Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 15(27): 5529-5536, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31241648

RESUMO

Additional HCl can facilely control the dynamic noncovalent interaction between anionic surfactant sodium dodecyl benzene sulfonate (SDBS) and additional organic matter, 4,4'-oxydianiline (ODA), at the water/oil interface. At low HCl concentration (ODA/HCl molar ratio (r) = 1 : 1.5, [ODA] = 250 mg L-1), the ODA+ ions effectively enhanced the SDBS ability to reduce the water/oil interfacial tension (IFT) by about two orders of magnitude, while the (SDBS)2/ODA2+ gemini-like surfactants could be constructed at a relatively high HCl concentration (r = 1 : 4, [ODA] = 250 mg L-1), which could largely reduce the IFT to 1.19 × 10-3 mN m-1. Molecular simulation was employed to explore the interfacial activity of ODAn+ (ODA+/ODA2+) ions and the SDBS/ODAn+ interaction. The control experiments used another three surfactants to verify the proposed model. The pH-switchable gradual protonation of amino groups in ODA molecules determined the SDBS/ODA interfacial assembly, which was responsible for the reversal of IFT variations and the related emulsion behaviors.

2.
Front Chem ; 7: 769, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781547

RESUMO

Recent advances in self-assembled nanogel carriers have allowed precise design of hierarchical structures by a low-cost solution-phase approach. Typically, photochemical strategy on the tailor of morphology and dimension has emerged as a powerful tool, because light-trigger has exceptional advantages of an instant "on/off" function and spatiotemporal precision at arbitrary time. Herein, we report a tunable manipulation of sequentially morphological transition via a "living" thiol-disulfide exchange reaction from a UV-tailored hierarchical self-assembly strategy. By varying the irradiation time, the photochemical method can easily fabricate and guide a series of attractively architectural evolution in dilute aqueous solutions, by which the improving hydrophobicity and sensitive redox-responsiveness endowed these disulfide-linked nanoparticles with remarkable capacities of abundant encapsulation, effective separation, and controlled release of hydrophobic cargoes. Notably, once the exchange reaction is suspended at any point of time by removing the UV lamp, these active sites within the nanogel carriers are instantaneous deactivated and the correspondingly structural transformations are also not conducted any more. However, if the stable inert sites are reactivated as needed by turning on the UV light, the interrupting morphology evolution can continue its previous steps, which may provide a simple and novel approach to fabricating the desired self-assemblies in solutions. With regard to this advanced functionality, various nanogel carriers with customizable structures and properties have been yielded and screened for cancer therapy. Thus, this "living" controlled self-assembled method to program morphology evolution in situ is a universal strategy that will pave novel pathways for creating sequential shape-shifting and size-growing nanostructures and constructing uniform nanoscopic functional entities for advanced bio-applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa