Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Plant Dis ; 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37227437

RESUMO

Capsicum chlorosis virus (CaCV; family Tospoviridae, genus Orthotospovirus) was first reported to infect capsicum (Capsicum annuum) and tomato (Solanum lycopersicum) in Australia in 2002 (McMichael et al., 2002). Subsequently, its infection was detected in different plants including waxflower (Hoya calycina Schlecter) in the United States (Melzer et al. 2014), peanut (Arachis hypogaea) in India (Vijayalakshmi et al. 2016), and spider lily (Hymenocallis americana) (Huang et al. 2017), Chilli pepper (Capsicum annuum) (Zheng et al. 2020), and Feiji cao (Chromolaena odorata) (Chen et al. 2022) in China. Ageratum conyzoides L. (commonly known as goat weed, family Asteraceae) is a natural weed in crop fields distributed in subtropical and tropical areas and a reservoir host of numerous plant pathogens (She et al. 2013). In April 2022, we observed that 90% of plants of A. conyzoides in maize fields in Sanya, Hainan province, China, exhibited typical virus-like symptoms of vein yellowing, leaf chlorosis, and distortion (Fig. S1 A-C). Total RNA was extracted from one symptomatic leaf of A. conyzoides. Small RNA libraries were constructed using the small RNA Sample Pre Kit (Illumina, San Diego, USA) for sequencing with an Illumina Novaseq 6000 platform (Biomarker Technologies Corporation, Beijing, China). A total 15,848,189 clean reads were obtained after removing low-quality reads. Quality-controlled qualified reads were assembled into contigs using Velvet 1.0.5 software with a k-mer value of 17. One hundred contigs shared nucleotide identity ranging from 85.7% to 100% with the CaCV using BLASTn searches online (https://blast.ncbi.nlm.nih.gov/Blast.cgi?). Numerous contigs (45, 34, and 21) obtained in this study were mapped to the L, M, and S RNA segments of the CaCV-Hainan isolate (GenBank accession no. KX078565- KX078567) from spider lily (Hymenocallis americana) in Hainan province, China, respectively. The full-length of L, M, and S RNA segments of CaCV-AC were determined to be 8,913, 4,841, and 3,629 bp, respectively (GenBank accession no. OQ597167- OQ597169). Furthermore, five symptomatic leaf samples were tested to be positive for CaCV using a CaCV enzyme-linked immunosorbent assay (ELISA) kit (MEIMIAN, Jiangsu, China) (Fig. S1-D). Total RNA from these leaves was amplified by RT-PCR with two sets of primer pairs. Primers CaCV-F (5'-ACTTTCCATCAACCTCTGT-3') and CaCV-R (5'-GTTATGGCCATATTTCCCT-3') were used for the amplification of 828 bp fragment from nucleocapsid protein (NP) on CaCV S RNA. While another, primers gL3637 (5'-CCTTTAACAGTDGAAACAT-3') and gL4435c (5'-CATDGCRCAAGARTGRTARACAGA-3') were used for the amplification of 816 bp fragment from RNA-dependent RNA polymerase (RdRP) on CaCV L RNA (Fig. S1-E and -F) (Basavaraj et al. 2020). These amplicons were cloned into the pCE2 TA/Blunt-Zero vector (Vazyme, Nanjing, China) and three independent positive colonies of Escherichia coli DH5α carrying each viral amplicon were sequenced. These sequences were deposited in the GenBank database under accession nos. OP616700-OP616709. Pairwise sequence comparison revealed that nucleotide sequences of NP and RdRP genes of the five CaCV isolates shared 99.5% (812 bp out of 828 bp) and 99.4% (799 bp out of 816 bp) nucleotide identities, respectively. They showed 86.2-99.2% and 86.5-99.1% nucleotide identities with corresponding nucleotide sequences of other CaCV isolates derived from GenBank database, respectively. The highest nucleotide sequence identity (99%) of the CaCV isolates obtained in the study was observed with the CaCV-Hainan isolate. Phylogenetic analysis based on NP amino acid demonstrated that six CaCV isolates (this study = 5 and NCBI database = 1) clustered into one distinct clade (Fig. S2). Our data confirmed for the first time the presence of CaCV naturally infecting A. conyzoides plant in China, which enriches information on the host range and will be helpful for disease management.

2.
Plant Dis ; 105(4): 896-903, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33044140

RESUMO

Maize yellow mosaic virus (MaYMV) hosted in various gramineous plants was assigned to the genus Polerovirus (family Luteoviridae) in 2018. However, little is known about its genetic diversity and population structure. In this study, 509 sugarcane leaf samples with mosaic symptoms were collected in 2017 to 2019 from eight sugarcane-growing provinces in China. Reverse-transcription PCR results revealed that four positive-sense RNA viruses were found to infect sugarcane, and the incidence of MaYMV among samples from Fujian, Sichuan, and Guangxi Provinces was 52.1, 9.8, and 2.5%, respectively. Based on 82 partial MaYMV sequences and 46 whole-genome sequences from different host plants, phylogenetic analysis revealed that MaYMV populations are very closely associated with their source geographical regions (China, Africa, and South America). Pairwise identity analysis showed significant variability in genome sequences among MaYMV isolates with genomic nucleotide identities of 91.1 to 99.9%. In addition to codon mutations, insertions or deletions also contributed to genetic variability in individual coding regions, especially in the readthrough protein (P3-P5 fusion protein). Low gene flow and significant genetic differentiation of MaYMV were observed among the three geographical populations, suggesting that environmental adaptation is an important evolutionary force that shapes the genetic structure of MaYMV. Genes in the MaYMV genome were subject to strong negative or purification selection during evolution, except for the movement protein (MP), which was under positive selection pressure. This finding suggests that the MP may play an important role in MaYMV evolution. Taken together, our findings provide basic information for the development of an integrated disease management strategy against MaYMV.


Assuntos
Luteoviridae , Vírus do Mosaico , China , Evolução Molecular , Genoma Viral/genética , Luteoviridae/genética , Vírus do Mosaico/genética , Filogenia , Doenças das Plantas , América do Sul , Zea mays
3.
Plant Dis ; 103(12): 3251-3258, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31596691

RESUMO

Ratoon stunting disease (RSD), one of the most important diseases of sugarcane, is caused by the bacterium Leifsonia xyli subsp. xyli (Lxx). Lxx infects sugarcane worldwide and RSD results in high yield losses and varietal degeneration. It is highly challenging to diagnose RSD based on visual symptomatology because this disease does not exhibit distinct external and internal symptoms. In this study, a novel Lxx-specific primer pair Lxx-F1/Lxx-R1 was designed to detect this pathogen using a conventional PCR assay. These primers were then compared with four published Lxx-specific primers and one universal Leifsonia generic primer pair LayF/LayR. Sugarcane leaf samples were collected from Saccharum spp. hybrids in commercial fields (315 samples) and from germplasm clones of five Saccharum species and Erianthus arundinaceus (216 samples). These samples were used for comparative field diagnosis with six conventional PCR assays. Sensitivity tests suggested that the PCR assay with primers Lxx-F1/Lxx-R1 had the same detection limit (1 pg of Lxx genomic DNA) as the primer pairs Cxx1/Cxx2 and CxxITSf#5/CxxITSr#5 and had 10-fold higher sensitivity than the primer pairs Pat1-F2/Pat1-R2, LayF/LayR, and C2F/C2R. Comparison of PCR assays revealed that natural Lxx-infection incidence (6.1%) in field sample evaluation identified by Lxx-F1/Lxx-R1 primers was higher than incidences (0.7 to 3.0%) determined by other primer pairs. Moreover, no nonspecific DNA amplification occurred within these field samples with Lxx-F1/Lxx-R1 primers, unlike with the primer pairs Cxx1/Cxx2 and LayF/LayR. Diverse Leifsonia strains were identified by PCR detection with LayF/LayR primers in the field samples, whereas whether these Leifsonia strains were pathogenic to sugarcane requires further research. Our investigations revealed that the PCR assay with the newly designed primers Lxx-F1/Lxx-R1 could be widely used for RSD diagnosis and Lxx-pathogen detection with satisfactory sensitivity and specificity.


