Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biochem Biophys Res Commun ; 517(2): 376-382, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31362890

RESUMO

Mutations of PTEN-induced kinase 1 (PINK1) cause recessive familial Parkinson's disease. Cells lacking PINK1 display mitochondrial deficits and increased sensitivity to oxidative and proteasomal stress. It has been shown that the 52-kDa (mature) form of PINK1 in the cytoplasm mitigates proteasomal stress-induced cell death by enhancing aggresomes formation and autophagy. Here we newly demonstrate that proteasome dysfunction triggers mono-ubiquitination and nuclear translocation of mature PINK1. Enhancing PINK1 mono-ubiquitination by two different means increased nuclear accumulation of PINK1 independent of proteasome inhibition. Moreover, we show that PINK1 harbors a hitherto unknown nuclear export sequence (NES) in its C-terminus. Blocking CRM1-dependent nuclear export with leptomycin B augmented PINK1 levels in the nucleus of MG132-treated cells but not in normal cells. Overall, these results show that proteasomal stress-induced mono-ubiquitination of PINK1 mediates PINK1 nuclear translocation, while PINK1 is excluded from the nucleus of healthy cells via its NES. Therefore, mature PINK1 may have a nuclear function in cells under proteasomal stress.


Assuntos
Núcleo Celular/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Quinases/metabolismo , Ubiquitinação , Transporte Ativo do Núcleo Celular , Células HEK293 , Células HeLa , Humanos , Doença de Parkinson/metabolismo
2.
Biochem Biophys Res Commun ; 446(2): 470-4, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24613845

RESUMO

The existence of innate, host-specific restriction factors is a major obstacle to the development of nonhuman primate models for AIDS studies, and TRIM5α is one of the most important of these restriction factors. In recent years, a TRIM5 chimeric gene that was retrotransposed by a cyclophilin A (CypA) cDNA was identified in certain macaque species. The TRIM5α-CypA fusion protein, TRIMCyp, which was expressed in these monkeys, had lost its restriction ability toward HIV-1. We previously found that TRIMe7-CypA, an alternative splicing isoform of the TRIMCyp transcripts, was expressed in pig-tailed and rhesus macaques but absent in long-tailed macaques. In this study, the anti-HIV-1 activity of TRIMe7-CypA in the rhesus macaque (RhTRIMe7-CypA) was investigated. The over-expression of RhTRIMe7-CypA in CrFK, HeLa and HEK293T cells did not restrict the infection or replication of an HIV-1-GFP reporter virus in these cells. As a positive control, rhesus (rh)TRIM5α strongly inhibited the reporter virus. Intriguingly, the anti-HIV-1 activity of RhTRIM5α was significantly reduced in a dose-dependent manner by the co-repression of RhTRIMe7-CypA. Our data indicate that although the RhTRIMe7-CypA isoform does not appear to restrict HIV-1, it may act as a negative modulator of TRIM family proteins, presumably by competitive inhibition.


Assuntos
Predisposição Genética para Doença/genética , Infecções por HIV/genética , HIV-1 , Proteínas/genética , Sítios de Splice de RNA/genética , Animais , Regulação para Baixo/genética , Macaca mulatta , Isoformas de Proteínas/genética , Ubiquitina-Proteína Ligases
3.
Sci Adv ; 10(5): eadj4163, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38295177

RESUMO

Species-specific differences in acidic nuclear phosphoprotein 32 family member A (ANP32A) determine the restriction of avian-signature polymerase in mammalian cells. Mutations that evade this restriction, such as PB2-E627K, are frequently acquired when avian influenza A viruses jump from avian hosts to mammalian hosts. However, the mechanism underlying this adaptation process is still unclear. Here, we report that host factor ANP32 proteins can be incorporated into influenza viral particles through combination with the viral RNA polymerase (vPol) and then transferred into targeted cells where they support virus replication. The packaging of the ANP32 proteins into influenza viruses is dependent on their affinity with the vPol. Avian ANP32A (avANP32A) delivered by avian influenza A virions primes early viral replication in mammalian cells, thereby favoring the downstream interspecies transmission event by increasing the total amount of virus carrying adaptive mutations. Our study clarifies one role of avANP32A where it is used by avian influenza virus to help counteract the restriction barrier in mammals.


Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Galinhas , Mamíferos , Replicação Viral , Vírion
4.
Sci Adv ; 9(28): eadg5175, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37436988

RESUMO

Species differences in the host factor ANP32A/B result in the restriction of avian influenza virus polymerase (vPol) in mammalian cells. Efficient replication of avian influenza viruses in mammalian cells often requires adaptive mutations, such as PB2-E627K, to enable the virus to use mammalian ANP32A/B. However, the molecular basis for the productive replication of avian influenza viruses without prior adaptation in mammals remains poorly understood. We show that avian influenza virus NS2 protein help to overcome mammalian ANP32A/B-mediated restriction to avian vPol activity by promoting avian vRNP assembly and enhancing mammalian ANP32A/B-vRNP interactions. A conserved SUMO-interacting motif (SIM) in NS2 is required for its avian polymerase-enhancing properties. We also demonstrate that disrupting SIM integrity in NS2 impairs avian influenza virus replication and pathogenicity in mammalian hosts, but not in avian hosts. Our results identify NS2 as a cofactor in the adaptation process of avian influenza virus to mammals.


Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Influenza Aviária/genética , Aclimatação , Vírus da Influenza A/genética , Mamíferos , Mutação , Nucleotidiltransferases
5.
Front Oncol ; 12: 893396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600352

RESUMO

Mitochondrial metabolism and dynamics (fission and fusion) critically regulate cell survival and proliferation, and abnormalities in these pathways are implicated in both neurodegenerative disorders and cancer. Mitochondrial fission is necessary for the growth of mutant Ras-dependent tumors. Here, we investigated whether loss of PTEN-induced kinase 1 (PINK1) - a mitochondrial kinase linked to recessive familial Parkinsonism - affects the growth of oncogenic Ras-induced tumor growth in vitro and in vivo. We show that RasG12D-transformed embryonic fibroblasts (MEFs) from PINK1-deficient mice display reduced growth in soft agar and in nude mice, as well as increased necrosis and decreased cell cycle progression, compared to RasG12D-transformed MEFs derived from wildtype mice. PINK1 re-expression (overexpression) at least partially rescues these phenotypes. Neither PINK1 deletion nor PINK1 overexpression altered Ras expression levels. Intriguingly, PINK1-deficient Ras-transformed MEFs exhibited elongated mitochondria and altered DRP1 phosphorylation, a key event in regulating mitochondrial fission. Inhibition of DRP1 diminished PINK1-regulated mitochondria morphological changes and tumor growth suggesting that PINK1 deficiency primarily inhibits Ras-driven tumor growth through disturbances in mitochondrial fission and associated cell necrosis and cell cycle defects. Moreover, we substantiate the requirement of PINK1 for optimal growth of Ras-transformed cells by showing that human HCT116 colon carcinoma cells (carrying an endogenous RasG13D mutation) with CRISPR/Cas9-introduced PINK1 gene deletions also show reduced mitochondrial fission and decreased growth. Our results support the importance of mitochondrial function and dynamics in regulating the growth of Ras-dependent tumor cells and provide insight into possible mechanisms underlying the lower incidence of cancers in Parkinson's disease and other neurodegenerative disorders.

6.
Microbiol Spectr ; 10(1): e0207321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35044222

RESUMO

Influenza A virus (IAV) RNA-dependent RNA polymerase (vPol) is a heterotrimer composed of PB2, PB1, and PA, which, together with vRNA and nucleoprotein (NP), forms viral ribonucleoprotein (vRNP) complex to direct the transcription and replication of the viral genome. Host factor ANP32 proteins have been proved to be associated with vRNP and are essential for polymerase activity and cross-species restriction of avian influenza virus. However, the molecular mechanism by which ANP32 supports polymerase activity is largely unknown. Here, we identified that KPNA6 is associated with ANP32A/B and vRNP of the influenza virus. Both knockout and overexpression of KPNA6 downregulate the replication of the influenza virus by inhibiting the polymerase activity, indicating that a certain level of KPNA6 is beneficial for efficient replication of the influenza virus. Furthermore, we demonstrate that overexpression of KPNA6 or its nuclear importing domain negative mutation inhibited the interaction between ANP32 and vRNP, thus reducing the polymerase activity. Our results revealed the role of KPNA6 in interacting with both ANP32A/B and vRNP to maintain viral polymerase activity and provided new insights for further understanding of the mechanism by which ANP32 supports influenza polymerase. IMPORTANCE Host factor ANP32 plays a fundamental role in supporting the polymerase activity of influenza viruses, but the underlying mechanism is largely unknown. Here, we propose that KPNA6 is involved in the function of ANP32A/B to support influenza virus polymerase by interacting with both vRNP and ANP32A/B. The proper amount of KPNA6 and ANP32 proteins in the KPNA6-ANP32-vRNP complex is crucial for maintaining the viral polymerase activity. The KPNA6 may contribute to maintaining stable interaction between vRNA and ANP32 proteins in the nucleus, and this function is independent of the known importing domain of KPNA6. Our research reveals a role of KNPA6 associated with ANP32 proteins that support the viral polymerase and suggests a new perspective for developing antiviral strategies.


Assuntos
Vírus da Influenza A/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , alfa Carioferinas/metabolismo , Animais , Núcleo Celular/metabolismo , Genoma Viral , Células HEK293 , Humanos , Proteínas Nucleares/genética , Orthomyxoviridae , Proteínas de Ligação a RNA/genética , RNA Polimerase Dependente de RNA , Proteínas Virais/genética , Replicação Viral , alfa Carioferinas/genética
7.
Behav Brain Res ; 363: 161-172, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30735759

RESUMO

Parkinson's disease (PD) is characterized by motor impairments and several non-motor features, including frequent depression and anxiety. Stress-induced deficits of adult hippocampal neurogenesis (AHN) have been linked with abnormal affective behavior in animals. It has been speculated that AHN defects may contribute to affective symptoms in PD, but this hypothesis remains insufficiently tested in animal models. Mice that lack the PD-linked kinase PINK1 show impaired differentiation of adult-born neurons in the hippocampus. Here, we examined the relationship between AHN deficits and affective behavior in PINK1-/- mice under basal (no stress) conditions and after exposure to chronic stress. PINK1 loss and corticosterone negatively and jointly affected AHN, leading to lower numbers of neural stem cells and newborn neurons in the dentate gyrus of corticosterone-treated PINK1-/- mice. Despite increased basal AHN deficits, PINK1-deficient mice showed normal affective behavior. However, lack of PINK1 sensitized mice to corticosterone-induced behavioral despair in the tail suspension test at a dose where wildtype mice were unaffected. Moreover, after two weeks of chronic restraint stress male PINK1-/- mice displayed increased immobility in the forced swim test, and protein expression of the glucocorticoid receptor in the hippocampus was reduced. Thus, while impaired AHN as such is insufficient to cause affective dysfunction in this PD model, PINK1 deficiency may lower the threshold for chronic stress-induced depression in PD. Finally, PINK1-deficient mice displayed reduced basal voluntary wheel running but normal rotarod performance, a finding whose mechanisms remain to be determined.


Assuntos
Depressão/fisiopatologia , Neurogênese/fisiologia , Proteínas Quinases/fisiologia , Animais , Ansiedade/fisiopatologia , Transtornos de Ansiedade/fisiopatologia , Comportamento Animal , Diferenciação Celular , Proliferação de Células , Corticosterona/metabolismo , Giro Denteado/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Transtorno Depressivo/fisiopatologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/fisiologia , Sistema Hipotálamo-Hipofisário , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Neurônios/metabolismo , Doença de Parkinson/fisiopatologia , Sistema Hipófise-Suprarrenal , Proteínas Quinases/genética , Receptores de Glucocorticoides/metabolismo , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Natação , Lobo Temporal/fisiopatologia
8.
Sci Rep ; 8(1): 383, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321620

RESUMO

Neuroinflammation is involved in the pathogenesis of Parkinson's disease (PD) and other neurodegenerative disorders. We show that lack of PINK1- a mitochondrial kinase linked to recessive familial PD - leads to glia type-specific abnormalities of innate immunity. PINK1 loss enhances LPS/IFN-γ stimulated pro-inflammatory phenotypes of mixed astrocytes/microglia (increased iNOS, nitric oxide and COX-2, reduced IL-10) and pure astrocytes (increased iNOS, nitric oxide, TNF-α and IL-1ß), while attenuating expression of both pro-inflammatory (TNF-α, IL-1ß) and anti-inflammatory (IL-10) cytokines in microglia. These abnormalities are associated with increased inflammation-induced NF-κB signaling in astrocytes, and cause enhanced death of neurons co-cultured with inflamed PINK1 -/- mixed glia and neuroblastoma cells exposed to conditioned medium from LPS/IFN-γ treated PINK1 -/- mixed glia. Neuroblastoma cell death is prevented with an iNOS inhibitor, implicating increased nitric oxide production as the cause for enhanced death. Finally, we show for the first time that lack of a recessive PD gene (PINK1) increases α-Synuclein-induced nitric oxide production in all glia types (mixed glia, astrocytes and microglia). Our results describe a novel pathogenic mechanism in recessive PD, where PINK1 deficiency may increase neuron death via exacerbation of inflammatory stimuli-induced nitric oxide production and abnormal innate immune responses in glia cells.


Assuntos
Imunidade Inata , Neuroglia/imunologia , Neurônios/citologia , Óxido Nítrico/metabolismo , Proteínas Quinases/genética , Animais , Apoptose , Células Cultivadas , Citocinas/metabolismo , Técnicas de Inativação de Genes , Humanos , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Neuroglia/efeitos dos fármacos , Neurônios/metabolismo , Doença de Parkinson/genética , alfa-Sinucleína/metabolismo
9.
Virology ; 495: 112-21, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27200480

RESUMO

Human schlafen11 is a novel restriction factor for HIV-1 based on bias regarding relative synonymous codon usage (RSCU). Here, we report the cloning of equine schlafen11 (eSLFN11) and the characteristics of its role in restricting the production of equine infectious anemia virus (EIAV), a retrovirus similar to HIV-1. Overexpression of eSLFN11 inhibited EIAV replication, whereas knockdown of endogenous eSLFN11 by siRNA enhanced the release of EIAV from its principal target cell. Notably, although eSLFN11 significantly suppressed expression of viral Gag protein and EIAV release into the culture medium, the levels of intracellular viral early gene proteins Tat and Rev and viral genomic RNA were unaffected. Coincidently, similar altered patterns of codon usage bias were observed for both the early and late genes of EIAV. Therefore, our data suggest that eSLFN11 restricts EIAV production by impairing viral mRNA translation via a mechanism that is similar to that employed by hSLFN11 for HIV-1.


Assuntos
Códon , Vírus da Anemia Infecciosa Equina/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral , Sequência de Aminoácidos , Animais , Regulação Viral da Expressão Gênica , Técnicas de Silenciamento de Genes , Genoma Viral , HIV-1/fisiologia , Cavalos , Humanos , Proteínas Nucleares/química , RNA Interferente Pequeno/genética , RNA Viral , Transcrição Gênica , Proteínas Virais/química , Liberação de Vírus
10.
PLoS One ; 8(11): e79299, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278125

RESUMO

Equine lentivirus receptor 1 (ELR1) has been identified as the sole receptor for equine infectious anemia virus (EIAV) and is a member of the tumor necrosis factor receptor (TNFR) superfamily. In addition to the previously described membrane-associated form of ELR1, two other major alternative splicing variant mRNAs were identified in equine monocyte-derived macrophages (eMDMs). One major spliced species (ELR1-IN) contained an insertion of 153 nt, which resulted in a premature stop codon situated 561 nt upstream of the predicted membrane spanning domain. The other major species (ELR1-DE) has a deletion of 109 nt that causes a shift of the open reading frame and generates a stop codon 312 nt downstream. Because ELR1-DE presumably encodes a peptide of a mere 23 residues, only ELR1-IN was further analyzed. The expression of a soluble form of ELR1 (sELR1) by ELR1-IN was confirmed by Western blot and immunofluorescence analyses. Similar to ELR1, the transcription level of ELR1-IN varied among individual horses and at different time points in the same individuals. The ratio of ELR1-IN mRNA species to ELR1 mRNA was approximately 1∶2.5. Pre-incubation of the recombinant sELR1 with EIAV significantly inhibited EIAV infection in equine macrophages, the primary in vivo target cell of the virus. Fetal equine dermal (FED) cells are susceptible to EIAV in vitro, and the replication of EIAV in FED cells transiently transfected with ELR1-IN was markedly reduced when compared with replication in cells transfected with the empty vector. Finally, the expression levels of both forms of the EIAV receptor were significantly regulated by infection with this virus. Taken together, our data indicate that sELR1 acts as a secreted cellular factor that inhibits EIAV infection in host cells.


Assuntos
Processamento Alternativo/genética , Precursores de Proteínas/genética , Receptores Virais/genética , Fator de Necrose Tumoral alfa/genética , Animais , Linhagem Celular , Cavalos , Humanos , Vírus da Anemia Infecciosa Equina , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa