RESUMO
Previous studies have shown that cysteine-reactive drug metabolites bind covalently with protein to activate patient T cells. However, the nature of the antigenic determinants that interact with HLA and whether T cell stimulatory peptides contain the bound drug metabolite has not been defined. Because susceptibility to dapsone hypersensitivity is associated with the expression of HLA-B*13:01, we have designed and synthesized nitroso dapsone-modified, HLA-B*13:01 binding peptides and explored their immunogenicity using T cells from hypersensitive human patients. Cysteine-containing 9-mer peptides with high binding affinity to HLA-B*13:01 were designed (AQDCEAAAL [Pep1], AQDACEAAL [Pep2], and AQDAEACAL [Pep3]), and the cysteine residue was modified with nitroso dapsone. CD8+ T cell clones were generated and characterized in terms of phenotype, function, and cross-reactivity. Autologous APCs and C1R cells expressing HLA-B*13:01 were used to determine HLA restriction. Mass spectrometry confirmed that nitroso dapsone-peptides were modified at the appropriate site and were free of soluble dapsone and nitroso dapsone. APC HLA-B*13:01-restricted nitroso dapsone-modified Pep1- (n = 124) and Pep3-responsive (n = 48) CD8+ clones were generated. Clones proliferated and secreted effector molecules with graded concentrations of nitroso dapsone-modified Pep1 or Pep3. They also displayed reactivity against soluble nitroso dapsone, which forms adducts in situ, but not with the unmodified peptide or dapsone. Cross-reactivity was observed between nitroso dapsone-modified peptides with cysteine residues in different positions in the peptide sequence. These data characterize a drug metabolite hapten CD8+ T cell response in an HLA risk allele-restricted form of drug hypersensitivity and provide a framework for structural analysis of hapten HLA binding interactions.
Assuntos
Dapsona , Hipersensibilidade a Drogas , Humanos , Cisteína , Linfócitos T CD8-Positivos , Antígenos HLA-B , Peptídeos , HaptenosRESUMO
Linear IgA bullous dermatosis (LABD) and dermatitis herpetiformis (DH) represent the major subtypes of IgA mediated autoimmune bullous disorders. We sought to understand the disease etiology by using serum proteomics. We assessed 92 organ damage biomarkers in LABD, DH, and healthy controls using the Olink high-throughput proteomics. The positive proteomic serum biomarkers were used to correlate with clinical features and HLA type. Targeted proteomic analysis of IgA deposition bullous disorders vs. controls showed elevated biomarkers. Further clustering and enrichment analyses identified distinct clusters between LABD and DH, highlighting the involvement of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Comparative analysis revealed biomarkers with distinction between LABD and DH and validated in the skin lesion. Finally, qualitative correlation analysis with DEPs suggested six biomarkers (NBN, NCF2, CAPG, FES, BID, and PXN) have better prognosis in DH patients. These findings provide potential biomarkers to differentiate the disease subtype of IgA deposition bullous disease.
Assuntos
Biomarcadores , Dermatite Herpetiforme , Dermatose Linear Bolhosa por IgA , Proteoma , Humanos , Dermatite Herpetiforme/sangue , Dermatite Herpetiforme/diagnóstico , Dermatite Herpetiforme/imunologia , Biomarcadores/sangue , Feminino , Masculino , Adulto , Dermatose Linear Bolhosa por IgA/sangue , Dermatose Linear Bolhosa por IgA/diagnóstico , Pessoa de Meia-Idade , Diagnóstico Diferencial , Proteômica/métodos , Imunoglobulina A/sangue , Adolescente , Adulto Jovem , Idoso , CriançaRESUMO
BACKGROUND: Sporotrichosis is a chronic granulomatous infection of the skin and subcutaneous tissue that can affect any organ through lymphatic spread. The prevalence of sporotrichosis infections is increasing and its treatment is challenging as there are no unified and standard diagnostic techniques or antifungal medications. Controlling further spread requires a rapid diagnosis. Assessment of clinical symptoms, histological analysis, serological testing, and pathogen culture are all necessary for the diagnosis of sporotrichosis. However, these procedures are unable to identify the species. The development of safe, reliable, and species-specific diagnostic techniques is essential. OBJECTIVE: To establish and evaluate a new quantitative real-time PCR assay for the rapid diagnosis of sporotrichosis and to identify relevant species. METHODS: Polymorphisms in calmodulin (CAL) gene sequences and the internal transcribed spacer (ITS) were used in a quantitative real-time PCR assay to identify S. globosa, S. schenckii, and non-target species. RESULTS: The quantitative real-time PCR assay had 100% sensitivity and specificity. The limit of detection was 6 fg/µl. Thirty-four clinical specimens were verified to be infected with S. globosa with a 100% positive detection rate. CONCLUSIONS: The quantitative PCR technique developed in this study is a quick, accurate, and targeted method of identifying S. globosa based on polymorphisms in CAL sequences and ITS. It can be used for a prompt clinical diagnosis to identify S. globosa in clinical specimens from patients with sporotrichosis.
Assuntos
Calmodulina , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Sporothrix , Esporotricose , Esporotricose/diagnóstico , Esporotricose/microbiologia , Sporothrix/genética , Sporothrix/isolamento & purificação , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Calmodulina/genética , Ásia , DNA Fúngico/genética , Técnicas de Diagnóstico Molecular/métodos , Testes de Diagnóstico RápidoRESUMO
BACKGROUND: The purpose of this study was to create a mathematical model to precalculate the acreage change in the abdominal median sagittal plane (ac-AMSP) of patients with ankylosing spondylitis (AS) for whom two-level pedicle subtraction osteotomy (PSO) was planned. METHODS: A single-centre retrospective review of prospectively collected data was conducted among 11 adults with AS. Acreage of the abdominal median sagittal plane (a-AMSP) was performed. The distances and angles between the osteotomy apexes, anterosuperior edge of T12, xiphoid process, superior edge of the pubis, and anterosuperior corner of the sacrum were measured on preoperative thoracolumbar computed tomography. A mathematical model was created using basic trigonometric functions in accordance with the abdominal parameters. Planned osteotomized vertebra angles (POVAs) were substituted into the mathematical model, and the predictive ac-AMSP (P-AC) was obtained. A paired sample t test was performed to determine the differences between the P-AC and actual ac-AMSP (A-AC) and between the predictive acreage change rate (P-CR) and actual acreage change rate (A-CR). RESULTS: The mean age and GK were 44.4 ± 8.99 years and 102.9° ± 19.17°, respectively. No significant difference exists between A-CR and P-CR via mathematical modeling (p > 0.05). No statistically significant difference existed between POVA and actual osteotomized vertebra angles (AOVA) (p > 0.05). A statistically significant difference was observed between preoperative and postoperative measurements of LL, SVA, and GK variables (p < 0.001). CONCLUSIONS: The novel mathematical model was reliable in predicting the ac-AMSP in AS patients undergoing two-level PSO.
Assuntos
Cifose , Espondilite Anquilosante , Adulto , Humanos , Espondilite Anquilosante/diagnóstico por imagem , Espondilite Anquilosante/cirurgia , Cifose/diagnóstico por imagem , Cifose/etiologia , Cifose/cirurgia , Osteotomia/métodos , Estudos Retrospectivos , Sacro , Vértebras Lombares/cirurgia , Resultado do Tratamento , Vértebras Torácicas/diagnóstico por imagem , Vértebras Torácicas/cirurgiaRESUMO
Important forensic diagnostic indicators of sudden death in coronary atherosclerotic heart disease, such as acute or chronic myocardial ischemic changes, sometimes make it difficult to locate the ischemic site due to the short death process, the lack of tissue reaction time. In some cases, the deceased died of sudden death on the first-episode, resulting in difficulty for medical examiners to make an accurate diagnosis. However, clinical studies on coronary instability plaque revealed the key role of coronary spasm and thrombosis caused by their lesions in sudden coronary death process. This paper mainly summarizes the pathological characteristics of unstable coronary plaque based on clinical medical research, including plaque rupture, plaque erosion and calcified nodules, as well as the influencing factors leading to plaque instability, and briefly describes the research progress and technique of the atherosclerotic plaques, in order to improve the study on the mechanism of sudden coronary death and improve the accuracy of the forensic diagnosis of sudden coronary death by diagnosing different pathologic states of coronary atherosclerotic plaques.
Assuntos
Doença da Artéria Coronariana , Trombose Coronária , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/complicações , Placa Aterosclerótica/patologia , Trombose Coronária/complicações , Trombose Coronária/patologia , Fatores de Risco , Doença da Artéria Coronariana/complicações , Morte Súbita Cardíaca/etiologia , Morte Súbita Cardíaca/patologia , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/patologiaRESUMO
Subunit vaccines based on antigen proteins or epitopes of pathogens or tumors show advantages in immunological precision and high safety, but are often limited by their low immunogenicity. Adjuvants can boost immune responses by stimulating immune cells or promoting antigen uptake by antigen presenting cells (APCs), yet existing clinical adjuvants struggle in simultaneously achieving these dual functions. Additionally, the spatial organization of antigens might be crucial to their immunogenicity. Hence, superior adjuvants should potently stimulate the immune system, precisely arrange antigens, and effectively deliver antigens to APCs. Recently, precisely organizing and delivering antigens with the unique editability of DNA nanostructures has been proposed, presenting unique abilities in significantly improving the immunogenicity of antigens. In this minireview, we will discuss the principles behind using DNA nanostructures as self-adjuvant carriers and review the latest advancements in this field. The potential and challenges associated with self-adjuvant DNA nanostructures will also be discussed.
Assuntos
Nanoestruturas , Vacinas , Adjuvantes Imunológicos , Vacinas de Subunidades Antigênicas , Antígenos , DNARESUMO
Dendritic cell vaccine (DCV) holds great potential in tumor immunotherapy owing to its potent ability in eliciting tumor-specific immune responses. Aiming at engineering enhanced DCV, we report the first effort to construct a glycopolymer-engineered DC vaccine (G-DCV) via metabolicglycoengineering and copper-free click-chemistry. Model G-DCV was prepared by firstly delivering tumor antigens, ovalbumin (OVA) into dendritic cells (DC) with fluoroalkane-grafted polyethyleneimines, followed by conjugating glycopolymers with a terminal group of dibenzocyclooctyne (DBCO) onto dendritic cells. Compared to unmodified DCV, our G-DCV could induce stronger T cell activation due to the enhanced adhesion between DCs and T cells. Notably, such G-DCV could more effectively inhibit the growth of the mouse B16-OVA (expressing OVA antigen) tumor model after adoptive transfer. Moreover, by combination with an immune checkpoint inhibitor, G-DCV showed further increased anti-tumor effects in treating different tumor models. Thus, our work provides a novel strategy to enhance the therapeutic effectiveness of DC vaccines.
Assuntos
Neoplasias , Vacinas , Camundongos , Animais , Linfócitos T , Antígenos de Neoplasias , Neoplasias/metabolismo , Ovalbumina , Membrana Celular , Células Dendríticas/metabolismoRESUMO
Keratinocytes are the predominant cell type in the skin epidermis, and they not only protect the skin from the influence of external physical factors but also function as an immune barrier against microbial invasion. However, little is known regarding the immune defence mechanisms of keratinocytes against mycobacteria. Here, we performed single-cell RNA sequencing (scRNA-seq) on skin biopsy samples from patients with Mycobacterium marinum infection and bulk RNA sequencing (bRNA-seq) on M. marinum-infected keratinocytes in vitro. The combined analysis of scRNA-seq and bRNA-seq data revealed that several genes were upregulated in M. marinum-infected keratinocytes. Further in vitro validation of these genes by quantitative polymerase chain reaction and western blotting assay confirmed the induction of IL-32 in the immune response of keratinocytes to M. marinum infection. Immunohistochemistry also showed the high expression of IL-32 in patients' lesions. These findings suggest that IL-32 induction is a possible mechanism through which keratinocytes defend against M. marinum infection; this could provide new targets for the immunotherapy of chronic cutaneous mycobacterial infections.
Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium marinum , Humanos , Mycobacterium marinum/genética , Infecções por Mycobacterium não Tuberculosas/genética , Infecções por Mycobacterium não Tuberculosas/microbiologia , Queratinócitos , ImunidadeRESUMO
Drug-responsive T-cells are activated with the parent compound or metabolites, often via different pathways (pharmacological interaction and hapten). An obstacle to the investigation of drug hypersensitivity is the scarcity of reactive metabolites for functional studies and the absence of coculture systems to generate metabolites in situ. Thus, the aim of this study was to utilize dapsone metabolite-responsive T-cells from hypersensitive patients, alongside primary human hepatocytes to drive metabolite formation, and subsequent drug-specific T-cell responses. Nitroso dapsone-responsive T-cell clones were generated from hypersensitive patients and characterized in terms of cross-reactivity and pathways of T-cell activation. Primary human hepatocytes, antigen-presenting cells, and T-cell cocultures were established in various formats with the liver and immune cells separated to avoid cell contact. Cultures were exposed to dapsone, and metabolite formation and T-cell activation were measured by LC-MS and proliferation assessment, respectively. Nitroso dapsone-responsive CD4+ T-cell clones from hypersensitive patients were found to proliferate and secrete cytokines in a dose-dependent manner when exposed to the drug metabolite. Clones were activated with nitroso dapsone-pulsed antigen-presenting cells, while fixation of antigen-presenting cells or omission of antigen-presenting cells from the assay abrogated the nitroso dapsone-specific T-cell response. Importantly, clones displayed no cross-reactivity with the parent drug. Nitroso dapsone glutathione conjugates were detected in the supernatant of hepatocyte immune cell cocultures, indicating that hepatocyte-derived metabolites are formed and transferred to the immune cell compartment. Similarly, nitroso dapsone-responsive clones were stimulated to proliferate with dapsone, when hepatocytes were added to the coculture system. Collectively, our study demonstrates the use of hepatocyte immune cell coculture systems to detect in situ metabolite formation and metabolite-specific T-cell responses. Similar systems should be used in future diagnostic and predictive assays to detect metabolite-specific T-cell responses when synthetic metabolites are not available.
Assuntos
Hipersensibilidade a Drogas , Humanos , Técnicas de Cocultura , Dapsona/farmacologia , Fígado , Hepatócitos , Ativação LinfocitáriaRESUMO
Blood and lymphatic vasculatures are intimately involved in tissue oxygenation and fluid homeostasis maintenance. Assembly of these vascular networks involves sprouting, migration and proliferation of endothelial cells. Recent studies have suggested that changes in cellular metabolism are important to these processes. Although much is known about vascular endothelial growth factor (VEGF)-dependent regulation of vascular development and metabolism, little is understood about the role of fibroblast growth factors (FGFs) in this context. Here we identify FGF receptor (FGFR) signalling as a critical regulator of vascular development. This is achieved by FGF-dependent control of c-MYC (MYC) expression that, in turn, regulates expression of the glycolytic enzyme hexokinase 2 (HK2). A decrease in HK2 levels in the absence of FGF signalling inputs results in decreased glycolysis, leading to impaired endothelial cell proliferation and migration. Pan-endothelial- and lymphatic-specific Hk2 knockouts phenocopy blood and/or lymphatic vascular defects seen in Fgfr1/Fgfr3 double mutant mice, while HK2 overexpression partly rescues the defects caused by suppression of FGF signalling. Thus, FGF-dependent regulation of endothelial glycolysis is a pivotal process in developmental and adult vascular growth and development.
Assuntos
Células Endoteliais/citologia , Células Endoteliais/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Glicólise , Neovascularização Fisiológica , Transdução de Sinais , Animais , Movimento Celular , Proliferação de Células , Feminino , Hexoquinase/metabolismo , Linfangiogênese , Vasos Linfáticos/citologia , Vasos Linfáticos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/deficiência , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/deficiência , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismoRESUMO
Epidermal growth factor receptor inhibitors (EGFRIs) are widely used to treat various types of malignancies. One of the common adverse reactions is cutaneous toxicity, mostly presenting as acneiform eruptions, paronychia and xerosis. Erosive pustular dermatosis of the scalp (EPDS) is a rare cutaneous adverse reaction that develops during treatment with EGFRIs. The pathogenesis of EGFRI-induced EPDS is poorly understood. Here we present three cases of EPDS induced by EGFRIs. The proteins LTA4H (leukotriene A-4 hydrolase), METAP1 (methionine aminopeptidase 1), BID (BH3-interacting domain death agonist), SMAD1 (mothers against decapentaplegic homologue), PRKRA (interferon-inducible double-stranded RNA-dependent protein kinase activator A), YES1 (tyrosine-protein kinase Yes) and EGFL7 (epidermal growth factor-like protein 7) were significantly upregulated in EGFRI-stimulated peripheral blood mononuclear cell cultures, and validated in the lesions. All of the proteins colocalized with CD4+ and CD8+ T-cell expression. Next-generation-based human leucocyte antigen (HLA) typing showed all patients carried HLA-C*15:02, and modelling studies showed that afatinib and erlotinib bound well within the E/F binding pockets of HLA-C*15:02. Moreover, T cells were preferentially activated by EGFRIs in individuals carrying HLA-C*15:02. The case series revealed that EGFRI-induced EPDS may be mediated by drug-specific T cells.
Assuntos
Exantema , Dermatopatias , Humanos , Couro Cabeludo , Antígenos HLA-C , Leucócitos Mononucleares/metabolismo , Receptores ErbB , Aminopeptidases/metabolismo , Proteínas de Ligação ao Cálcio , Família de Proteínas EGF/metabolismoRESUMO
Despite the tremendous progresses of cancer immunotherapy, its current clinical responses rate in melanoma remains to be improved. Here, we have reported a skin penetrating tetrahedral framework nucleic acid immune adjuvant (FNAIA) to transdermally deliver chemotherapy drugs into melanoma to induce the immunogenic death of tumor cells and expose tumor antigens, which with assistance of CpG oligodeoxynucleotide incorporated in FNAIA could trigger systemic tumor-specific immune responses. Compared with free CpG, FNAIA could penetrate deeper into subcutaneous tumor tissues and more effectively stimulate dendritic cell maturation. Notably, doxorubicin-loaded FNAIA locally applied on the intact skin above the melanoma could effectively inhibit the growth of mouse B16F10 melanoma and increase tumor CD8+ T cell infiltration. Moreover, combined with immune checkpoint inhibitor, the growth of distant tumors could also be effectively inhibited, suggesting that this strategy could induce systemic immune responses. Therefore, this work provides a new idea for non-invasive treatment of skin cancer.
Assuntos
Melanoma , Ácidos Nucleicos , Neoplasias Cutâneas , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Animais , Linhagem Celular Tumoral , Fatores Imunológicos/uso terapêutico , Imunoterapia , Melanoma/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Ácidos Nucleicos/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Melanoma Maligno CutâneoRESUMO
Peptide vaccines have advantages in easy fabrication and high safety, but their effectiveness is hampered by the poor immunogenicity of the epitopes themselves. Herein, we constructed a series of framework nucleic acids (FNAs) with regulated rigidity and size to precisely organize epitopes in order to reveal the influence of epitope spacing and carrier rigidity on the efficiency of peptide vaccines. We found that assembling epitopes on rigid tetrahedral FNAs (tFNAs) with the appropriate size could efficiently enhance their immunogenicity. Further, by integrating epitopes from SARS-CoV-2 on preferred tFNAs, we constructed a COVID-19 peptide vaccine which could induce high titers of IgG against the receptor binding domain (RBD) of SARS-CoV-2 spike protein and increase the ratio of memory B and T cells in mice. Considering the good biocompatibility of tFNAs, our research provides a new idea for developing efficient peptide vaccines against viruses and possibly other diseases.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Camundongos , COVID-19/prevenção & controle , SARS-CoV-2/metabolismo , Epitopos de Linfócito T/química , Epitopos de Linfócito T/metabolismo , Epitopos de Linfócito B/química , Peptídeos , Vacinas de Subunidades AntigênicasRESUMO
Artificial antigen-presenting cells (aAPCs) constructed by integrating T cell activation ligands on biocompatible materials hold great potential in tumor immunotherapy. However, it remains challenging to develop aAPCs, which could mimic the characteristics of natural APCs, thereby realizing antigen-specific T cells activation in vivo. Here, we report the first effort to construct natural lymphocyte-based homologous targeting aAPCs (LC-aAPCs) with lipid-DNA-mediated noninvasive live cell surface engineering. Through a predesigned bottom-up self-assembly path, we achieved natural-APC-mimicking distribution of T cell activation ligands on LC-aAPCs, which would enable the optimized T cell activation. Moreover, the lipid-DNA-mediated self-assembly occurring on lipid bilayers would not affect the functions of homing receptors expressed on lymphocyte. Therefore, such LC-aAPCs could actively migrate to peripheral lymphatic organs and then effectively activate antigen-specific T cells. Combined with an immune checkpoint inhibitor, such LC-aAPCs could effectively inhibit the growth of different tumor models. Thus, our work provides a new design of aAPCs for in vivo applications in tumor immunotherapy, and the lipid-DNA-mediated noninvasive live cell surface engineering would be a powerful tool for designing cell-based therapeutics.
Assuntos
Células Artificiais , Neoplasias , Células Apresentadoras de Antígenos , DNA/metabolismo , Humanos , Imunoterapia , Ligantes , Lipídeos , Neoplasias/metabolismo , Neoplasias/terapia , Linfócitos TRESUMO
To study the mechanisms of relapse in acute lymphoblastic leukemia (ALL), we performed whole-genome sequencing of 103 diagnosis-relapse-germline trios and ultra-deep sequencing of 208 serial samples in 16 patients. Relapse-specific somatic alterations were enriched in 12 genes (NR3C1, NR3C2, TP53, NT5C2, FPGS, CREBBP, MSH2, MSH6, PMS2, WHSC1, PRPS1, and PRPS2) involved in drug response. Their prevalence was 17% in very early relapse (<9 months from diagnosis), 65% in early relapse (9-36 months), and 32% in late relapse (>36 months) groups. Convergent evolution, in which multiple subclones harbor mutations in the same drug resistance gene, was observed in 6 relapses and confirmed by single-cell sequencing in 1 case. Mathematical modeling and mutational signature analysis indicated that early relapse resistance acquisition was frequently a 2-step process in which a persistent clone survived initial therapy and later acquired bona fide resistance mutations during therapy. In contrast, very early relapses arose from preexisting resistant clone(s). Two novel relapse-specific mutational signatures, one of which was caused by thiopurine treatment based on in vitro drug exposure experiments, were identified in early and late relapses but were absent from 2540 pan-cancer diagnosis samples and 129 non-ALL relapses. The novel signatures were detected in 27% of relapsed ALLs and were responsible for 46% of acquired resistance mutations in NT5C2, PRPS1, NR3C1, and TP53. These results suggest that chemotherapy-induced drug resistance mutations facilitate a subset of pediatric ALL relapses.
Assuntos
Biomarcadores Tumorais/genética , Metotrexato/uso terapêutico , Mutagênese/efeitos dos fármacos , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , 5'-Nucleotidase/genética , Antimetabólitos Antineoplásicos/uso terapêutico , Criança , Análise Mutacional de DNA , Feminino , Seguimentos , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Prognóstico , Receptores de Glucocorticoides/genética , Taxa de Sobrevida , Proteína Supressora de Tumor p53/genéticaRESUMO
Robot hands play an important role in the interaction between robots and the environment, and the precision and complexity of their tasks in work production are becoming higher and higher. However, because the traditional manipulator has too many driving components, complex control, and a lack of versatility, it is difficult to solve the contradiction between the degrees of freedom, weight, flexibility, and grasping ability. The existing manipulator has difficulty meeting the diversified requirements of a simple structure, a large grasping force, and the ability to automatically adapt to shape when grasping an object. To solve this problem, we designed a kind of underactuated manipulator with a simple structure and strong generality based on the metamorphic mechanism principle. First, the mechanism of the manipulator was designed on the basis of the metamorphic mechanism principle, and a kinematics analysis was carried out. Then, the genetic algorithm was used to optimize the size parameters of the manipulator finger structure. Finally, for different shapes of objects, the design of the control circuit binding force feedback control was carried out with a grasping experiment. The experimental results show that the manipulator has simple control and can grasp objects of different sizes, positions, and shapes.
Assuntos
Robótica , Fenômenos Biomecânicos , Mãos , Força da Mão , Fenômenos MecânicosRESUMO
Epidermolysis bullosa encompasses a group of inherited blistering skin disorders. The pathogenic mutations in 10-25% of patients with epidermolysis bullosa have not been identified by Sanger sequencing. The aims of this study were to identify the pathogenic sequence alterations in a large cohort of Chinese patients with epidermolysis bullosa and to clarify the relationship between clinical phenotypes and genotypes. Whole-exome sequencing was performed on 44 pedigrees and 13 sporadic cases. The results were further confirmed by Sanger sequencing. In total, 52 mutations, comprising 19 novel and 33 previously reported mutations, were identified in 5 genes, with a mutation detection rate of 100%. A relationship between subtypes and pathogenic genes was established: 12 cases of epidermolysis bullosa simplex were associated with mutations in KRT5/14 and PLEC; one case of junctional epidermolysis bullosa carried mutations in ITGB4; and 44 cases of dystrophic epidermolysis bullosa were caused by mutations in COL7A1. The results of this study support whole-exome sequencing as a promising tool in the genetic diagnosis of epidermolysis bullosa.
Assuntos
Epidermólise Bolhosa Distrófica , Epidermólise Bolhosa Simples , Epidermólise Bolhosa , China/epidemiologia , Colágeno Tipo VII/genética , Epidermólise Bolhosa/diagnóstico , Epidermólise Bolhosa/genética , Epidermólise Bolhosa Distrófica/diagnóstico , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Simples/diagnóstico , Epidermólise Bolhosa Simples/genética , Humanos , Mutação , LinhagemRESUMO
Filaggrin, encoded by the FLG gene, plays a crucial role in the barrier function of epidermis, but the association between FLG loss-of-function mutations and infectious skin diseases has not been systematically studied. FLG coding sequences from 945 patients with leprosy and 916 healthy controls were captured and enriched using an array-based high-throughput system, and subjected to next-generation sequencing. The loss-of-function mutations found were further validated by Sanger sequencing. A total of 21 loss-of-function mutations were found in 945 patients with leprosy, with a carrier rate of 17.53%, while the prevalence of these mutations in 916 healthy controls was 14.77%, which was significantly lower than in patients. Two individual FLG loss-of-function mutations (K4022X and Q1790X) were found to be significantly associated with leprosy. These results suggest a possible role for filaggrin in defending against leprosy pathogens.
Assuntos
Hanseníase , Proteínas S100/genética , Proteínas Filagrinas , Predisposição Genética para Doença , Genótipo , Humanos , Proteínas de Filamentos Intermediários/genética , Hanseníase/diagnóstico , Hanseníase/genética , Mutação , Proteínas S100/metabolismoRESUMO
With high accuracy and precision, next generation sequencing (NGS) has provided a powerful tool for clinical testing of genetic diseases. To follow a standardized experimental procedure is the prerequisite to obtain stable, reliable, and effective NGS data for the assistance of diagnosis and/or screening of genetic diseases. At a conference of genetic testing industry held in Shanghai, May 2019, physicians engaged in the diagnosis and treatment of genetic diseases, experts engaged in clinical laboratory testing of genetic diseases and experts from third-party genetic testing companies have fully discussed the standardization of NGS procedures for the testing of genetic diseases. Experts from different backgrounds have provided opinions for the operation and implementation of NGS testing procedures including sample collection, reception, preservation, library construction, sequencing and data quality control. Based on the discussion, a consensus on the standardization of the testing procedures in NGS laboratories is developed with the aim to standardize NGS testing and accelerate implementation of NGS in clinical settings across China.
Assuntos
Doenças Genéticas Inatas/diagnóstico , Testes Genéticos/normas , Sequenciamento de Nucleotídeos em Larga Escala/normas , China , Consenso , HumanosRESUMO
Artificial antigen presenting cells (aAPCs) with surface-anchored T cell activating ligands hold great potential in adoptive immunotherapy. However, it remains challenging to precisely control the ligand positioning on those platforms using conventional bioconjugation chemistry. Utilizing DNA-assisted bottom-up self-assembly, we were able to precisely control both lateral and vertical distributions of T cell activation ligands on red blood cells (RBCs). The clustered lateral positioning of the peptide-major histocompatibility complex (pMHC) on RBCs with a short vertical distance to the cell membrane is favorable for more effective T cell activation, likely owing to their better mimicry of natural APCs. Such optimized RBC-based artificial APCs can stimulate T cell proliferation inâ vivo and effectively inhibit tumor growth with adoptive immunotherapy. DNA technology is thus a unique tool to precisely engineer the cell membrane interface and tune cell-cell interactions, which is promising for applications such as immunotherapy.