Assuntos
Actinomycetales , Reação em Cadeia da Polimerase , Saccharum , Actinomycetales/genética , Primers do DNA/genética , Saccharum/microbiologia , Sensibilidade e Especificidade
4.
Arch Virol ; 161(6): 1493-503, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26973230

RESUMO

Sugarcane streak mosaic virus (SCSMV), an economically important causal agent of mosaic disease of sugarcane, is a member of the newly created genus Poacevirus in the family Potyviridae. In this study, we report the molecular characterization of three new SCSMV isolates from China (YN-YZ211 and HN-YZ49) and Myanmar (MYA-Formosa) and their genetic variation and phylogenetic relationship to SCSMV isolates from Asia and the type members of the family Potyviridae. The complete genome of each of the three isolates was determined to be 9781 nucleotides (nt) in size, excluding the 3' poly(A) tail. Phylogenetic analysis of the complete polyprotein amino acid (aa) sequences (3130 aa) revealed that all SCSMV isolates clustered into a phylogroup specific to the genus Poacevirus and formed two distinct clades designated as group I and group II. Isolates YN-YZ211, HN-YZ49 and MYA-Formosa clustered into group I, sharing 96.8-99.5 % and 98.9-99.6 % nt (at the complete genomic level) and aa (at the polyprotein level) identity, respectively, among themselves and 81.2-98.8 % and 94.0-99.6 % nt (at the complete genomic level) and aa (at the polyprotein level) identity, respectively, with the corresponding sequences of seven Asian SCSMV isolates. Population genetic analysis revealed greater between-group (0.190 ± 0.004) than within-group (group I = 0.025 ± 0.001 and group II = 0.071 ± 0.003) evolutionary divergence values, further supporting the results of the phylogenetic analysis. Further analysis indicated that natural selection might have contributed to the evolution of isolates belonging to the two identified SCSMV clades, with infrequent genetic exchanges occurring between them over time. These findings provide a comprehensive analysis of the population genetic structure and driving forces for the evolution of SCSMV with implications for global exchange of sugarcane germplasm.


Assuntos
Potyviridae/genética , Saccharum/virologia , Ásia , DNA Viral/genética , Evolução Molecular , Variação Genética , Genoma Viral , Filogenia , Doenças das Plantas/virologia , Potyviridae/classificação , Potyviridae/isolamento & purificação , Recombinação Genética
5.
Commun Biol ; 7(1): 368, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532083

RESUMO

Sugarcane (Saccharum spp.) is an important sugar and biofuel crop in the world. It is frequently subjected to drought stress, thus causing considerable economic losses. Transgenic technology is an effective breeding approach to improve sugarcane tolerance to drought using drought-inducible promoter(s) to activate drought-resistance gene(s). In this study, six different promoters were cloned from sugarcane bacilliform virus (SCBV) genotypes exhibiting high genetic diversity. In ß-glucuronidase (GUS) assays, expression of one of these promoters (PSCBV-YZ2060) is similar to the one driven by the CaMV 35S promoter and >90% higher compared to the other cloned promoters and Ubi1. Three SCBV promoters (PSCBV-YZ2060, PSCBV-TX, and PSCBV-CHN2) function as drought-induced promoters in transgenic Arabidopsis plants. In Arabidopsis, GUS activity driven by promoter PSCBV-YZ2060 is also upregulated by abscisic acid (ABA) and is 2.2-5.5-fold higher when compared to the same activity of two plant native promoters (PScRD29A from sugarcane and PAtRD29A from Arabidopsis). Mutation analysis revealed that a putative promoter region 1 (PPR1) and two ABA response elements (ABREs) are required in promoter PSCBV-YZ2060 to confer drought stress response and ABA induction. Yeast one-hybrid and electrophoretic mobility shift assays uncovered that transcription factors ScbZIP72 from sugarcane and AREB1 from Arabidopsis bind with two ABREs of promoter PSCBV-YZ2060. After ABA treatment or drought stress, the expression levels of endogenous ScbZIP72 and heterologous GUS are significantly increased in PSCBV-YZ2060:GUS transgenic sugarcane plants. Consequently, promoter PSCBV-YZ2060 is a possible alternative promoter for genetic engineering of drought-resistant transgenic crops such as sugarcane.


Assuntos
Arabidopsis , Badnavirus , Arabidopsis/genética , Secas , Melhoramento Vegetal , Regiões Promotoras Genéticas , Plantas Geneticamente Modificadas/genética
6.
Plants (Basel) ; 12(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37960115

RESUMO

Sorghum mosaic virus (SrMV, the genus Potyvirus of the family Potyviridae) is a causal agent of common mosaic in sugarcane and poses a threat to the global sugar industry. In this study, a total of 901 sugarcane leaf samples with mosaic symptom were collected from eight provinces in China and were detected via RT-PCR using a primer pair specific to the SrMV coat protein (CP). These leaf samples included 839 samples from modern cultivars (Saccharum spp. hybrids) and 62 samples from chewing cane (S. officinarum). Among these, 632 out of 901 (70.1%) samples were tested positive for SrMV. The incidences of SrMV infection were 72.3% and 40.3% in modern cultivars and chewing cane, respectively. Phylogenetic analysis showed that all tested SrMV isolates were clustered into three clades consisting of six phylogenetic groups based on 306 CP sequences (this study = 265 and GenBank database = 41). A total of 10 SrMV isolates from South America (the United States and Argentina) along with 106 isolates from China were clustered in group D, while the remaining 190 SrMV isolates from Asia (China and Vietnam) were dispersed in five groups. The SrMV isolates in group F were limited to Yunnan province in China, and those in group A were spread over eight provinces. A significant genetic heterogeneity was elucidated in the nucleotide sequence identities of all SrMV CPs, ranging from 69.0% to 100%. A potential recombination event was postulated among SrMV isolates based on CP sequences. All tested SrMV CPs underwent dominant negative selection. Geographical isolation (South America vs. Asia) and host types (modern cultivars vs. chewing cane) are important factors promoting the genetic differentiation of SrMV populations. Overall, this study contributes to the global understanding of the genetic evolution of SrMV and provides a valuable resource for the epidemiology and management of the mosaic in sugarcane.

7.
Sci Rep ; 11(1): 7149, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785787

RESUMO

Yellow leaf disease caused by sugarcane yellow leaf virus (SCYLV) is one of the most prevalent diseases worldwide. In this study, six near-complete genome sequences of SCYLV were determined to be 5775-5881 bp in length. Phylogenetic analysis revealed that the two SCYLV isolates from Réunion Island, France, and four from China were clustered into REU and CUB genotypes, respectively, based on 50 genomic sequences (this study = 6, GenBank = 44). Meanwhile, all 50 isolates were clustered into three phylogroups (G1-G3). Twelve significant recombinant events occurred in intra- and inter-phylogroups between geographical origins and host crops. Most recombinant hotspots were distributed in coat protein read-through protein (RTD), followed by ORF0 (P0) and ORF1 (P1). High genetic divergences of 12.4% for genomic sequences and 6.0-24.9% for individual genes were determined at nucleotide levels. The highest nucleotide diversity (π) was found in P0, followed by P1 and RdRP. In addition, purifying selection was a main factor restricting variability in SCYLV populations. Infrequent gene flow between Africa and the two subpopulations (Asia and America) were found, whereas frequent gene flow between Asia and America subpopulations was observed. Taken together, our findings facilitate understanding of genetic diversity and evolutionary dynamics of SCYLV.


Assuntos
Evolução Molecular , Genes Virais , Luteoviridae/genética , Saccharum/virologia , África , América , Ásia , Resistência à Doença/genética , Variação Genética , Genômica , Geografia , Luteoviridae/isolamento & purificação , Luteoviridae/patogenicidade , Fases de Leitura Aberta/genética , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/virologia , RNA Viral/genética , RNA Viral/isolamento & purificação , Recombinação Genética , Saccharum/genética , Alinhamento de Sequência
8.
Plant Pathol J ; 35(1): 41-50, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30828278

RESUMO

Sugarcane bacilliform viruses (SCBV), which belong to the genus Badnavirus, family Caulimoviridae, are an important DNA virus complex that infects sugarcane. To explore the genetic diversity of the sugarcane-infecting badnavirus complex in China, we tested 392 sugarcane leaf samples collected from Fujian, Yunnan, and Hainan provinces for the occurrence of SCBV by polymerase chain reaction (PCR) assays using published primers SCBV-F and SCBV-R that target the reverse transcriptase/ribonuclease H (RT/RNase H) regions of the viral genome. A total of 111 PCR-amplified fragments (726 bp) from 63 SCBV-positive samples were cloned and sequenced. A neighbor-joining phylogenetic tree was constructed based on the SCBV sequences from this study and 34 published sequences representing 18 different phylogroups or genotypes (SCBV-A to -R). All SCBV-tested isolates could be classified into 20 SCBV phylogenetic groups from SCBV-A to -T. Of nine SCBV phylogroups reported in this study, two novel phylogroups, SCBV-S and SCBV-T, that share 90.0-93.2% sequence identity and show 0.07-0.11 genetic distance with each other in the RT/ RNase H region, are proposed. SCBV-S had 57.6-92.2% sequence identity and 0.09-0.66 genetic distance, while SCBV-T had 58.4-90.0% sequence identity and 0.11-0.63 genetic distance compared with the published SCBV phylogroups. Additionally, two other Badnavirus species, Sugarcane bacilliform MO virus (SCBMOV) and Sugarcane bacilliform IM virus (SCBIMV), which originally clustered in phylogenetic groups SCBV-E and SCBV-F, respectively, are first reported in China. Our findings will help to understand the level of genetic heterogeneity present in the complex of Badnavirus species that infect sugarcane.

9.
Biomed Res Int ; 2018: 8678242, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30175148

RESUMO

Sugarcane-infecting badnaviruses (sugarcane bacilliform viruses, SCBVs) represent a genetically heterogeneous species complex, posing a serious threat to the yield and quality of sugarcane in all major producing regions. SCBVs are commonly transmitted across regions by the exchange of sugarcane germplasm. In this study, we develop two quick, sensitive, and reliable protocols for real-time quantitative PCR (qPCR) of Sugarcane bacilliform MO virus (SCBMOV) and Sugarcane bacilliform IM virus (SCBIMV) using two sets of TaqMan probes and primers targeting the reverse transcriptase/ribonuclease H (RT/RNase H) region. The two assays had a detection limit of 100 copies of plasmid DNA and were 100 times more sensitive than conventional PCR. High specificity of the two assays was observed with respect to SCBIMV and SCBMOV. A total of 176 sugarcane leaf tissue samples from Fujian and Yunnan provinces were collected and analyzed in parallel by conventional PCR, SCBIMV-qPCR, and SCBMOV-qPCR. The SCBIMV-qPCR and SCBMOV-qPCR assays indicated that 50% (88/176) and 47% (83/176) samples tested positive, respectively, whereas only 29% (51/176) tested positive with conventional PCR with the primer pairs SCBV-F and SCBV-R. We demonstrate for the first time that SCBIMV and SCBMOV occur in China and reveal coinfection of both Badnavirus species in 29% (51/176) of tested leaf samples. Our findings supply sensitive and reliable qPCR assays for the detection and quantitation of SCBV in sugarcane quarantine programs.


Assuntos
Badnavirus/genética , Reação em Cadeia da Polimerase em Tempo Real , Saccharum/microbiologia , China , Sensibilidade e Especificidade
10.
Biotechnol Biofuels ; 10: 172, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28680479

RESUMO

BACKGROUND: Saccharum species such as sugarcane and energy cane are key players in the expanding bioeconomy for sugars, bioenergy, and production of high-value proteins. Genomic tools such as culm-regulated promoters would be of great value in terms of improving biomass characteristics through enhanced carbon metabolism for sugar accumulation and/or fiber content for biofuel feedstock. Unlike the situation in dicots, monocot promoters currently used are limited and mostly derived from highly expressed constitutive plant genes and viruses. In this study, a novel promoter region of Sugarcane bacilliform virus (SCBV; genus Badnavirus, family Caulimoviridae), SCBV21 was cloned and mapped by deletion analysis and functionally characterized transiently in monocot and dicot species and stably in sugarcane. RESULTS: In silico analysis of SCBV21 [1816 base pair (bp)] identified two putative promoter regions (PPR1 and PPR2) with transcription start sites (TSS1 and TSS2) and two TATA-boxes (TATAAAT and ATATAA), and several vascular-specific and regulatory elements. Deletion analysis revealed that the 710 bp region spanning PPR2 (with TSS2 and ATATAA) at the 3' end of SCBV21 retained the full promoter activity in both dicots and monocots, as shown by transient expression of the enhanced yellow fluorescent protein (EYFP) gene. In sugarcane young leaf segments, SCBV21 directed a 1.8- and 2.4-fold higher transient EYFP expression than the common maize ubiquitin 1 (Ubi1) and Cauliflower mosaic virus 35S promoters, respectively. In transgenic sugarcane, SCBV21 conferred a preferential expression of the ß-glucuronidase (GUS) gene in leaves and culms and specifically in the culm storage parenchyma surrounding the vascular bundle and in vascular phloem cells. Among the transgenic events and tissues characterized in this study, the SCBV21 promoter frequently produced higher GUS activity than the Ubi1 or 35S promoters in a manner that was not obviously correlated with the transgene copy number. CONCLUSIONS: The newly developed plant viral SCBV21 promoter is distinct from the few existing SCBV promoters in its sequence and expression pattern. The potential of SCBV21 as a tissue-regulated promoter with a strong activity in the culm vascular bundle and its storage parenchyma makes it useful in sugarcane engineering for improved carbon metabolism, increased bioenergy production, and enhanced stress tolerance.

11.
Biomed Res Int ; 2016: 2681816, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27725937

RESUMO

Ratoon stunting disease (RSD) of sugarcane, one of the most important diseases seriously affecting the productivity of sugarcane crops, was caused by the bacterial agent Leifsonia xyli subsp. xyli (Lxx). A TaqMan probe-based real-time quantitative polymerase chain reaction (qPCR) assay was established in this study for the quantification of Lxx detection in sugarcane stalk juice. A pair of PCR primers (Pat1-QF/Pat1-QR) and a fluorogenic probe (Pat1-QP) targeting the Part1 gene of Lxx were used for the qPCR assay. The assay had a detection limit of 100 copies of plasmid DNA and 100 fg of Lxx genomic DNA, which was 100-fold more sensitive than the conventional PCR. Fifty (28.7%) of 174 stalk juice samples from two field trials were tested to be positive by qPCR assay, whereas, by conventional PCR, only 12.1% (21/174) were tested to be positive with a published primer pair CxxITSf#5/CxxITSr#5 and 15.5% (27/174) were tested to be positive with a newly designed primer pair Pat1-F2/Pat1-R2. The new qPCR assay can be used as an alternative to current diagnostic methods for Lxx, especially when dealing with certificating a large number of healthy cane seedlings and determining disease incidence accurately in commercial fields.


Assuntos
Bebidas/microbiologia , Micrococcaceae/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Saccharum/microbiologia , Fluorescência , Micrococcaceae/química , Padrões de Referência , Sensibilidade e Especificidade
12.
Biomed Res Int ; 2015: 569131, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26185758

RESUMO

Sugarcane mosaic disease is caused by the Sugarcane streak mosaic virus (SCSMV; genus Poacevirus, family Potyviridae) which is common in some Asian countries. Here, we established a protocol of a one-step real-time quantitative reverse transcription PCR (real-time qRT-PCR) using the TaqMan probe for the detection of SCSMV in sugarcane. Primers and probes were designed within the conserved region of the SCSMV coat protein (CP) gene sequences. Standard single-stranded RNA (ssRNA) generated by PCR-based gene transcripts of recombinant pGEM-CP plasmid in vitro and total RNA extracted from SCSMV-infected sugarcane were used as templates of qRT-PCR. We further performed a sensitivity assay to show that the detection limit of the assay was 100 copies of ssRNA and 2 pg of total RNA with good reproducibility. The values obtained were approximately 100-fold more sensitive than those of the conventional RT-PCR. A higher incidence (68.6%) of SCSMV infection was detected by qRT-PCR than that (48.6%) with conventional RT-PCR in samples showing mosaic symptoms. SCSMV-free samples were verified by infection with Sugarcane mosaic virus (SCMV) or Sorghum mosaic virus (SrMV) or a combination of both. The developed qRT-PCR assay may become an alternative molecular tool for an economical, rapid, and efficient detection and quantification of SCSMV.


Assuntos
Vírus do Mosaico/genética , Vírus do Mosaico/isolamento & purificação , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Saccharum/virologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa