Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Cell ; 146(1): 92-104, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21729782

RESUMO

Promoter-proximal pausing by initiated RNA polymerase II (Pol II) and regulated release of paused polymerase into productive elongation has emerged as a major mechanism of transcription activation. Reactivation of paused Pol II correlates with recruitment of super-elongation complexes (SECs) containing ELL/EAF family members, P-TEFb, and other proteins, but the mechanism of their recruitment is an unanswered question. Here, we present evidence for a role of human Mediator subunit MED26 in this process. We identify in the conserved N-terminal domain of MED26 overlapping docking sites for SEC and a second ELL/EAF-containing complex, as well as general initiation factor TFIID. In addition, we present evidence consistent with the model that MED26 can function as a molecular switch that interacts first with TFIID in the Pol II initiation complex and then exchanges TFIID for complexes containing ELL/EAF and P-TEFb to facilitate transition of Pol II into the elongation stage of transcription.


Assuntos
Transativadores/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/metabolismo , Proliferação de Células , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/metabolismo , Células HeLa , Humanos , Complexo Mediador , Fosforilação , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Polimerase II/metabolismo
2.
Cell ; 142(5): 726-36, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20813260

RESUMO

In response to extracellular cues, signal transduction activates downstream transcription factors like c-Jun to induce expression of target genes. We demonstrate that the ATAC (Ada two A containing) histone acetyltransferase (HAT) complex serves as a transcriptional cofactor for c-Jun at the Jun N-terminal kinase (JNK) target genes Jra and chickadee. ATAC subunits are required for c-Jun occupancy of these genes and for H4K16 acetylation at the Jra enhancer, promoter, and transcribed sequences. Under conditions of osmotic stress, ATAC colocalizes with c-Jun, recruits the upstream kinases Misshapen, MKK4, and JNK, and suppresses further activation of JNK. Relocalization of these MAPKs and suppression of JNK activation by ATAC are dependent on the CG10238 subunit of ATAC. Thus, ATAC governs the transcriptional response to MAP kinase signaling by serving as both a coactivator of transcription and as a suppressor of upstream signaling.


Assuntos
Drosophila/metabolismo , Histona Acetiltransferases/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Sistema de Sinalização das MAP Quinases , Sulfurtransferases/metabolismo , Animais , Linhagem Celular , Drosophila/enzimologia , Drosophila/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Pressão Osmótica , Estrutura Terciária de Proteína , Estresse Fisiológico , Sulfurtransferases/química
3.
Mol Microbiol ; 119(6): 752-767, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37170643

RESUMO

Borrelia spirochetes are unique among diderm bacteria in their lack of lipopolysaccharide (LPS) in the outer membrane (OM) and their abundance of surface-exposed lipoproteins with major roles in transmission, virulence, and pathogenesis. Despite their importance, little is known about how surface lipoproteins are translocated through the periplasm and the OM. Here, we characterized Borrelia burgdorferi BB0838, a distant homolog of the OM LPS assembly protein LptD. Using a CRISPR interference approach, we showed that BB0838 is required for cell growth and envelope stability. Upon BB0838 knockdown, surface lipoprotein OspA was retained in the inner leaflet of the OM, as determined by its inaccessibility to in situ proteolysis but its presence in OM vesicles. The topology of the OM porin/adhesin P66 remained unaffected. Quantitative mass spectrometry of the B. burgdorferi membrane-associated proteome confirmed the selective periplasmic retention of surface lipoproteins under BB0838 knockdown conditions. Additional analysis identified a single in situ protease-accessible BB0838 peptide that mapped to a predicted ß-barrel surface loop. Alphafold Multimer modeled a B. burgdorferi LptB2 FGCAD complex spanning the periplasm. Together, this suggests that BB0838/LptDBb facilitates the essential terminal step in spirochetal surface lipoprotein secretion, using an orthologous OM component of a pathway that secretes LPS in proteobacteria.


Assuntos
Borrelia burgdorferi , Borrelia burgdorferi/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Lipopolissacarídeos/metabolismo , Bactérias/metabolismo , Lipoproteínas/metabolismo
4.
Cell ; 136(3): 508-20, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19203584

RESUMO

Caspase-2 is unique among all the mammalian caspases in that it is the only caspase that is present constitutively in the cell nucleus, in addition to other cellular compartments. However, the functional significance of this nuclear localization is unknown. Here we show that DNA damage induced by gamma-radiation triggers the phosphorylation of nuclear caspase-2 at the S122 site within its prodomain, leading to its cleavage and activation. This phosphorylation is carried out by the nuclear serine/threonine protein kinase DNA-PKcs and promoted by the p53-inducible death-domain-containing protein PIDD within a large nuclear protein complex consisting of DNA-PKcs, PIDD, and caspase-2, which we have named the DNA-PKcs-PIDDosome. This phosphorylation and the catalytic activity of caspase-2 are involved in the maintenance of a G2/M DNA damage checkpoint and DNA repair mediated by the nonhomologous end-joining (NHEJ) pathway. The DNA-PKcs-PIDDosome thus represents a protein complex that impacts mammalian G2/M DNA damage checkpoint and NHEJ.


Assuntos
Proteínas de Transporte/metabolismo , Caspase 2/metabolismo , Ciclo Celular , Cisteína Endopeptidases/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Proteínas Nucleares/metabolismo , Sequência de Aminoácidos , Animais , Caspase 2/química , Linhagem Celular , Cisteína Endopeptidases/química , Dano ao DNA , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte , Fibroblastos/metabolismo , Raios gama , Humanos , Camundongos , Mitose , Dados de Sequência Molecular , Alinhamento de Sequência
5.
Genes Dev ; 30(10): 1198-210, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27198229

RESUMO

KAT6 histone acetyltransferases (HATs) are highly conserved in eukaryotes and are involved in cell cycle regulation. However, information regarding their roles in regulating cell cycle progression is limited. Here, we report the identification of subunits of the Drosophila Enok complex and demonstrate that all subunits are important for its HAT activity. We further report a novel interaction between the Enok complex and the Elg1 proliferating cell nuclear antigen (PCNA)-unloader complex. Depletion of Enok in S2 cells resulted in a G1/S cell cycle block, and this block can be partially relieved by depleting Elg1. Furthermore, depletion of Enok reduced the chromatin-bound levels of PCNA in both S2 cells and early embryos, suggesting that the Enok complex may interact with the Elg1 complex and down-regulate its PCNA-unloading function to promote the G1/S transition. Supporting this hypothesis, depletion of Enok also partially rescued the endoreplication defects in Elg1-depleted nurse cells. Taken together, our study provides novel insights into the roles of KAT6 HATs in cell cycle regulation through modulating PCNA levels on chromatin.


Assuntos
Proteínas de Drosophila/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Histona Acetiltransferases/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Animais , Pontos de Checagem do Ciclo Celular/genética , Células Cultivadas , Cromatina/metabolismo , Regulação para Baixo/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Histona Acetiltransferases/genética , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
6.
Mol Cell ; 60(3): 408-21, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26527276

RESUMO

Pyruvate kinase M2 (PKM2) is a key enzyme for glycolysis and catalyzes the conversion of phosphoenolpyruvate (PEP) to pyruvate, which supplies cellular energy. PKM2 also phosphorylates histone H3 threonine 11 (H3T11); however, it is largely unknown how PKM2 links cellular metabolism to chromatin regulation. Here, we show that the yeast PKM2 homolog, Pyk1, is a part of a novel protein complex named SESAME (Serine-responsive SAM-containing Metabolic Enzyme complex), which contains serine metabolic enzymes, SAM (S-adenosylmethionine) synthetases, and an acetyl-CoA synthetase. SESAME interacts with the Set1 H3K4 methyltransferase complex, which requires SAM synthesized from SESAME, and recruits SESAME to target genes, resulting in phosphorylation of H3T11. SESAME regulates the crosstalk between H3K4 methylation and H3T11 phosphorylation by sensing glycolysis and glucose-derived serine metabolism. This leads to auto-regulation of PYK1 expression. Thus, our study provides insights into the mechanism of regulating gene expression, responding to cellular metabolism via chromatin modifications.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatina/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Histonas/genética , Complexos Multiproteicos/genética , Fosforilação/fisiologia , Proteínas Tirosina Quinases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
Mol Cell ; 57(4): 685-694, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25699711

RESUMO

The Zinc-finger protein of the cerebellum 2 (Zic2) is one of the vertebrate homologs of the Drosophila pair-rule gene odd-paired (opa). Our molecular and biochemical studies demonstrate that Zic2 preferentially binds to transcriptional enhancers and is required for the regulation of gene expression in embryonic stem cells. Detailed genome-wide and molecular studies reveal that Zic2 can function with Mbd3/NuRD in regulating the chromatin state and transcriptional output of genes linked to differentiation. Zic2 is required for proper differentiation of embryonic stem cells (ESCs), similar to what has been previously reported for Mbd3/NuRD. Our study identifies Zic2 as a key factor in the execution of transcriptional fine-tuning with Mbd3/NuRD in ESCs through interactions with enhancers. Our study also points to the role of the Zic family of proteins as enhancer-specific binding factors functioning in development.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Fatores de Transcrição/fisiologia , Animais , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/fisiologia , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
8.
J Cell Sci ; 132(2)2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30559249

RESUMO

Metazoans contain two homologs of the Gcn5-binding protein Ada2, Ada2a and Ada2b, which nucleate formation of the ATAC and SAGA complexes, respectively. In Drosophila melanogaster, there are two splice isoforms of Ada2b: Ada2b-PA and Ada2b-PB. Here, we show that only the Ada2b-PB isoform is in SAGA; in contrast, Ada2b-PA associates with Gcn5, Ada3, Sgf29 and Chiffon, forming the Chiffon histone acetyltransferase (CHAT) complex. Chiffon is the Drosophila ortholog of Dbf4, which binds and activates the cell cycle kinase Cdc7 to initiate DNA replication. In flies, Chiffon and Cdc7 are required in ovary follicle cells for gene amplification, a specialized form of DNA re-replication. Although chiffon was previously reported to be dispensable for viability, here, we find that Chiffon is required for both histone acetylation and viability in flies. Surprisingly, we show that chiffon is a dicistronic gene that encodes distinct Cdc7- and CHAT-binding polypeptides. Although the Cdc7-binding domain of Chiffon is not required for viability in flies, the CHAT-binding domain is essential for viability, but is not required for gene amplification, arguing against a role in DNA replication.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas do Ovo/metabolismo , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Acetilação , Animais , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas do Ovo/genética , Histona Acetiltransferases/genética , Histonas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
9.
PLoS Pathog ; 13(10): e1006668, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29028833

RESUMO

Merkel cell carcinoma (MCC) frequently contains integrated copies of Merkel cell polyomavirus DNA that express a truncated form of Large T antigen (LT) and an intact Small T antigen (ST). While LT binds RB and inactivates its tumor suppressor function, it is less clear how ST contributes to MCC tumorigenesis. Here we show that ST binds specifically to the MYC homolog MYCL (L-MYC) and recruits it to the 15-component EP400 histone acetyltransferase and chromatin remodeling complex. We performed a large-scale immunoprecipitation for ST and identified co-precipitating proteins by mass spectrometry. In addition to protein phosphatase 2A (PP2A) subunits, we identified MYCL and its heterodimeric partner MAX plus the EP400 complex. Immunoprecipitation for MAX and EP400 complex components confirmed their association with ST. We determined that the ST-MYCL-EP400 complex binds together to specific gene promoters and activates their expression by integrating chromatin immunoprecipitation with sequencing (ChIP-seq) and RNA-seq. MYCL and EP400 were required for maintenance of cell viability and cooperated with ST to promote gene expression in MCC cell lines. A genome-wide CRISPR-Cas9 screen confirmed the requirement for MYCL and EP400 in MCPyV-positive MCC cell lines. We demonstrate that ST can activate gene expression in a EP400 and MYCL dependent manner and this activity contributes to cellular transformation and generation of induced pluripotent stem cells.


Assuntos
Antígenos Virais de Tumores/metabolismo , Carcinoma de Célula de Merkel/virologia , Transformação Celular Viral/fisiologia , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Antígenos Transformantes de Poliomavirus/metabolismo , Carcinoma de Célula de Merkel/genética , Carcinoma de Célula de Merkel/metabolismo , Linhagem Celular Tumoral , Humanos , Immunoblotting , Imunoprecipitação , Poliomavírus das Células de Merkel , Infecções por Polyomavirus/complicações , Infecções por Polyomavirus/genética , Infecções por Polyomavirus/metabolismo , Infecções Tumorais por Vírus/complicações , Infecções Tumorais por Vírus/genética , Infecções Tumorais por Vírus/metabolismo
10.
Mol Cell ; 44(6): 954-65, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22195968

RESUMO

Eleven-nineteen lysine-rich leukemia (ELL) participates in the super elongation complex (SEC) with the RNA polymerase II (Pol II) CTD kinase P-TEFb. SEC is a key regulator in the expression of HOX genes in mixed lineage leukemia (MLL)-based hematological malignancies, in the control of induced gene expression early in development, and in immediate early gene transcription. Here, we identify an SEC-like complex in Drosophila, as well as a distinct ELL-containing complex that lacks P-TEFb and other components of SEC named the "little elongation complex" (LEC). LEC subunits are highly enriched at RNA Pol II-transcribed small nuclear RNA (snRNA) genes, and the loss of LEC results in decreased snRNA expression in both flies and mammals. The specialization of the SEC and LEC complexes for mRNA and snRNA-containing genes, respectively, suggests the presence of specific classes of elongation factors for each class of genes transcribed by RNA polymerase II.


Assuntos
Complexos Multiproteicos/metabolismo , RNA Nuclear Pequeno/genética , Transcrição Gênica/genética , Fatores de Elongação da Transcrição/metabolismo , Animais , Drosophila , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Polimerase II/metabolismo , Ratos
11.
Proc Natl Acad Sci U S A ; 113(27): E3921-30, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27335459

RESUMO

HIV replication in nondividing host cells occurs in the presence of high concentrations of noncanonical dUTP, apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3 (APOBEC3) cytidine deaminases, and SAMHD1 (a cell cycle-regulated dNTP triphosphohydrolase) dNTPase, which maintains low concentrations of canonical dNTPs in these cells. These conditions favor the introduction of marks of DNA damage into viral cDNA, and thereby prime it for processing by DNA repair enzymes. Accessory protein Vpr, found in all primate lentiviruses, and its HIV-2/simian immunodeficiency virus (SIV) SIVsm paralogue Vpx, hijack the CRL4(DCAF1) E3 ubiquitin ligase to alleviate some of these conditions, but the extent of their interactions with DNA repair proteins has not been thoroughly characterized. Here, we identify HLTF, a postreplication DNA repair helicase, as a common target of HIV-1/SIVcpz Vpr proteins. We show that HIV-1 Vpr reprograms CRL4(DCAF1) E3 to direct HLTF for proteasome-dependent degradation independent from previously reported Vpr interactions with base excision repair enzyme uracil DNA glycosylase (UNG2) and crossover junction endonuclease MUS81, which Vpr also directs for degradation via CRL4(DCAF1) E3. Thus, separate functions of HIV-1 Vpr usurp CRL4(DCAF1) E3 to remove key enzymes in three DNA repair pathways. In contrast, we find that HIV-2 Vpr is unable to efficiently program HLTF or UNG2 for degradation. Our findings reveal complex interactions between HIV-1 and the DNA repair machinery, suggesting that DNA repair plays important roles in the HIV-1 life cycle. The divergent interactions of HIV-1 and HIV-2 with DNA repair enzymes and SAMHD1 imply that these viruses use different strategies to guard their genomes and facilitate their replication in the host.


Assuntos
DNA Glicosilases/metabolismo , Proteínas de Ligação a DNA/metabolismo , HIV-1/fisiologia , HIV-2/fisiologia , Fatores de Transcrição/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Sequência de Aminoácidos , Ciclo Celular , DNA Helicases/metabolismo , Endonucleases/metabolismo , Células HEK293 , Humanos , Dados de Sequência Molecular , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteômica , Proteína 1 com Domínio SAM e Domínio HD , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
12.
Genes Dev ; 25(8): 801-13, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21498570

RESUMO

In the absence of growth signals, cells exit the cell cycle and enter into G0 or quiescence. Alternatively, cells enter senescence in response to inappropriate growth signals such as oncogene expression. The molecular mechanisms required for cell cycle exit into quiescence or senescence are poorly understood. The DREAM (DP, RB [retinoblastoma], E2F, and MuvB) complex represses cell cycle-dependent genes during quiescence. DREAM contains p130, E2F4, DP1, and a stable core complex of five MuvB-like proteins: LIN9, LIN37, LIN52, LIN54, and RBBP4. In mammalian cells, the MuvB core dissociates from p130 upon entry into the cell cycle and binds to BMYB during S phase to activate the transcription of genes expressed late in the cell cycle. We used mass spectroscopic analysis to identify phosphorylation sites that regulate the switch of the MuvB core from BMYB to DREAM. Here we report that DYRK1A can specifically phosphorylate LIN52 on serine residue 28, and that this phosphorylation is required for DREAM assembly. Inhibiting DYRK1A activity or point mutation of LIN52 disrupts DREAM assembly and reduces the ability of cells to enter quiescence or undergo Ras-induced senescence. These data reveal an important role for DYRK1A in the regulation of DREAM activity and entry into quiescence.


Assuntos
Senescência Celular/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Animais , Ciclo Celular/genética , Ciclo Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Senescência Celular/genética , Fator de Transcrição E2F4/genética , Fator de Transcrição E2F4/metabolismo , Humanos , Camundongos , Células NIH 3T3 , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Proteína p130 Retinoblastoma-Like/genética , Proteína p130 Retinoblastoma-Like/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fator de Transcrição DP1/genética , Fator de Transcrição DP1/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Quinases Dyrk
13.
Genes Dev ; 25(14): 1499-509, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21764853

RESUMO

The Spt-Ada-Gcn5-acetyltransferase (SAGA) complex was discovered from Saccharomyces cerevisiae and has been well characterized as an important transcriptional coactivator that interacts both with sequence-specific transcription factors and the TATA-binding protein TBP. SAGA contains a histone acetyltransferase and a ubiquitin protease. In metazoans, SAGA is essential for development, yet little is known about the function of SAGA in differentiating tissue. We analyzed the composition, interacting proteins, and genomic distribution of SAGA in muscle and neuronal tissue of late stage Drosophila melanogaster embryos. The subunit composition of SAGA was the same in each tissue; however, SAGA was associated with considerably more transcription factors in muscle compared with neurons. Consistent with this finding, SAGA was found to occupy more genes specifically in muscle than in neurons. Strikingly, SAGA occupancy was not limited to enhancers and promoters but primarily colocalized with RNA polymerase II within transcribed sequences. SAGA binding peaks at the site of RNA polymerase pausing at the 5' end of transcribed sequences. In addition, many tissue-specific SAGA-bound genes required its ubiquitin protease activity for full expression. These data indicate that in metazoans SAGA plays a prominent post-transcription initiation role in tissue-specific gene expression.


Assuntos
Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Músculos/metabolismo , Neurônios/metabolismo , Transativadores/genética , Transativadores/metabolismo , Ativação Transcricional , Acetilação , Animais , DNA Polimerase II/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Músculos/enzimologia , Neurônios/enzimologia , Fases de Leitura Aberta , Peptídeo Hidrolases/metabolismo , Regiões Promotoras Genéticas , Transporte Proteico , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo
14.
Genes Dev ; 24(19): 2133-45, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20889714

RESUMO

Heterochromatin protein 1 (HP1) is well known as a silencing protein found at pericentric heterochromatin. Most eukaryotes have at least three isoforms of HP1 that play differential roles in heterochromatin and euchromatin. In addition to its role in heterochromatin, HP1 proteins have been shown to function in transcription elongation. To gain insights into the transcription functions of HP1, we sought to identify novel HP1-interacting proteins. Biochemical and proteomic approaches revealed that HP1 interacts with the histone chaperone complex FACT (facilitates chromatin transcription). HP1c interacts with the SSRP1 (structure-specific recognition protein 1) subunit and the intact FACT complex. Moreover, HP1c guides the recruitment of FACT to active genes and links FACT to active forms of RNA polymerase II. The absence of HP1c partially impairs the recruitment of FACT into heat-shock loci and causes a defect in heat-shock gene expression. Thus, HP1c functions to recruit the FACT complex to RNA polymerase II.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Chaperonas de Histonas/metabolismo , RNA Polimerase II/metabolismo , Animais , Linhagem Celular , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Fosforilação , Ligação Proteica , Isoformas de Proteínas , Sequências Repetidas Terminais , Fatores de Elongação da Transcrição/metabolismo
15.
J Bacteriol ; 199(6)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28069820

RESUMO

The Lyme disease spirochete Borrelia burgdorferi is unique among bacteria in its large number of lipoproteins that are encoded by a small, exceptionally fragmented, and predominantly linear genome. Peripherally anchored in either the inner or outer membrane and facing either the periplasm or the external environment, these lipoproteins assume varied roles. A prominent subset of lipoproteins functioning as the apparent linchpins of the enzootic tick-vertebrate infection cycle have been explored as vaccine targets. Yet, most of the B. burgdorferi lipoproteome has remained uncharacterized. Here, we comprehensively and conclusively localize the B. burgdorferi lipoproteome by applying established protein localization assays to a newly generated epitope-tagged lipoprotein expression library and by validating the obtained individual protein localization results using a sensitive global mass spectrometry approach. The derived consensus localization data indicate that 86 of the 125 analyzed lipoproteins encoded by B. burgdorferi are secreted to the bacterial surface. Thirty-one of the remaining 39 periplasmic lipoproteins are retained in the inner membrane, with only 8 lipoproteins being anchored in the periplasmic leaflet of the outer membrane. The localization of 10 lipoproteins was further defined or revised, and 52 surface and 23 periplasmic lipoproteins were newly localized. Cross-referencing prior studies revealed that the borrelial surface lipoproteome contributing to the host-pathogen interface is encoded predominantly by plasmids. Conversely, periplasmic lipoproteins are encoded mainly by chromosomal loci. These studies close a gap in our understanding of the functional lipoproteome of an important human pathogen and set the stage for more in-depth studies of thus-far-neglected spirochetal lipoproteins.IMPORTANCE The small and exceptionally fragmented genome of the Lyme disease spirochete Borrelia burgdorferi encodes over 120 lipoproteins. Studies in the field have predominantly focused on a relatively small number of surface lipoproteins that play important roles in the transmission and pathogenesis of this global human pathogen. Yet, a comprehensive spatial assessment of the entire borrelial lipoproteome has been missing. The current study newly identifies 52 surface and 23 periplasmic lipoproteins. Overall, two-thirds of the B. burgdorferi lipoproteins localize to the surface, while outer membrane lipoproteins facing the periplasm are rare. This analysis underscores the dominant contribution of lipoproteins to the spirochete's rather complex and adaptable host-pathogen interface, and it encourages further functional exploration of its lipoproteome.


Assuntos
Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Lipoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Bactérias/genética , Borrelia burgdorferi/genética , Epitopos , Escherichia coli/metabolismo , Biblioteca Gênica , Lipoproteínas/genética , Espectrometria de Massas , Proteínas de Membrana/genética , Transporte Proteico
16.
Nature ; 474(7353): 658-61, 2011 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-21720370

RESUMO

Macrophages and dendritic cells have key roles in viral infections, providing virus reservoirs that frequently resist antiviral therapies and linking innate virus detection to antiviral adaptive immune responses. Human immunodeficiency virus 1 (HIV-1) fails to transduce dendritic cells and has a reduced ability to transduce macrophages, due to an as yet uncharacterized mechanism that inhibits infection by interfering with efficient synthesis of viral complementary DNA. In contrast, HIV-2 and related simian immunodeficiency viruses (SIVsm/mac) transduce myeloid cells efficiently owing to their virion-associated Vpx accessory proteins, which counteract the restrictive mechanism. Here we show that the inhibition of HIV-1 infection in macrophages involves the cellular SAM domain HD domain-containing protein 1 (SAMHD1). Vpx relieves the inhibition of lentivirus infection in macrophages by loading SAMHD1 onto the CRL4(DCAF1) E3 ubiquitin ligase, leading to highly efficient proteasome-dependent degradation of the protein. Mutations in SAMHD1 cause Aicardi-Goutières syndrome, a disease that produces a phenotype that mimics the effects of a congenital viral infection. Failure to dispose of endogenous nucleic acid debris in Aicardi-Goutières syndrome results in inappropriate triggering of innate immune responses via cytosolic nucleic acids sensors. Thus, our findings show that macrophages are defended from HIV-1 infection by a mechanism that prevents an unwanted interferon response triggered by self nucleic acids, and uncover an intricate relationship between innate immune mechanisms that control response to self and to retroviral pathogens.


Assuntos
Infecções por HIV/fisiopatologia , HIV-1/fisiologia , Macrófagos/virologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas de Transporte/metabolismo , Células Cultivadas , Células HEK293 , Infecções por HIV/metabolismo , Humanos , Macrófagos/metabolismo , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Serina-Treonina Quinases , Proteína 1 com Domínio SAM e Domínio HD , Ubiquitina-Proteína Ligases/metabolismo
17.
Genes Dev ; 23(24): 2818-23, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20008933

RESUMO

The histone acetyltransferase complex SAGA is well characterized as a coactivator complex in yeast. In this study of Drosophila SAGA (dSAGA), we describe three novel components that include an ortholog of Spt20, a potential ortholog of Sgf73/ATXN7, and a novel histone fold protein, SAF6 (SAGA factor-like TAF6). SAF6, which binds directly to TAF9, functions analogously in dSAGA to TAF6/TAF6L in the yeast and human SAGA complexes, respectively. Moreover, TAF6 in flies is restricted to TFIID. Mutations in saf6 disrupt SAGA-regulated gene expression without disrupting acetylated or ubiquitinated histone levels. Thus, SAF6 is essential for SAGA coactivator function independent of the enzymatic activities of the complex.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Regulação da Expressão Gênica , Histona Acetiltransferases/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Histona Acetiltransferases/genética , Mutação/genética , Peptídeos/isolamento & purificação , Ligação Proteica , Dobramento de Proteína
18.
Mol Cell ; 31(6): 909-17, 2008 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-18922472

RESUMO

Deubiquitinating enzymes (DUBs) are proteases that can antagonize ubiquitin-mediated signaling by disassembling ubiquitin-protein conjugates. How DUBs are regulated in vivo and how their substrate specificities are achieved are largely unknown. The conserved DUB Uch37 is found on proteasomes in organisms ranging from fission yeast to humans. Deubiquitination by Uch37 is activated by proteasomal binding, which enables Uch37 to process polyubiquitin chains. Here we show that in the nucleus Uch37 is also associated with the human Ino80 chromatin-remodeling complex (hINO80). In hINO80, Uch37 is held in an inactive state; however, it can be activated by transient interaction of the Ino80 complex with the proteasome. Thus, DUB activities can be modulated both positively and negatively via dynamic interactions with partner proteins. In addition, our findings suggest that the proteasome and the hINO80 chromatin-remodeling complex may cooperate to regulate transcription or DNA repair, processes in which both complexes have been implicated.


Assuntos
Carboxipeptidases/metabolismo , Montagem e Desmontagem da Cromatina , DNA Helicases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Carboxipeptidases/antagonistas & inibidores , Carboxipeptidases/química , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/metabolismo , Ubiquitina Tiolesterase
19.
Proc Natl Acad Sci U S A ; 110(13): E1222-31, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23479640

RESUMO

Drosophila melanogaster Polo kinase physically interacts with, and is repressed by, the Matrimony (Mtrm) protein during oogenesis. Females heterozygous for a deletion of the mtrm gene display defects in chromosome segregation at meiosis I. However, a complete absence of Mtrm results in both meiotic catastrophe and female sterility. We show that three phosphorylated residues in an N-terminal region in Mtrm are required for Mtrm::Polo binding. However, this binding is noncanonical; it does not require either a complete S-pS/pT-P motif in Mtrm or key residues in the Polo-box domain of Polo that allow Polo to bind phosphorylated substrates. By using fluorescence cross-correlation spectroscopy to characterize the Mtrm::Polo interaction in vivo, we show that a sterile α-motif (SAM) domain located at the C terminus of Mtrm increases the stability of Mtrm::Polo binding. Although Mtrm's C-terminal SAM domain is not required to rescue the chromosome segregation defects observed in mtrm/+ females, it is essential to prevent both meiotic catastrophe and the female sterility observed in mtrm/mtrm females. We propose that Polo's interaction with the cluster of phosphorylated residues alone is sufficient to rescue the meiosis I defect. However, the strengthening of Mtrm::Polo binding mediated by the SAM domain is necessary to prevent meiotic catastrophe and ensure female fertility. Characterization of the Mtrm::Polo interaction, as well as that of other Polo regulators, may assist in the design of a new class of Polo inhibitors to be used as targeted anticancer therapeutic agents.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Meiose/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Masculino , Fosforilação/fisiologia , Ligação Proteica/fisiologia , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Espectrometria de Fluorescência
20.
Proc Natl Acad Sci U S A ; 109(17): 6382-9, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22421435

RESUMO

The Ca(2+)/Calmodulin-dependent phosphatase calcineurin is essential for exit from meiotic arrest at metaphases I and II in Drosophila and Xenopus oocytes. We previously found that Sarah, the Drosophila homolog of regulator of calcineurin, acts as a positive regulator of calcineurin and is required to complete anaphase I of female meiosis. Here, we undertook biochemical approaches, including MS and posttranslational modification analyses, to better understand the mechanism by which Sarah regulates calcineurin. A search for phosphorylated residues revealed that Sarah is highly phosphorylated at Ser100, Thr102, and Ser219 in both ovaries and activated eggs and that Ser215 is phosphorylated only in activated eggs. Functional analyses using mutant forms of Sarah showed that phosphorylation at Ser215, a consensus phosphorylation site for glycogen synthase kinase 3ß (GSK-3ß) and its priming kinase site Ser219, are essential for Sarah function. Furthermore, germ-line clones homozygous for a null allele of shaggy (Drosophila GSK-3ß) both fail to complete meiosis and lack phosphorylation of Sarah at Ser215, suggesting that the phosphorylation of Sarah by Shaggy/GSK-3ß is required to complete meiosis. Our findings suggest a mechanism in which Shaggy/GSK-3ß activates calcineurin through Sarah phosphorylation on egg activation in Drosophila.


Assuntos
Calcineurina/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Drosophila/citologia , Quinase 3 da Glicogênio Sintase/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Meiose/fisiologia , Alelos , Animais , Western Blotting , Proteínas de Ligação ao Cálcio , Feminino , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Homozigoto , Imunoprecipitação , Ovário/metabolismo , Óvulo/metabolismo , Fosforilação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa