RESUMO
The unusually high oxidation state + IV of cobalt is stabilized by ligands based on [B11H11]4- in dark blue colored Cs4[Co(B11H10.11(OH)0.75)2]·4.56H2O, K4[Co(B11H9.19(OH)1.81)2]·2H2O, Cs8[Co{(B11H6)2(O)(O2BOH)4}]2·4H2O and K4[Co{(B11H6)2(O2BOH)5}]·7H2O. These compounds were obtained by reacting Co2+ salts with [B11H14]- under alkaline conditions. In the absence of oxygen, Co(+III) compounds such as the light brownish K4[Co(B11H11)(CN)3]·KCl·2.5H2O are formed. The title compounds were characterized by X-ray crystallography. Cs8[Co{(B11H6)2(O)(O2BOH)4}]2·4H2O and K4[Co(B11H11)(CN)3]·KCl·2.5H2O were also characterized using IR-, UV-vis and cyclovoltammetry. Magnetic measurements of Cs4[Co(B11H10.11(OH)0.75)2]·4.56H2O and ESR measurements of Cs8[Co{(B11H6)2(O)(O2BOH)4}]2·4H2O show that in these Co(+IV) low-spin d5 complexes the unpaired electron is on the dx2-y2, dxy (E2g) orbitals.
RESUMO
During the investigation of the binary system Be-Ru two new phases - Be7 Ru4 and Be12 Ru7 - with similar compositions (63.6 at. % Be and 63.2 at. % Be, respectively), are discovered. They both represent new structural prototypes. The phases are located between Be2 Ru (Fe2 P-type structure) and Be3 Ru2 (U3 Si2 -type structure) in the phase diagram. This explains why their crystal structures, solved and refined from single crystal X-ray diffraction data, are described as 2D intergrowth of Fe2 P and U3 Si2 motives. The calculated electronic density of stats (DOS) reveals pronounced minima in the vicinity of the Fermi level for both compounds. Position-space analysis of chemical bonding exhibits the formation of three- and four-atomic polar bonds, involving both, Ru and Be, atoms, and a strong charge transfer from Be to the more electronegative Ru.
RESUMO
The structural features of the hexagonal layered crystal structure of Be2 Ru (a=5.7508(3)â Å, c=3.0044(2)â Å, space group P 6 â¾ ${\bar{6}}$ 2m) were investigated by single crystal X-ray diffraction and transmission electron microscopy (TEM). The residual electron density and high-resolution TEM images show that the real structure can be described as an intergrowth of the main hexagonal matrix of the Fe2 P type with minor orthorhombic inclusions of its stacking variants. Such atomic arrangement is stabilized by the charge transfer from Be to Ru and by a system of polar three- and four-atomic bonds involving both components. The calculated electronic density of states (DOS) of Be2 Ru revealed, contrarily to typical intermetallic compounds, a pseudo gap (dip) in the vicinity of the Fermi level. The temperature dependence of the electrical resistivity of Be2 Ru shows metal behaviour in agreement with the non-zero DOS at the Fermi level.
Assuntos
Eletricidade , Cristalografia por Raios X , Microscopia Eletrônica de Transmissão , TemperaturaRESUMO
The influence of structural disorder on superconductivity is not yet fully understood. A concurrent examination of crystallographic and physical properties of LaHg6.4 reveals that this material enters a superconducting state below Tc = 2.4 K while showing crystallographic disorder in one dimension. Lanthanum mercuride, which crystallizes in a new structure type (space group Cmcm, a = 9.779(2) Å, b = 28.891(4) Å, c = 5.0012(8) Å, Z = 8), has remained out of reach for nearly 50 years. In this crystal structure, strong disorder is present in the channels that propagate along the [001] direction. By implementing a combination of cutting-edge synthesis and characterization techniques, we were able to circumvent the complexity associated with the low formation temperature and chemical reactivity of this substance and study the superconductivity of LaHg6.4 in detail.
RESUMO
In the phase diagram U-Cd, only one compound has been identified so farâUCd11 (space group Pm3Ì m). Since the discovery of this material, the physical properties of UCd11 have attracted a considerable amount of attention. In particular, its complex magnetic phase diagramâas a result of tuning with magnetic field or pressureâis not well-understood. From a chemical perspective, a range of lattice parameter values have been reported, suggesting a possibility of a considerable homogeneity range, i.e., UCd11-x. In this work, we perform a simultaneous study of crystallographic features coupled with measurements of physical properties. This work sheds light on the delicate relationship between the intrinsic crystal chemistry and magnetic properties of UCd11.
Assuntos
Campos MagnéticosRESUMO
The clathrateâ I superconductor Sr8 Si46 is obtained under high-pressure high-temperature conditions, at 5â GPa and temperatures in the range of 1273 to 1373â K. At ambient pressure, the compound decomposes upon heating at T=796(5)â K into Si and SrSi2 . The crystal structure of the clathrate is isotypic to that of Na8 Si46 . Chemical bonding analysis reveals conventional covalent bonding within the silicon network as well as additional multi-atomic interactions between Sr and Si within the framework cages. Physical measurements indicate a bulk BCS typeâ II superconducting state below Tc =3.8(3)â K.
RESUMO
Semiconducting substances form one of the most important families of functional materials. However, semiconductors containing only metals are very rare. The chemical mechanisms behind their ground-state properties are only partially understood. Our investigations have rather unexpectedly revealed the semiconducting behaviour (band gap of 190â meV) for the intermetallic compound Be5 Pt formed at a very low valence-electron count. Quantum-chemical analysis shows strong charge transfer from Be to Pt and reveals a three-dimensional entity of vertex-condensed empty Be4 tetrahedrons with multi-atomic cluster bonds interpenetrated by the framework of Pt-filled vertex-condensed Be4 tetrahedrons with two-atomic polar Be-Pt bonds. The combination of strong Coulomb interactions with relativistic effects results in a band gap.
RESUMO
The electron spin resonance (ESR) of conduction electrons is reported for the weak itinerant ferromagnet Sc[Formula: see text]In which, upon chemical substitution with Lu, shows a suppression of ferromagnetic correlations. A well-defined ESR lineshape of Dysonian type characterizes the spectra. The ESR linewidth, determined by the spin dynamics, displays a broad minimum only for the Sc[Formula: see text]In compound. We discuss the results using the mechanism of exchange enhancement of spin-lifetimes.
RESUMO
We report a study of the superconducting pairing of the noncentrosymmetric La4Be33Pt16alloy using muon-spin rotation and relaxation (µSR) technique. BelowTc=2.4 K, La4Be33Pt16exhibits bulk superconductivity (SC), here characterized by heat-capacity and magnetic-susceptibility measurements. The temperature dependence of the superfluid densityρsc(T), extracted from the transverse-fieldµSR measurements, reveals a nodeless SC in La4Be33Pt16. The best fit ofρsc(T)using ans-wave model yields a magnetic penetration depthλ0=542 nm and a superconducting gapΔ0=0.37 meV at zero Kelvin. The single-gapped superconducting state is further evidenced by the temperature-dependent electronic specific heatCe(T)/Tand the linear field-dependent electronic specific-heat coefficientγH(H). The zero-fieldµSR spectra collected in the normal- and superconducting states of La4Be33Pt16are almost identical, confirming the absence of an additional field-related relaxation and, thus, of spontaneous magnetic fields belowTc. The nodeless SC combined with a preserved time-reversal symmetry in the superconducting state proves that the spin-singlet pairing is dominant in La4Be33Pt16. This material represents yet another example of a complex system showing only a conventional behavior, in spite of a noncentrosymmetric structure and a sizeable spin-orbit coupling.
RESUMO
Amalgams have played an important role in fundamental and applied solid-state chemistry and physics because of the diversity of crystallographic features and properties that they have to offer. Moreover, their peculiar chemical properties can sometimes give rise to unconventional superconducting or magnetic ground states. In the current work, we present an in-depth analysis of single crystals of YHg3 and LuHg3 (Mg3Cd structure type, space group P63/mmc). Both compounds show superconductivity below Tc = 1 ± 0.1 K (YHg3) and Tc = 1.2 ± 0.1 K (LuHg3). Given the high air-sensitivity and toxicity of these compounds, this study was only possible using a number of dedicated experimental techniques.
RESUMO
The new phase Be3 Ru crystallizes with TiCu3 -type structure (space group Pmmn (59), a=3.7062(1)â Å, b=4.5353(1)â Å, c=4.4170(1)â Å), a coloring variant of the hexagonal closest packing (hcp) of spheres. The electronic structure revealed that Be3 Ru has a pseudo-gap close to the Fermi level. A strong charge transfer from Be to Ru was observed from the analysis of electron density within the Quantum Theory of Atoms in Molecules (QTAIM) framework and polar three- and four-atomic Be-Ru bonds were observed from the ELI-D (electron localizability indicator) analysis. This situation is very similar to the recently investigated Be5 Pt and Be21 Pt5 compounds. The unusual crystal chemical feature of Be3 Ru is that different charged species belong to the same closest packing, contrary to typical inorganic compounds, where the cationic components are located in the voids of the closest packing formed by anions. Be3 Ru is a diamagnet displaying metallic electrical resistivity.
RESUMO
The new ternary compound Y4Be33Pt16 was prepared from elements by arc melting, and its crystal structure was determined from single-crystal X-ray diffraction data (space group I4[combining macron]3d, a = 13.4849(3) Å). The material is the first representative of a new structure type of complex intermetallic compounds and reveals a cage-like crystal structure. Analysis of chemical bonding by means of the electron localizabilty approach indicates ionic interaction of yttrium with the rest of the crystal structure, characteristic for cage compounds, in particular for clathrates. In contrast to the mostly two-centre bonding in the framework of clathrates, the new compound is characterized by a multi-centre interaction within the framework, caused by the demand of the valence electrons in the system. The non-centrosymmetric material enters the superconducting state at TC = 0.9 K.
RESUMO
The influence of Al incorporation on the heavy fermion superconductor UBe13 was investigated to explain the sample dependence of physical properties. Clear evidence for incorporated Al in flux-grown UBe13 single crystals is presented by results from X-ray diffraction, nuclear magnetic resonance and X-ray spectroscopy. The increase of the lattice parameter and the concomitant change of the superconducting properties are caused by substitution of Be in the compound by 1-2 at.% Al. The minute amounts of Al in the structure were located by atomic resolution transmission electron microscopy. Specific heat measurements reveal the strong influence of incorporated Al on the physical properties of UBe13. Upon long-term annealing, Al incorporated in single crystals can leave the structure, restoring properties of Al-free polycrystalline UBe13.
RESUMO
The search for new hard materials is often challenging, but strongly motivated by the vast application potential such materials hold. Ti3Au exhibits high hardness values (about four times those of pure Ti and most steel alloys), reduced coefficient of friction and wear rates, and biocompatibility, all of which are optimal traits for orthopedic, dental, and prosthetic applications. In addition, the ability of this compound to adhere to ceramic parts can reduce both the weight and the cost of medical components. The fourfold increase in the hardness of Ti3Au compared to other Ti-Au alloys and compounds can be attributed to the elevated valence electron density, the reduced bond length, and the pseudogap formation. Understanding the origin of hardness in this intermetallic compound provides an avenue toward designing superior biocompatible, hard materials.