Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Phytother Res ; 38(3): 1651-1680, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38299680

RESUMO

Drug development for atherosclerosis, the underlying pathological state of ischemic cardiovascular diseases, has posed a longstanding challenge. Saponins, classified as steroid or triterpenoid glycosides, have shown promising therapeutic potential in the treatment of atherosclerosis. Through an exhaustive examination of scientific literature spanning from May 2013 to May 2023, we identified 82 references evaluating 37 types of saponins in terms of their prospective impacts on atherosclerosis. These studies suggest that saponins have the potential to ameliorate atherosclerosis by regulating lipid metabolism, inhibiting inflammation, suppressing apoptosis, reducing oxidative stress, and modulating smooth muscle cell proliferation and migration, as well as regulating gut microbiota, autophagy, endothelial senescence, and angiogenesis. Notably, ginsenosides exhibit significant potential and manifest essential pharmacological attributes, including lipid-lowering, anti-inflammatory, anti-apoptotic, and anti-oxidative stress effects. This review provides a comprehensive examination of the pharmacological attributes of saponins in atherosclerosis, with particular emphasis on their role in the regulation of lipid metabolism regulation and anti-inflammatory effects. Thus, saponins may warrant further investigation as a potential therapy for atherosclerosis. However, due to various reasons such as low oral bioavailability, the clinical application of saponins in the treatment of atherosclerosis still needs further exploration.


Assuntos
Aterosclerose , Ginsenosídeos , Saponinas , Humanos , Saponinas/farmacologia , Estudos Prospectivos , Aterosclerose/tratamento farmacológico , Ginsenosídeos/farmacologia , Anti-Inflamatórios
2.
Chin J Integr Med ; 30(3): 277-288, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38057549

RESUMO

As a serious cardiovascular disease, atherosclerosis (AS) causes chronic inflammation and oxidative stress in the body and poses a threat to human health. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a member of the phospholipase A2 (PLA2) family, and its elevated levels have been shown to contribute to AS. Lp-PLA2 is closely related to a variety of lipoproteins, and its role in promoting inflammatory responses and oxidative stress in AS is mainly achieved by hydrolyzing oxidized phosphatidylcholine (oxPC) to produce lysophosphatidylcholine (lysoPC). Moreover, macrophage apoptosis within plaque is promoted by localized Lp-PLA2 which also promotes plaque instability. This paper reviews those researches of Chinese medicine in treating AS via reducing Lp-PLA2 levels to guide future experimental studies and clinical applications related to AS.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , 1-Alquil-2-acetilglicerofosfocolina Esterase , Medicina Tradicional Chinesa , Aterosclerose/tratamento farmacológico , Lipoproteínas , Biomarcadores
3.
J Ethnopharmacol ; 324: 117814, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38286155

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tiaogan Daozhuo Formula (TGDZF) is a common formulation against atherosclerosis, however, there is limited understanding of its therapeutic mechanism. AIM OF THIS STUDY: To examine the effectiveness of TGDZF in the treatment of atherosclerosis and to explore its mechanisms. MATERIALS AND METHODS: In ApoE-/- mice, atherosclerosis was induced by a high-fat diet for 12 weeks and treated with TGDZF at different doses. The efficacy of TGDZF in alleviating atherosclerosis was evaluated by small animal ultrasound and histological methods. Lipid levels were measured by biochemical methods. The capacity of cholesterol efflux was tested with a cholesterol efflux assay in peritoneal macrophage, and the expression of AMPKα1, PPARγ, LXRα, and ABCA1 was examined at mRNA and protein levels. Meanwhile, RAW264.7-derived macrophages were induced into foam cells by ox-LDL, and different doses of TGDZF-conducting serum were administered. Similarly, we examined differences in intracellular lipid accumulation, cholesterol efflux rate, and AMPKα1, PPARγ, LXRα, and ABCA1 levels following drug intervention. Finally, changes in the downstream molecules were evaluated following the inhibition of AMPK by compound C or PPARγ silencing by small interfering RNA. RESULTS: TGDZF administration reduced aortic plaque area and lipid accumulation in aortic plaque and hepatocytes, and improved the serum lipid profiles of ApoE-/- mice. Further study revealed that its efficacy was accompanied by an increase in cholesterol efflux rate and the expression of PPARγ, LXRα, and ABCA1 mRNA and protein, as well as the promotion of AMPKα1 phosphorylation. Moreover, similar results were caused by the intervention of TGDZF-containing serum in vitro experiments. Inhibition of AMPK and PPARγ partially blocked the regulatory effect of TGDZF, respectively. CONCLUSIONS: TGDZF alleviated atherosclerosis and promoted cholesterol efflux from macrophages by activating the AMPK-PPARγ-LXRα-ABCA1 pathway.


Assuntos
Aterosclerose , PPAR gama , Animais , Camundongos , PPAR gama/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Colesterol/metabolismo , Receptores X do Fígado/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Células Espumosas , Apolipoproteínas E/genética , RNA Mensageiro/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-38780293

RESUMO

ABSTRACT: The traditional Chinese herbal prescription Buyang Huanwu decoction (BHD), effectively treats atherosclerosis. However, the mechanism of BHD in atherosclerosis remains unclear. We aimed to determine whether BHD could alleviate atherosclerosis by altering the microbiome-associated metabolic changes in atherosclerotic mice. An atherosclerotic model was established in apolipoprotein E-deficient mice fed high-fat diet, and BHD was administered through gavage for 12 weeks at 8.4 g/kg/d and 16.8 g/kg/d. The atherosclerotic plaque size, composition, serum lipid profile, and inflammatory cytokines, were assessed. Mechanistically, metabolomic and microbiota profiles were analyzed by liquid chromatography-mass spectrometry and 16S rRNA gene sequencing, respectively. Furthermore, intestinal microbiota and atherosclerosis-related metabolic parameters were correlated using Spearman analysis. Atherosclerotic mice treated with BHD exhibited reduced plaque area, aortic lumen occlusion, and lipid accumulation in the aortic root. Nine perturbed serum metabolites were significantly restored along with the relative abundance of microbiota at the family and genus levels but not at the phylum level. Gut microbiome improvement was strongly negatively correlated with improved metabolite levels. BHD treatment effectively slows the progression of atherosclerosis by regulating altered intestinal microbiota and perturbed metabolites.


Assuntos
Apolipoproteínas E , Aterosclerose , Dieta Hiperlipídica , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Aterosclerose/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos , Masculino , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Camundongos Endogâmicos C57BL , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/patologia , Camundongos Knockout , Camundongos Knockout para ApoE
5.
Artigo em Inglês | MEDLINE | ID: mdl-37842894

RESUMO

Atherosclerosis is characterized by chronic inflammation of the arterial wall. However, the exact mechanism underlying atherosclerosis-related inflammation has not been fully elucidated. To gain insight into the mechanisms underlying the inflammatory process that leads to atherosclerosis, there is need to identify novel molecular markers. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-protein-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have gained prominence in recent years. LncRNAs/circRNAs act as competing endogenous RNAs (ceRNAs) that bind to miRNAs via microRNA response elements (MREs), thereby inhibiting the silencing of miRNA target mRNAs. Inflammatory mediators and inflammatory signaling pathways are closely regulated by ceRNA regulatory networks in atherosclerosis. In this review, we discuss the role of LncRNA/CircRNA-miRNA-mRNA axis in atherosclerotic inflammation and how it can be targeted for early clinical detection and treatment.

6.
Biomed Pharmacother ; 165: 115153, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37437377

RESUMO

BACKGROUND: The primary cause of acute cardiovascular events with high mortality is the rupture of atherosclerotic plaque followed by thrombosis. Sodium Danshensu (SDSS) has shown potential in inhibiting the inflammatory response in macrophages and preventing early plaque formation in atherosclerotic mice. However, the specific targets and detailed mechanism of action of SDSS are still unclear. OBJECTIVE: This study aims to investigate the efficacy and mechanism of SDSS in inhibiting inflammation in macrophages and stabilizing vulnerable plaques in atherosclerosis (AS). MATERIALS AND METHODS: The efficacy of SDSS in stabilizing vulnerable plaques was demonstrated using various techniques such as ultrasound, Oil Red O staining, HE staining, Masson staining, immunohistochemistry, and lipid analysis in ApoE-/- mice. Subsequently, IKKß was identified as a potential target of SDSS through protein microarray, network pharmacology analysis, and molecular docking. Additionally, ELISA, RT-qPCR, Western blotting, and immunofluorescence were employed to measure the levels of inflammatory cytokines, IKKß, and NF-κB pathway-related targets, thereby confirming the mechanism of SDSS in treating AS both in vivo and in vitro. Finally, the impact of SDSS was observed in the presence of an IKKß-specific inhibitor. RESULTS: Initially, the administration of SDSS led to a decrease in the formation and area of aortic plaque, while also stabilizing vulnerable plaques in ApoE-/- mice. Furthermore, it was identified that IKKß serves as the primary binding target of SDSS. Additionally, both in vivo and in vitro experiments demonstrated that SDSS effectively inhibits the NF-κB pathway by targeting IKKß. Lastly, the combined use of the IKKß-specific inhibitor IMD-0354 further enhanced the beneficial effects of SDSS. CONCLUSIONS: SDSS stabilized vulnerable plaques and suppressed inflammatory responses by inhibiting the NF-κB pathway through its targeting of IKKß.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/metabolismo , NF-kappa B/metabolismo , Quinase I-kappa B/metabolismo , Transdução de Sinais , Simulação de Acoplamento Molecular , Aterosclerose/metabolismo , Macrófagos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Apolipoproteínas E/metabolismo
7.
Cardiol Res Pract ; 2022: 8729003, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35529059

RESUMO

Objectives: We aimed to investigate the effects of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor on blood lipid levels in patients with high and very-high cardiovascular risk. Design: 14 trials (n = 52,586 patients) comparing treatment with or without PCSK9 inhibitors were retrieved from PubMed and Embase updated to 1st Jun 2021. The data quality of included studies was assessed by two independent researchers using the Cochrane systematic review method. All-cause mortality, cardiovascular mortality, and changes in serum low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), triglyceride (TG), apolipoprotein B (ApoB), lipoprotein (a) (LP (a)), non-high-density lipoprotein cholesterol (non-HDL-C), high-density lipoprotein cholesterol (HDL-C), and apolipoprotein A1 (ApoA1) from baseline were analyzed using Rev Man 5.1.0 software. Results: Compared with treatments without PCSK9 inhibitor, addition of PCSK9 inhibitors (evolocumab and alirocumab) had obvious decreasing effects on the levels of LDL-C [MD = -46.86, 95% CI (-54.99 to -38.72), P < 0.00001], TC [MD = -31.92, 95% CI (-39.47 to -24.38), P < 0.00001], TG [MD = -8.13, 95% CI (-10.48 to -5.79), P < 0.00001], LP(a) [MD = -26.69, 95% CI (-27.93 to -25.44), P < 0.00001], non-HDL-C [MD = -42.86, 95% CI (-45.81 to -39.92), P < 0.00001], and ApoB [MD = -38.44, 95% CI (-42.23 to -34.65), P < 0.00001] in high CVD risk patients. Conversely, changes of HDL-C [MD = 6.27, CI (5.17 to 7.36), P < 0.00001] and ApoA1 [MD = 4.33, 95% CI (3.53 to 5.13), P < 0.00001] from baseline were significantly more in high cardiovascular disease risk patients who received PCSK9 inhibitors treatment. Conclusion: Addition of PCSK9 inhibitors to standard therapy resulted in definite improvement in blood lipid levels compared with therapies that did not include them.

8.
Sci Rep ; 11(1): 19305, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588488

RESUMO

NLRP3 inflammasome is a vital player in macrophages pyroptosis, which is a type of proinflammatory cell-death and takes part in the pathogenesis of atherosclerosis. In this study, we used apoE-/- mice and ox-LDL induced THP-1 derived macrophages to explore the mechanisms of MCC950, a selective NLRP3 inhibitor in treating atherosclerosis. For the in vivo study, MCC950 was intraperitoneal injected to 8-week-old apoE-/- mice fed with high-fat diet for 12 weeks. For the in vitro study, THP-1 derived macrophages were treated with ox-LDL and MCC950 for 48 h. MCC950 administration reduced plaque areas and macrophages contents, but did not improve the serum lipid profiles in aortic root of apoE-/- mice. MCC950 inhibited the activation of NLRP3/ASC/Caspase-1/GSDMD-N axis, and alleviated macrophages pyroptosis and the production of IL-1ß and IL-18 both in aorta and in cell lysates. However, MCC950 did not affect the expression of TLR4 or the mRNA levels of NLRP3 inflammasome and its downstream proteins, suggesting that MCC950 had no effects on the priming of NLRP3 inflammasome activation in macrophages. The anti-atherosclerotic mechanisms of MCC950 on attenuating macrophages inflammation and pyroptosis involved in inhibiting the assembly and activation of NLRP3 inflammasome, rather than interrupting its priming.


Assuntos
Aterosclerose/prevenção & controle , Furanos/farmacologia , Indenos/farmacologia , Macrófagos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Piroptose/efeitos dos fármacos , Sulfonamidas/farmacologia , Animais , Aterosclerose/genética , Aterosclerose/imunologia , Modelos Animais de Doenças , Furanos/uso terapêutico , Humanos , Indenos/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout para ApoE , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/imunologia , Sulfonamidas/uso terapêutico
9.
Neural Regen Res ; 13(8): 1390-1395, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30106051

RESUMO

Acupuncture can improve the cognitive state of Alzheimer's disease, but its mechanism is not clear. Dendritic atrophy and synaptic loss in Alzheimer's disease brain are positively correlated with cognitive damage. Therefore, we speculated that the effect of acupuncture on improving cognitive function may be associated with reduced dendritic damage in the brain. Acupuncture at Qihai (CV6), Zhongwan (CV12), Danzhong (CV17), bilateral Zusanli (ST36), and bilateral Xuehai (SP10) acupoints was performed once a day (1-day rest after 6-day treatment) for 14 consecutive days. Senescence-accelerated mouse prone 8 (SAMP8) mice without acupuncture and senescence-accelerated mouse resistant 1 (SAMR1) mice were used as normal controls. After 14 days of treatment, spatial learning and memory ability of mice was assessed in each group using the Morris water maze. Dendritic changes of pyramidal cells in the hippocampal CA1 region were analyzed by quantitative Golgi staining. Our results showed that acupuncture shortened escape latency and lengthened retention time of the former platform quadrant in SAMP8 mice. Further, SAMP8 mice exhibited a significant increase in the number of apical and basal dendritic branches and total length of apical and basal dendrites after acupuncture. These results suggest that acupuncture improves spatial learning and memory ability of middle-aged SAMP8 mice by ameliorating dendritic structure.

10.
Heliyon ; 1(1): e00020, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27441214

RESUMO

OBJECTIVE: To explore the neuroprotective mechanism of Ginkgolides or Ginkgo flavonoids on the TNF-α induced apoptosis of cultured rat hippocampal neurons. MATERIALS AND METHODS: Primary hippocampal neurons were isolated from rat brains and cultured with (model group) or without (control group) addition of tumor necrosis factor-α (TNF-α, final concentration of 40 ng/ml) to induce apoptosis. TNF-α induced cultures were divided into model group, Ginkgolides pre-treatment group (20 µg/ml) and Ginkgo flavonoids pre-treatment group (12 µg/ml). CCK8 was used to assess cell viability while Hoechst 33258 staining, Flow cytometry and TUNEL kits were all employed to determine apoptotic neurons. Expression levels of Bcl-2, Bax, Caspase-3, Caspase-7, Caspase-8, Caspase-9 and Cytc were estimated by qRT-PCR. RESULTS: Cell viability was significantly improved in Ginkgolides pre-treatment group or Ginkgo flavonoids pre-treatment group compared with that in model group. Apoptotic neurons were significantly less in Ginkgolides pre-treatment group or Ginkgo flavonoids pre-treatment group than those in model group. Transcription levels of caspase-7, caspase-8, caspase-3, caspase-9, Bax and Cytc were down-regulated, while transcription levels of Bcl-2 was up-regulated in Ginkgolides pre-treatment or Ginkgo flavonoids pre-treatment group than those in model group. CONCLUSIONS: Ginkgolides and Ginkgo flavonoids might protect against apoptosis of hippocampal neurons through inhibiting death receptor pathway or mitochondrial pathway under TNF-α background.

11.
Stem Cells Int ; 2015: 836390, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25767513

RESUMO

Cessation of blood supply due to myocardial infarction (MI) leads to complicated pathological alteration in the affected regions. Cardiac stem cells (CSCs) migration plays a major role in promoting recovery of cardiac function and protecting cardiomyocytes in post-MI remodeling. Despite being the most abundant cell type in the mammalian heart, cardiac fibroblasts (CFs) were underestimated in the mechanism of CSCs migration. Our objective in this study is therefore to investigate the migration related factors secreted by hypoxia CFs in vitro and the degree that they contribute to CSCs migration. We found that supernatant from hypoxia induced CFs could accelerate CSCs migration. Four migration-related cytokines were reported upregulated both in mRNA and protein levels. Upon adding antagonists of these cytokines, the number of migration cells significantly declined. When the cocktail antagonists of all above four cytokines were added, the migration cells number reduced to the minimum level. Besides, MMP-9 had an important effect on triggering CSCs migration. As shown in our results, MMP-9 induced CSCs migration and the underlying mechanism might involve TNF-α signaling which induced VEGF and MMP-9 expression.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa