solution, and the π-π bonding gravitational interactions between graphene sheets would lead to uncontrollable structures in solution and difficulty in obtaining high performance. In this work, a patterned graphene oxide (GO) structure with controllable thickness and layer spacing was realized by a direct-write printed slippery surface, which was used as a slippery limited template. After reducing GO into reduced graphene oxide (rGO), a flexible electric pattern with a conductivity of up to 6.425 × 103 S/m was realized. Furthermore, the patterned rGO structure was transferred on polydimethylsiloxane (PDMS), which could generate less than a 5% change in resistance after 10,000 consecutive bends, and an anisotropic expansion based on rGO and PDMS materials under electro-thermal coupling. The patterned rGO structures could meet the performance requirements of highly sensitive and complex deformation applications as flexible electric actuators. This study provides great research significance and application value for patterning high-quality graphene structures and realizing high-performance flexible electronic devices.

2.
Microb Cell Fact ; 23(1): 27, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38238808

RESUMO

BACKGROUND: Pickled mustard, the largest cultivated vegetable in China, generates substantial waste annually, leading to significant environmental pollution due to challenges in timely disposal, leading to decomposition and sewage issues. Consequently, the imperative to address this concern centers on the reduction and comprehensive resource utilization of raw mustard waste (RMW). To achieve complete and quantitative resource utilization of RMW, this study employs novel technology integration for optimizing its higher-value applications. RESULTS: Initially, subcritical hydrothermal technology was applied for rapid decomposition, with subsequent ammonia nitrogen removal via zeolite. Thereafter, photosynthetic bacteria, Rhodopseudomonas palustris, were employed to maximize hydrogen and methane gas production using various fermentation enhancement agents. Subsequent solid-liquid separation yielded liquid fertilizer from the fermented liquid and soil amendment from solid fermentation remnants. Results indicate that the highest glucose yield (29.6 ± 0.14) was achieved at 165-173℃, with a total sugar content of 50.2 g/L and 64% glucose proportion. Optimal ammonia nitrogen removal occurred with 8 g/L zeolite and strain stable growth at 32℃, with the highest OD600 reaching 2.7. Several fermentation promoters, including FeSO4, Neutral red, Na2S, flavin mononucleotide, Nickel titanate, Nickel oxide, and Mixture C, were evaluated for hydrogen production. Notably, Mixture C resulted in the maximum hydrogen production (756 mL), a production rate of 14 mL/h, and a 5-day stable hydrogen production period. Composting experiments enhanced humic acid content and organic matter (OM) by 17% and 15%, respectively. CONCLUSIONS: This innovative technology not only expedites RMW treatment and hydrogen yield but also substantially enriches soil fertility. Consequently, it offers a novel approach for low-carbon, zero-pollution RMW management. The study's double outcomes extend to large-scale RMW treatment based on the aim of full quantitative resource utilization of RMW. Our method provides a valuable reference for waste management in similar perishable vegetable plantations.


Assuntos
Solo , Zeolitas , Hidrogênio , Amônia , Mostardeira , Nitrogênio , Glucose
3.
Environ Res ; 257: 119084, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38823617

RESUMO

Ocean acidification (OA) is known to influence biological and ecological processes, mainly focusing on its impacts on single species, but little has been documented on how OA may alter plankton community interactions. Here, we conducted a mesocosm experiment with ambient (∼410 ppmv) and high (1000 ppmv) CO2 concentrations in a subtropical eutrophic region of the East China Sea and examined the community dynamics of microeukaryotes, bacterioplankton and microeukaryote-attached bacteria in the enclosed coastal seawater. The OA treatment with elevated CO2 affected taxa as the phytoplankton bloom stages progressed, with a 72.89% decrease in relative abundance of the protist Cercozoa on day 10 and a 322% increase in relative abundance of Stramenopile dominated by diatoms, accompanied by a 29.54% decrease in relative abundance of attached Alphaproteobacteria on day 28. Our study revealed that protozoans with different prey preferences had differing sensitivity to high CO2, and attached bacteria were more significantly affected by high CO2 compared to bacterioplankton. Our findings indicate that high CO2 changed the co-occurrence network complexity and stability of microeukaryotes more than those of bacteria. Furthermore, high CO2 was found to alter the proportions of potential interactions between phytoplankton and their predators, as well as microeukaryotes and their attached bacteria in the networks. The changes in the relative abundances and interactions of microeukaryotes between their predators in response to high CO2 revealed in our study suggest that high CO2 may have profound impacts on marine food webs.

4.
Langmuir ; 39(21): 7426-7433, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37192423

RESUMO

In this study, flexible metal circuits are fabricated with polymer/metal precursor ink and an interfacial reaction by direct-writing technology. Poly(vinyl alcohol) (PVA) is selected as one component of ink, which could be a flexible composite in a metal circuit and an adhesive layer to connect the flexible metal circuit with the flexible substrate. Silver nitrate (AgNO3) is added to the ink as a source of metal. After the direct-writing structure was placed in contact with an ascorbic acid (VC) aqueous solution with an adjustable process, silver nanoparticles (AgNPs) with 100-400 nm uniform size could be generated on the direct-writing PVA skeleton. The resistivity of the composite silver layer could reach 10-6 Ω·m without any postprocessing. Meanwhile, the resistance change could keep within 20% with 180° bending after 10 000 repeat times. Patterned flexible metal circuits could be facilely fabricated by direct-writing technology, which presented excellent electrical conductivity and flexibility.

5.
Langmuir ; 36(33): 9952-9959, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32787129

RESUMO

An elaborated surface with a superhydrophilic area and a superhydrophobic area was fabricated by inkjet printing a water-soluble polymer template on a superhydrophilic layer. Titanate was used to generate the superhydrophilic layer with an in situ reaction. A water-soluble polymer template was inkjet printed on the facile fabricated superhydrophilic layer. Superhydrophobic treatment was carried out on the inkjet-printed surface with perfluorinated molecules. A superhydrophilic-superhydrophobic patterned surface (SSPS) was obtained by washing out the water-soluble polymer template. Various patterns of SSPS were fabricated with the different water-soluble polymer templates. Then, adhesion and deposition of water droplets were studied on the SSPS with the different wetting abilities on the surface. Meanwhile, a microreaction with a microfluidic chip was realized on the SSPS. In this work, systematic research on fabricating an SSPS based on a facile fabricated superhydrophilic layer with an inkjet-printed water-soluble polymer template is presented. It will have great potential for patterning materials, fabricating devices, and researching interfaces, such as microdroplet self-removal, analyte enrichment, and liquid-liquid interface reaction.

6.
Fish Shellfish Immunol ; 78: 114-120, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29689303

RESUMO

Chibby, a vital inhibitor molecule of Wnt/ß-catenin signaling pathway, participates in development and stem cell differentiation through the regulation of ß-catenin. Our previous studies have demonstrated that Litopenaeus vannamei ß-catenin (Lv-ß-catenin) was involved in WSSV infection and could inhibit virus replication by modulating the host immune system. In the study, a Chibby homolog from L. vannamei (designed as Lv-Chibby) was isolated and its role in WSSV infection was investigated. Sequence analysis suggested that Lv-Chibby was a novel homolog of Chibby family. It could transcript in all examined tissues, including hemocyte, gill, intestine, hepatopancreas, muscle and heart. Real-time quantitative PCR demonstrated that Lv-Chibby could take part in WSSV infection and be down-regulated by WSSV. Further studies confirmed that Lv-Chibby was able to interact with Lv-ß-catenin. Moreover, the relationship of Lv-ß-catenin, Lv-Chibby and WSSV069 was investigated. It was shown that Lv-Chibby enhanced the interaction between Lv-ß-catenin and WSSV069. Interestingly, WSSV069 promoted the interaction between Lv-ß-catenin and Lv-Chibby under high concentration, while low concentration of WSSV069 inhibited their interaction. A subsequent immunofluorescence assay revealed that WSSV069 appeared to reduce the nuclear entry of Lv-ß-catenin. In sum, these results implied that Wnt/ß-catenin signal pathway plays an important role in the defense against virus, and Chibby could be modulated by WSSV to regulate the signal pathway.


Assuntos
Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Penaeidae/genética , Penaeidae/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Sequência de Bases , Perfilação da Expressão Gênica , Filogenia , Transdução de Sinais , Vírus da Síndrome da Mancha Branca 1/fisiologia , beta Catenina
7.
Nanomaterials (Basel) ; 14(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38786793

RESUMO

In order to prepare biomass-derived carbon materials with high specific capacitance at a low activation temperature (≤700 °C), nanoporous carbon materials were prepared from zanthoxylum bungeanum peels and seeds via the pyrolysis and KOH-activation processes. The results show that the optimal activation temperatures are 700 °C and 600 °C for peels and seeds. Benefiting from the hierarchical pore structure (micropores, mesopores, and macropores), the abundant heteroatoms (N, S, and O) containing functional groups, and plentiful electrochemical active sites, the PAC-700 and SAC-600 derive the large capacities of ~211.0 and ~219.7 F g-1 at 1.0 A g-1 in 6 M KOH within the three-electrode configuration. Furthermore, the symmetrical supercapacitors display a high energy density of 22.9 and 22.4 Wh kg-1 at 7500 W kg-1 assembled with PAC-700 and SAC-600, along with exceptional capacitance retention of 99.1% and 93.4% over 10,000 cycles at 1.0 A g-1. More significantly, the contribution here will stimulate the extensive development of low-temperature activation processes and nanoporous carbon materials for electrochemical energy storage and beyond.

8.
Colloids Surf B Biointerfaces ; 231: 113571, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37797469

RESUMO

Droplet deposition on deformable matrix has a broad application prospect. Regular deposition and diffusion of droplet on the substrate is the key to prepare flexible concave structure. Direct writing technique is an advanced method for depositing ink droplet on various substrates, which could produce a variety of deposition forms. Meanwhile, direct writing technique has the characteristics of simplicity, convenience and strong controllability. In this work, patterned concave structure was fabricated with viscoelastic substrate by direct writing technology, depositing behavior of ink droplet, formation condition and shape control of concave structure were studied with viscoelastic substrate, and practical application of the patterned concave structure was explored in loading and releasing liquid on skin surface. This study provides an efficient method for the preparation and application of controllable concave surface.


Assuntos
Redação , Difusão
9.
Polymers (Basel) ; 14(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35808628

RESUMO

The defect and N-doping engineering are critical to developing the highly efficient metal-free electrocatalysts for oxygen reduction reaction (ORR), mainly because they can efficiently regulate the geometric/electronic structures and sur-/interface properties of the carbon matrix. Herein, we provide a facile and scalable strategy for the large-scale synthesis of N-doped porous carbon nanosheets (NPCNs) with hierarchical pore structure, only involving solvothermal and pyrolysis processes. Additionally, the turnover frequency of ORR (TOFORR) was calculated by taking into account the electron-transfer number (n). Benefiting from the trimodal pore structures, high specific surface area, a higher pore volume, high-ratio mesopores, massive vacancies/long-range structural defects, and high-content pyridinic-N (~2.1%), the NPCNs-1000 shows an excellent ORR activity (1600 rpm, js = ~5.99 mA cm-2), a selectivity to four-electron ORR (~100%) and a superior stability in both the three-electrode tests (CP test for 7500 s at 0.8 V, Δjs = ~0.58 mA cm-2) and Zn-Air battery (a negligible loss of 0.08 V within 265 h). Besides, the experimental results indicate that the enhancement of ORR activity mainly originates from the defects and pyridinic-N. More significantly, this work is expected to realize green and efficient energy storage and conversion along with the carbon peaking and carbon neutrality goals.

10.
Materials (Basel) ; 15(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36363237

RESUMO

In order to study the characteristics of radio frequency dielectric barrier discharge (RF-DBD) using argon doped with nitrogen at atmospheric pressure, electrical and optical diagnoses of the discharge with different nitrogen ratios from 1% to 100% were carried out, and the self-organizing form of the filamentous plasma was studied through a transparent water electrode. At the same time, an ICCD camera was used to study the spatiotemporal evolution filamentous discharge during one cycle. Different from discharge using pure argon, using argon doped with nitrogen made the discharge change from glow discharge to filamentous discharge when the voltage increased to a certain value, and a higher nitrogen ratio made the filaments thicker and more sparsely arranged. Under different input power and nitrogen content conditions, several forms of glow discharge, hexagonal/irregularly arranged filamentous discharge and local filamentous discharge were obtained, all of which have potential applications to reduce the high cost of using inert gases.

11.
Commun Biol ; 5(1): 54, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35031680

RESUMO

Many marine organisms are exposed to decreasing O2 levels due to warming-induced expansion of hypoxic zones and ocean deoxygenation (DeO2). Nevertheless, effects of DeO2 on phytoplankton have been neglected due to technical bottlenecks on examining O2 effects on O2-producing organisms. Here we show that lowered O2 levels increased primary productivity of a coastal phytoplankton assemblage, and enhanced photosynthesis and growth in the coastal diatom Thalassiosira weissflogii. Mechanistically, reduced O2 suppressed mitochondrial respiration and photorespiration of T. weissflogii, but increased the efficiency of their CO2 concentrating mechanisms (CCMs), effective quantum yield and improved light use efficiency, which was apparent under both ambient and elevated CO2 concentrations leading to ocean acidification (OA). While the elevated CO2 treatment partially counteracted the effect of low O2 in terms of CCMs activity, reduced levels of O2 still strongly enhanced phytoplankton primary productivity. This implies that decreased availability of O2 with progressive DeO2 could boost re-oxygenation by diatom-dominated phytoplankton communities, especially in hypoxic areas, with potentially profound consequences for marine ecosystem services in coastal and pelagic oceans.


Assuntos
Dióxido de Carbono/metabolismo , Mudança Climática , Diatomáceas/fisiologia , Oxigênio/metabolismo , Fitoplâncton/fisiologia , Diatomáceas/crescimento & desenvolvimento , Fitoplâncton/crescimento & desenvolvimento
12.
Mar Pollut Bull ; 175: 113362, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35092931

RESUMO

The rise of atmospheric pCO2 has created a number of problems for marine ecosystem. In this study, we initially quantified the effects of elevated pCO2 on the group-specific mortality of phytoplankton in a natural community based on the results of mesocosm experiments. Diatoms dominated the phytoplankton community, and the concentration of chlorophyll a was significantly higher in the high-pCO2 treatment than the low-pCO2 treatment. Phytoplankton mortality (percentage of dead cells) decreased during the exponential growth phase. Although the mortality of dinoflagellates did not differ significantly between the two pCO2 treatments, that of diatoms was lower in the high-pCO2 treatment. Small diatoms dominated the diatom community. Although the mortality of large diatoms did not differ significantly between the two treatments, that of small diatoms was lower in the high-pCO2 treatment. These results suggested that elevated pCO2 might enhance dominance by small diatoms and thereby change the community structure of coastal ecosystems.


Assuntos
Diatomáceas , Fitoplâncton , Dióxido de Carbono , Clorofila A , Ecossistema
13.
ACS Appl Mater Interfaces ; 12(19): 22108-22114, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32320207

RESUMO

The metal pattern plays a crucial role in various optoelectronic devices. However, fabrication of high-resolution metal patterns has serious problems including complicated techniques and high cost. Herein, an inkjet printed water-soluble sacrificial layer was proposed to fabricate a high-resolution metal pattern. The water-soluble sacrificial layer was inkjet printed on a polyethylene glycol terephthalate (PET) surface, and then the printed surface was deposited with a metal layer by evaporating deposition. When the deposited surface was rinsed by water, the metal layer deposited on the water-soluble sacrificial layer could be removed. Various high-resolution metal patterns were prepared, which could be used in electroluminescent displays, strain sensors, and 3D switches. This facile method could be a promising approach for fabricating high-resolution metal patterns.

14.
Nanomaterials (Basel) ; 8(7)2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30011866

RESUMO

In recent years, supercapacitors are attracting great attention as one kind of electrochemical energy storage device, which have a high power density, a high energy density, fast charging and discharging, and a long cycle life. As a solution processing method, printing technology is widely used to fabricate supercapacitors. Printable nanomaterials are critical to the fabrication of high-performance supercapacitors by printing technology. In this work, the advantages of printing technology are summarized. Moreover, various nanomaterials used to fabricate supercapacitors by printing technology are presented. Finally, the remaining challenges and broad research as well as application prospects in printing high-performance supercapacitors with nanomaterials are proposed.

15.
Polymers (Basel) ; 10(11)2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30961134

RESUMO

Microstructures are playing an important role in manufacturing functional devices, due to their unique properties, such as wettability or flexibility. Recently, various microstructured surfaces have been fabricated to realize functional applications. To achieve the applications, photolithography or printing technology is utilized to produce the microstructures. However, these methods require preparing templates or masks, which are usually complex and expensive. Herein, a facile approach for fabricating microstructured surfaces was studied based on etched template by inkjet printing technology. Precured polydimethylsiloxane substrate was etched by inkjet printing water-soluble polyacrylic acid solution. Then, the polydimethylsiloxane substrate was cured and rinsed, which could be directly used as template for fabricating microstructured surfaces. Surfaces with raised dots, lines, and squares, were facilely obtained using the etched templates by inkjet printing technology. Furthermore, controllable anisotropic wettability was exhibited on the raised line microstructured surface. This work provides a flexible and scalable way to fabricate various microstructured surfaces. It would bring about excellent performance, which could find numerous applications in optoelectronic devices, biological chips, microreactors, wearable products, and related fields.

16.
Dev Comp Immunol ; 76: 412-419, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28689772

RESUMO

As a conserved signaling pathway, Wnt/ß-catenin signaling pathway participates in many physiological activities, including cell differentiation, apoptosis and so on. ß-catenin is the key molecule of Wnt/ß-catenin signaling pathway and plays a pivotal role. In this article, a ß-catenin homolog from Litopenaeus vannamei (designed as Lv-ß-catenin) was cloned and its role in WSSV infection was investigated. Sequence analysis suggested that Lv-ß-catenin had characters of ß-catenin family. Semi-quantitative RT-PCR showed that Lv-ß-catenin transcripted in all detected tissues. In the subsequent WSSV infection experiments, it was found that the transcription levels of Lv-ß-catenin were down-regulated, as well as the expression levels. Immunofluorescence assay further confirmed that WSSV could reduce the amount of Lv-ß-catenin and promoted Lv-ß-catenin to translocate into the nucleus. Moreover, we found that WSSV could influence the amount of Lv-ß-catenin by ubiquitination. While Lv-ß-catenin was up-regulated by a ß-catenin activator GSK-3 Inhibitor IX, the transcription of virus immediate early gene WSSV069 was significantly inhibited. In addition, it was found that Lv-ß-catenin could interact with WSSV069. Conclusively, our study provided evidences that ß-catenin may participate in the WSSV infection, and Wnt/ß-catenin signal pathway may play an important role in immune regulation.


Assuntos
Proteínas de Artrópodes/metabolismo , Núcleo Celular/metabolismo , Penaeidae/imunologia , Viroses/metabolismo , Vírus da Síndrome da Mancha Branca 1/imunologia , beta Catenina/metabolismo , Animais , Proteínas de Artrópodes/genética , Células Cultivadas , Clonagem Molecular , Regulação da Expressão Gênica , Regulação Viral da Expressão Gênica , Quinase 3 da Glicogênio Sintase/metabolismo , Imunomodulação , Penaeidae/virologia , Transporte Proteico , Viroses/imunologia , Via de Sinalização Wnt , beta Catenina/genética
17.
Nanoscale ; 8(18): 9556-62, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27098655

RESUMO

The rapidly increasing research interest in microfluidics, microreactors and solution-processable fabrication technologies requires the development of patterning techniques to obtain large-scale functional liquid arrays. To achieve this objective, photolithography, microcontact printing and mask-based UV irradiation have been utilized to physically or chemically pattern surfaces into templates where ordered arrays of liquid materials are constructed. However, these methods require elaborately fabricated templates or expensive vacuum-deposited masks that restrict their practical applications. Herein, we fabricate physically patterned superhydrophobic surfaces with high adhesion by modifying inkjet-imprinted surfaces through nanoparticle deposition, and utilize these surfaces as templates for liquid patterning. Various functional liquid materials are patterned into defined shapes through a simple dipping-withdrawing process. Moreover, functional material patterns such as photonic crystal patterns, arrays of inorganic nanoparticles and crystals are formed after solvent evaporation of the liquid droplets. Furthermore, chemical reactions can be carried out on the patterns. These surfaces demonstrate excellent performance in liquid patterning, which will find numerous applications in optoelectronic devices, lab-on-chip devices, microreactors, and related fields.

18.
Materials (Basel) ; 9(4)2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28773374

RESUMO

In this work, an effective method was developed to fabricate bendable circuits on a polydimethylsiloxane (PDMS) surface by inkjet printing semi-wrapped structures. It is demonstrated that the precured PDMS liquid film could influence the depositing morphology of coalesced silver precursor inkjet droplets. Accordingly, continuous and uniform lines with a semi-wrapped structure were fabricated on the PDMS surface. When the printed silver precursor was reduced to Ag nanoparticles, the fabricated conductive film exhibited good transparency and high bendability. This work presented a facile way to fabricate flexible patterns on a PDMS surface without any complicated modification or special equipment. Meanwhile, an in situ hydrazine reduction of Ag has been reported using the vapor phase method in the fabricating process.

19.
Adv Mater ; 28(7): 1420-6, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26643356

RESUMO

Conductive microcables embedded in a transparent film are fabricated by inkjet printing silver-nanoparticle ink into a liquid poly(dimethylsiloxane) (PDMS) precursor substrate. By controlling the spreading of the ink droplet and the rheological properties of the liquid substrate, transparent multilayer circuits composed of high-resolution embedded cables are achieved using a commercial inkjet printer. This facile strategy provides a new avenue for inkjet printing of highly integrated and transparent electronics.


Assuntos
Equipamentos e Provisões Elétricas , Tinta , Microtecnologia , Impressão , Prata/química , Elastômeros/química , Condutividade Elétrica , Nanopartículas Metálicas/química
20.
ACS Appl Mater Interfaces ; 7(51): 28086-99, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26642390

RESUMO

Inkjet printing has been widely used in functional material patterning for fabrication of optical/electrical devices. The depositing morphologies of inkjet droplets are critical to the resolution and performance of resulted functional patterns. This review summarizes various strategies to control the depositing morphologies of inkjet droplets, including suppressing and utilizing coffee-ring effect, employing liquid substrates, developing patterned substrates and controlling droplets coalescence. Moreover, the remaining challenges in controlling inkjet droplets are presented, and the broad research and application prospects of controlling nanomaterial patterning by inkjet printing are proposed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa