Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 95(29): 11091-11098, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37439630

RESUMO

The construction of low-fouling biosensors for assaying biomarkers in complex biological samples remains a challenge, and the key limitation is the lack of effective anti-fouling materials. Inspired by the biomimetic process of protein phosphorylation, we herein designed a new phosphorylated peptide modified with the dihydrogen phosphate (-PO4H2) group, which significantly increased the hydrophilicity and anti-fouling capability of the peptide when compared with natural and normal peptides. Molecular simulation (MS) illustrated that, compared with the -COOH and -NH2 groups, the -PO4H2 group formed the most numbers of hydrogen bonds and stronger hydrogen bonds with water molecules. As a result, the PO4H2-oligopeptide was proved by MS to be able to attract the greatest number of water molecules, so as to form a compact layer of H2O to resist further adsorption of nonspecific biomolecules. The modification of electrodes with the designed PO4H2-oligopeptides, in addition to the adoption of neutral peptide nucleic acids (PNAs) as the sensing probes, ensured the fabrication of anti-fouling electrochemical biosensors capable of detecting nucleic acids in complex saliva. The constructed anti-fouling biosensor was able to detect the nucleic acid of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in undiluted saliva, with a wide linear response range (0.01 pM-0.01 µM) and a low limit of detection (LOD) of 3.4 fM (S/N = 3). The phosphorylation of oligopeptides offers an effective strategy to designing ultra-hydrophilic peptides suitable for the construction of promising anti-biofouling biosensors and bioelectronics.


Assuntos
Incrustação Biológica , Técnicas Biossensoriais , COVID-19 , Ácidos Nucleicos , Humanos , Incrustação Biológica/prevenção & controle , Fosforilação , Saliva , SARS-CoV-2 , Peptídeos/química , Oligopeptídeos , Técnicas Eletroquímicas
2.
Front Microbiol ; 10: 1562, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354663

RESUMO

In agroecosystems, fungi not only attract attention as crop pathogens, but also play crucial roles in nutrient cycling as decomposers and arbuscular mycorrhizal mutualists. Consequently soil fungi strongly influence agroecosystem function, and are conspicuously influenced by agricultural practices. We examined the effects of four compost rates (0, 11.25, 22.5, and 45 Mg ha-1) on soil fungal community compositions and network patterns in soybean at seedling, flowering, and mature stage in a field experiment in black soil of Northeast China. Miseq sequencing was used to characterize the soil fungal community. Our results revealed that soil fungal richness was unaffected by compost addition, while soil fungal community composition was significantly influenced by compost addition across the growing season. Among the combined "top 20" fungal OTUs, 15 OTUs positively responded to compost addition, while 10 negatively responded. The abundance of predicted pathotroph was greatly decreased by the 45 Mg ha-1 compost addition. Network analysis indicated that the fungal networks in compost amended soils were more complex and harbored more positive links than the control. Fungal network harbored more positive links among saprotroph-saprotroph and saprotroph-symbiotroph in moderate level of compost amended soils than other networks. In conclusion, this study revealed that compost addition impacted positively both the soil fungal communities and network patterns within a single growing season. Thus, compost addition could be a good practice to enhance the soil fungal community and function and ultimately soil health and quality.

3.
Front Microbiol ; 9: 169, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29467752

RESUMO

Arbuscular mycorrhizal (AM) fungi form symbiotic associations with most crop plant species in agricultural ecosystems, and are conspicuously influenced by various agricultural practices. To understand the impact of compost addition on AM fungi, we examined effect of four compost rates (0, 11.25, 22.5, and 45 Mg/ha) on the abundance and community composition of AM fungi in seedling, flowering, and mature stage of soybean in a 1-year compost addition experiment system in Northeast China. Soybean [Glycine max (L.) Merrill] was used as test plant. Moderate (22.5 Mg/ha) and high (45 Mg/ha) levels of compost addition significantly increased AM root colonization and extraradical hyphal (ERH) density compared with control, whereas low (11.5 Mg/ha) level of compost addition did not cause significant increase in AM root colonization and ERH density. AM fungal spore density was significantly enhanced by all the compost rates compared with control. The temporal variations analysis revealed that, AM root colonization in seedling stage was significantly lower than in flowering and mature stage. Although AM fungal operational taxonomic unit richness and community composition was unaffected by compost addition, some abundant AM fungal species showed significantly different response to compost addition. In mature stage, Rhizophagus fasciculatum showed increasing trend along with compost addition gradient, whereas the opposite was observed with Paraglomus sp. In addition, AM fungal community composition exhibited significant temporal variation during growing season. Further analysis indicated that the temporal variation in AM fungal community only occurred in control treatment, but not in low, moderate, and high level of compost addition treatments. Our findings highlighted the significant effects of compost addition on AM growth and sporulation, and emphasized that growth stage is a stronger determinant than 1-year compost addition in shaping AM fungal community in black soil of Northeast China.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa