Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 324(6): E514-E530, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37126848

RESUMO

Elevated serum concentrations of glucocorticoids (GCs) result in excessive lipid accumulation in white adipose tissue (WAT) as well as dysfunction of thermogenic brown adipose tissue (BAT), ultimately leading to the development of obesity and metabolic disease. Here, we hypothesized that activation of the sympathetic nervous system either via cold exposure or the use of a selective ß3-adrenergic receptor (ß3-AR) agonist alleviates the adverse metabolic effects of chronic GC exposure in rodents. To this end, male 10-wk-old C57BL/6NRj mice were treated with corticosterone via drinking water or placebo for 4 wk while being maintained at 29°C (thermoneutrality), 22°C (room temperature), or 13°C (cold temperature); in a follow-up study mice received a selective ß3-AR agonist or placebo with and without corticosterone while being maintained at room temperature. Body weight and food intake were monitored throughout the study. Histological and molecular analyses were performed on white and brown adipose depots. Cold exposure not only preserved the thermogenic function of brown adipose tissue but also reversed GC-induced lipid accumulation in white adipose tissue and corrected GC-driven obesity, hyperinsulinemia, and hyperglycemia. The metabolic benefits of cold exposure were associated with enhanced sympathetic activity in adipose tissue, thus potentially linking an increase in sympathetic signaling to the observed metabolic benefits. In line with this concept, chronic administration of a selective ß3-AR agonist reproduced the beneficial metabolic effects of cold adaption during exposure to exogenous GCs. This preclinical study demonstrates the potential of ß3-AR as a therapeutic target in the management and prevention of GC-induced metabolic disease.NEW & NOTEWORTHY This preclinical study in mice shows that the ß3-adrenergic receptor can be a potential therapeutic approach to counteracting glucocorticoid (GC)-induced obesity and metabolic dysfunction. Both cold acclimation and ß3-adrenergic receptor stimulation in a mouse model of excess glucocorticoids were adequate in not only preventing obesity, adiposity, and adipose tissue dysfunction but also correcting hyperinsulinemia, hyperleptinemia, and dyslipidemia.


Assuntos
Glucocorticoides , Receptores Adrenérgicos beta , Masculino , Animais , Camundongos , Glucocorticoides/farmacologia , Glucocorticoides/metabolismo , Receptores Adrenérgicos beta/metabolismo , Corticosterona/metabolismo , Seguimentos , Camundongos Endogâmicos C57BL , Tecido Adiposo/metabolismo , Obesidade/induzido quimicamente , Obesidade/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Lipídeos , Termogênese
2.
Diabetologia ; 62(8): 1463-1477, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31098671

RESUMO

AIMS/HYPOTHESIS: Chronic glucocorticoid therapy causes insulin resistance, dyslipidaemia, abnormal fat accumulation, loss of muscle mass and osteoporosis. Here we describe a hitherto unknown sexual dimorphism in the metabolic response to chronic glucocorticoid exposure in mice. This led us to investigate whether glucocorticoid-induced insulin resistance and obesity were dependent on sex hormones. METHODS: Male and female CD1 mice were treated for 4 weeks with supraphysiological doses (~250 µg/day) of corticosterone, the main glucocorticoid in rodents, or equivalent volume of vehicle (drinking water without corticosterone). To investigate the effects of sex hormones, a separate group of mice were either orchidectomised or ovariectomised prior to corticosterone treatment, with or without dihydrotestosterone replacement. Body composition was determined before and after corticosterone treatment, and insulin tolerance was assessed after 7 and 28 days of treatment. Adipocyte morphology was assessed in white and brown adipose tissues by immunohistochemistry, and fasting serum concentrations of NEFA, triacylglycerols, total cholesterol and free glycerol were measured using colorimetric assays. Obesity- and diabetes-related hormones were measured using multiplex assays, and RNA and protein expression in adipose tissues were measured by RT-PCR and immunoblotting, respectively. RESULTS: Chronic corticosterone treatment led to insulin resistance, fasting hyperinsulinaemia, increased adiposity and dyslipidaemia in male, but not female mice. In males, orchidectomy improved baseline insulin sensitivity and attenuated corticosterone-induced insulin resistance, but did not prevent fat accumulation. In androgen-deficient mice (orchidectomised males, and intact and ovariectomised females) treated with dihydrotestosterone, corticosterone treatment led to insulin resistance and dyslipidaemia. In brown adipose tissue, androgens were required for corticosterone-induced intracellular lipid accumulation ('whitening'), and dihydrotestosterone specifically exacerbated corticosterone-induced accumulation of white adipose tissue by increasing adipocyte hypertrophy. Androgens also suppressed circulating adiponectin concentrations, but corticosterone-induced insulin resistance did not involve additional suppression of adiponectin levels. In white adipose tissue, androgens were required for induction of the glucocorticoid target gene Gilz (also known as Tsc22d3) by corticosterone. CONCLUSIONS/INTERPRETATION: In mice, androgens potentiate the development of insulin resistance, fat accumulation and brown adipose tissue whitening following chronic glucocorticoid treatment.


Assuntos
Tecido Adiposo Marrom/metabolismo , Androgênios/metabolismo , Corticosterona/efeitos adversos , Glucocorticoides/efeitos adversos , Resistência à Insulina , Adipócitos/citologia , Adiponectina/metabolismo , Adiposidade , Animais , Composição Corporal , Feminino , Teste de Tolerância a Glucose , Inflamação , Insulina/metabolismo , Masculino , Camundongos , Obesidade , Fatores Sexuais
3.
Semin Cell Dev Biol ; 54: 68-81, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26529279

RESUMO

Although muscle wasting is the obvious manifestation of cancer cachexia that impacts on patient quality of life, the loss of lipid reserves and metabolic imbalance in adipose tissue also contribute to the devastating impact of cachexia. Depletion of fat depots in cancer patients is more pronounced than loss of muscle and often precedes, or even occurs in the absence of, reduced lean body mass. Rapid mobilisation of triglycerides stored within adipocytes to supply the body with fatty acids in periods of high-energy demand is normally mediated through a well-defined process of lipolysis involving the lipases ATGL, HSL and MGL. Studies into how these lipases contribute to fat loss in cancer cachexia have revealed the prominent role for ATGL in initiating lipolysis during adipose tissue atrophy, together with links between tumour-derived factors and the signalling pathways that control lipid flux within fat cells. The recent findings of increased thermogenesis in brown fat during cancer cachexia indicate that metabolically active adipose tissue contributes to the imbalance in energy homeostasis involved in catabolic wasting. Such energetically futile use of fatty acids liberated from adipose tissue to generate heat represents a maladaptive response in conjunction with anorexia experienced by cancer patients. As IL-6 release by tumours provokes lipolysis and activates the thermogenic programme in brown fat, this review explores the overlap in dysregulated metabolic processes due to inflammatory mediators in cancer cachexia and other disease states characterised by elevated cytokines such as obesity and diabetes.


Assuntos
Tecido Adiposo/metabolismo , Caquexia/etiologia , Caquexia/metabolismo , Lipólise , Neoplasias/complicações , Termogênese , Animais , Caquexia/fisiopatologia , Metabolismo Energético , Humanos , Neoplasias/fisiopatologia
4.
Diabetologia ; 60(10): 1961-1971, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28735354

RESUMO

AIMS/HYPOTHESIS: Beta cell replacement is a potential cure for type 1 diabetes. In humans, islet transplants are currently infused into the liver via the portal vein, although this site has disadvantages. Here, we investigated alternative transplantation sites for human and murine islets in recipient mice, comparing the portal vein with quadriceps muscle and kidney, liver and spleen capsules. METHODS: Murine islets were isolated from C57BL6/J mice and transplanted into syngeneic recipients. Human islets were isolated and transplanted into either severe combined immunodeficiency (SCID) or recombination-activating gene 1 (RAG-1) immunodeficient recipient mice. All recipient mice were 8-12 weeks of age and had been rendered diabetic (defined as blood glucose concentrations ≥20 mmol/l on two consecutive days before transplantation) by alloxan tetrahydrate treatment. Islets were transplanted into five different sites (portal vein, quadriceps muscle, kidney, liver and spleen capsules). Blood glucose concentrations were monitored twice weekly until mice were killed. Dose-response studies were also performed to determine the minimum number of islets required to cure diabetes ('cure' is defined for this study as random fed blood glucose of <15 mmol/l). RESULTS: For transplantation of murine islets into the different sites, the kidney yielded 100% success, followed by muscle (70%), portal vein (60%), spleen capsule (29%) and liver capsule (0%). For human islets, transplantation into the kidney cured diabetes in 75-80% of recipient mice. Transplantation into muscle and portal vein had intermediate success (both 29% at 2000 islet equivalents), while transplantation into liver and spleen capsule failed (0%). With increased islet mass, success rates for muscle grafts improved to 52-56%. CONCLUSIONS/INTERPRETATION: For both human and murine islets, equivalent or superior glucose lowering results were obtained for transplantation into skeletal muscle, compared with the portal vein. Unfortunately, kidney grafts are not feasible in human recipients. Skeletal muscle offers easier access and greater potential for protocol biopsies. This study suggests that human trials of muscle as a transplant site may be warranted.


Assuntos
Diabetes Mellitus Experimental/cirurgia , Transplante das Ilhotas Pancreáticas/métodos , Rim/cirurgia , Fígado/cirurgia , Veia Porta/cirurgia , Músculo Quadríceps/cirurgia , Baço/cirurgia , Animais , Glicemia , Diabetes Mellitus Experimental/sangue , Sobrevivência de Enxerto , Humanos , Camundongos , Camundongos Endogâmicos C57BL
5.
Diabetologia ; 58(7): 1587-600, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25899451

RESUMO

AIMS/HYPOTHESIS: Adipose tissue (AT) distribution is a major determinant of mortality and morbidity in obesity. In mice, intra-abdominal transplantation of subcutaneous AT (SAT) protects against glucose intolerance and insulin resistance (IR), but the underlying mechanisms are not well understood. METHODS: We investigated changes in adipokines, tissue-specific glucose uptake, gene expression and systemic inflammation in male C57BL6/J mice implanted intra-abdominally with either inguinal SAT or epididymal visceral AT (VAT) and fed a high-fat diet (HFD) for up to 17 weeks. RESULTS: Glucose tolerance was improved in mice receiving SAT after 6 weeks, and this was not attributable to differences in adiposity, tissue-specific glucose uptake, or plasma leptin or adiponectin concentrations. Instead, SAT transplantation prevented HFD-induced hepatic triacylglycerol accumulation and normalised the expression of hepatic gluconeogenic enzymes. Grafted fat displayed a significant increase in glucose uptake and unexpectedly, an induction of skeletal muscle-specific gene expression. Mice receiving subcutaneous fat also displayed a marked reduction in the plasma concentrations of several proinflammatory cytokines (TNF-α, IL-17, IL-12p70, monocyte chemoattractant protein-1 [MCP-1] and macrophage inflammatory protein-1ß [ΜIP-1ß]), compared with sham-operated mice. Plasma IL-17 and MIP-1ß concentrations were reduced from as early as 4 weeks after transplantation, and differences in plasma TNF-α and IL-17 concentrations predicted glucose tolerance and insulinaemia in the entire cohort of mice (n = 40). In contrast, mice receiving visceral fat transplants were glucose intolerant, with increased hepatic triacylglycerol content and elevated plasma IL-6 concentrations. CONCLUSIONS/INTERPRETATION: Intra-abdominal transplantation of subcutaneous fat reverses HFD-induced glucose intolerance, hepatic triacylglycerol accumulation and systemic inflammation in mice.


Assuntos
Intolerância à Glucose/cirurgia , Inflamação/cirurgia , Gordura Subcutânea/transplante , Adipócitos/metabolismo , Adipócitos/ultraestrutura , Adiponectina/sangue , Adiposidade , Animais , Composição Corporal , Citocinas/sangue , Dieta Hiperlipídica/efeitos adversos , Ingestão de Alimentos , Gluconeogênese , Glucose/metabolismo , Insulina/sangue , Leptina/sangue , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Triglicerídeos/metabolismo
6.
Endocrinol Diabetes Metab ; 6(1): e392, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36480511

RESUMO

INTRODUCTION: The incretin hormone glucagon-like peptide-1 (GLP-1) slows gastric emptying, increases satiety and enhances insulin secretion. GLP-1 receptor agonists, such as liraglutide, are used therapeutically in humans to improve glycaemic control and delay the onset of type 2 diabetes mellitus (T2DM). In UCD-T2DM rats, a model of polygenic obesity and insulin resistance, we have previously reported that daily liraglutide administration delayed diabetes onset by >4 months. Growth hormone (GH) may exert anti-diabetic effects, including increasing ß-cell mass and insulin secretion, while disrupting GH signalling in mice reduces both the size and number of pancreatic islets. We therefore hypothesized that GH supplementation would augment liraglutide's anti-diabetic effects. METHODS: Male UCD-T2DM rats were treated daily with GH (0.3 mg/kg) and/or liraglutide (0.2 mg/kg) from 2 months of age. Control (vehicle) and food-restricted (with food intake matched to liraglutide-treated rats) groups were also studied. The effects of treatment on diabetes onset and weight gain were assessed, as well as measures of glucose tolerance, lipids and islet morphology. RESULTS: Liraglutide treatment significantly reduced food intake and body weight and improved glucose tolerance and insulin sensitivity, relative to controls. After 4.5 months, none of the liraglutide-treated rats had developed T2DM (overall p = .019). Liraglutide-treated rats also displayed lower fasting triglyceride (TG) concentrations and lower hepatic TG content, compared to control rats. Islet morphology was improved in liraglutide-treated rats, with significantly increased pancreatic insulin content (p < .05 vs. controls). Although GH treatment tended to increase body weight (and gastrocnemius muscle weight), there were no obvious effects on diabetes onset or other diabetes-related outcomes. CONCLUSION: GH supplementation did not augment the anti-diabetic effects of liraglutide.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Masculino , Ratos , Animais , Camundongos , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Aumento de Peso , Glucose , Hormônio do Crescimento
7.
Sci Rep ; 12(1): 776, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35031684

RESUMO

Beige and brown fat consume glucose and lipids to produce heat, using uncoupling protein 1 (UCP1). It is thought that full activation of brown adipose tissue (BAT) may increase total daily energy expenditure by 20%. Humans normally have more beige and potentially beige-able fat than brown fat. Strategies to increase beige fat differentiation and activation may be useful for the treatment of obesity and diabetes. Mice were fed chow or high-fat diet (HFD) with or without the iron chelator deferasirox. Animals fed HFD + deferasirox were markedly lighter than their HFD controls with increased energy expenditure (12% increase over 24 h, p < 0.001). Inguinal fat from HFD + deferasirox mice showed increased beige fat quantity with greater Ucp1 and Prdm16 expression. Inguinal adipose tissue explants were studied in a Seahorse bioanalyser and energy expenditure was significantly increased. Deferasirox was also effective in established obesity and in ob/ob mice, indicating that intact leptin signalling is not needed for efficacy. These studies identify iron chelation as a strategy to preferentially activate beige fat. Whether activating brown/beige fat is effective in humans is unproven. However, depleting iron to low-normal levels is a potential therapeutic strategy to improve obesity and related metabolic disorders, and human studies may be warranted.


Assuntos
Tecido Adiposo Bege/citologia , Tecido Adiposo Bege/metabolismo , Diferenciação Celular/efeitos dos fármacos , Deferasirox/farmacologia , Quelantes de Ferro/farmacologia , Obesidade/tratamento farmacológico , Obesidade/prevenção & controle , Animais , Deferasirox/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Humanos , Quelantes de Ferro/uso terapêutico , Metabolismo dos Lipídeos , Camundongos , Obesidade/etiologia , Obesidade/metabolismo , Termogênese , Proteína Desacopladora 1/metabolismo
8.
Bone Res ; 9(1): 40, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34465731

RESUMO

Chronic high-fat diet (HFD) consumption not only promotes obesity and insulin resistance, but also causes bone loss through mechanisms that are not well understood. Here, we fed wild-type CD-1 mice either chow or a HFD (43% of energy from fat) for 18 weeks; HFD-fed mice exhibited decreased trabecular volume (-28%) and cortical thickness (-14%) compared to chow-fed mice. In HFD-fed mice, bone loss was due to reduced bone formation and mineral apposition, without obvious effects on bone resorption. HFD feeding also increased skeletal expression of sclerostin and caused deterioration of the osteocyte lacunocanalicular network (LCN). In mice fed HFD, skeletal glucocorticoid signaling was activated relative to chow-fed mice, independent of serum corticosterone concentrations. We therefore examined whether skeletal glucocorticoid signaling was necessary for HFD-induced bone loss, using transgenic mice lacking glucocorticoid signaling in osteoblasts and osteocytes (HSD2OB/OCY-tg mice). In HSD2OB/OCY-tg mice, bone formation and mineral apposition rates were not suppressed by HFD, and bone loss was significantly attenuated. Interestingly, in HSD2OB/OCY-tg mice fed HFD, both Wnt signaling (less sclerostin induction, increased ß-catenin expression) and glucose uptake were significantly increased, relative to diet- and genotype-matched controls. The osteocyte LCN remained intact in HFD-fed HSD2OB/OCY-tg mice. When fed a HFD, HSD2OB/OCY-tg mice also increased their energy expenditure and were protected against obesity, insulin resistance, and dyslipidemia. Therefore, glucocorticoid signaling in osteoblasts and osteocytes contributes to the suppression of bone formation in HFD-fed mice. Skeletal glucocorticoid signaling is also an important determinant of glucose uptake in bone, which influences the whole-body metabolic response to HFD.

9.
J Lipid Res ; 51(8): 2405-12, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20631298

RESUMO

Plasma lipoproteins and glucose homeostasis were evaluated after marked weight loss before and over 12 months following Roux-en-Y gastric-bypass (RYGBP) surgery in 19 morbidly obese women. Standard lipids, remnant-lipoprotein cholesterol (RLP-C); HDL-triglyceride (TG); apolipoproteins (apo) A-I, A-II, E, and A-I-containing HDL subpopulations; lecithin-cholesterol acyltransferase (LCAT) and cholesteryl ester transfer protein (CETP) mass and activity; plasma glucose and insulin levels were measured before and at 1, 3, 6, and 12 months after GBP surgery. Baseline concentrations of TG, RLP-C, glucose, and insulin were significantly higher in obese than in normal-weight, age-matched women, whereas HDL cholesterol (HDL-C), apoA-I, apoA-II, alpha-1 and alpha-2 levels were significantly lower. Over 1 year, significant decreases of body mass index, glucose, insulin, TG, RLP-C, HDL-TG, and prebeta-1 levels were observed with significant increases of HDL-C and alpha-1 levels (all P < 0.05). Changes of fat mass were correlated with those of LDL cholesterol (P = 0.018) and LCAT mass (P = 0.011), but not with CETP mass (P = 0.265). Changes of fasting plasma glucose concentrations were inversely correlated with those of CETP mass (P = 0.005) and alpha-1 level (P = 0.004). Changes of fasting plasma insulin concentrations were positively correlated with those of LCAT mass (P = 0.043) and inversely with changes of alpha-1 (P = 0.03) and alpha-2 (P = 0.05) concentrations. These results demonstrate beneficial changes in HDL remodeling following substantial weight loss induced by RYGBP surgery and that these changes are associated with improvement of glucose homeostasis in these patients.


Assuntos
Derivação Gástrica , Lipoproteínas HDL/metabolismo , Obesidade Mórbida/metabolismo , Obesidade Mórbida/cirurgia , Redução de Peso , Tecido Adiposo/metabolismo , Adulto , Biomarcadores/metabolismo , Doenças Cardiovasculares/metabolismo , Estudos de Casos e Controles , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Feminino , Humanos , Obesidade Mórbida/patologia , Obesidade Mórbida/fisiopatologia , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Risco
10.
Mol Metab ; 42: 101098, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33045434

RESUMO

OBJECTIVE: Aging and chronic glucocorticoid excess share a number of critical features, including the development of central obesity, insulin resistance and osteoporosis. Previous studies have shown that skeletal glucocorticoid signalling increases with aging and that osteoblasts mediate the detrimental skeletal and metabolic effects of chronic glucocorticoid excess. Here, we investigated whether endogenous glucocorticoid action in the skeleton contributes to metabolic dysfunction during normal aging. METHODS: Mice lacking glucocorticoid signalling in osteoblasts and osteocytes (HSD2OB/OCY-tg mice) and their wild-type littermates were studied until 3, 6, 12 and 18 months of age. Body composition, adipose tissue morphology, skeletal gene expression and glucose/insulin tolerance were assessed at each timepoint. Leptin sensitivity was assessed by arcuate nucleus STAT3 phosphorylation and inhibition of feeding following leptin administration. Tissue-specific glucose uptake and adipose tissue oxygen consumption rate were also measured. RESULTS: As they aged, wild-type mice became obese and insulin-resistant. In contrast, HSD2OB/OCY-tg mice remained lean and insulin-sensitive during aging. Obesity in wild-type mice was due to leptin resistance, evidenced by an impaired ability of exogenous leptin to suppress food intake and phosphorylate hypothalamic STAT3, from 6 months of age onwards. In contrast, HSD2OB/OCY-tg mice remained leptin-sensitive throughout the study. Compared to HSD2OB/OCY-tg mice, leptin-resistant wild-type mice displayed attenuated sympathetic outflow, with reduced tyrosine hydroxylase expression in both the hypothalamus and thermogenic adipose tissues. Adipose tissue oxygen consumption rate declined progressively in aging wild-type mice but was maintained in HSD2OB/OCY-tg mice. At 18 months of age, adipose tissue glucose uptake was increased 3.7-fold in HSD2OB/OCY-tg mice, compared to wild-type mice. CONCLUSIONS: Skeletal glucocorticoid signalling is critical for the development of leptin resistance, obesity and insulin resistance during aging. These findings underscore the skeleton's importance in the regulation of body weight and implicate osteoblastic/osteocytic glucocorticoid signalling in the aetiology of aging-related obesity and metabolic disease.


Assuntos
Envelhecimento/metabolismo , Glucocorticoides/metabolismo , Leptina/metabolismo , Tecido Adiposo/metabolismo , Fatores Etários , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Composição Corporal , Peso Corporal/fisiologia , Osso e Ossos/metabolismo , Encéfalo/metabolismo , Feminino , Glucose/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Camundongos Transgênicos , Obesidade/metabolismo , Obesidade/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Termogênese
11.
PLoS One ; 14(11): e0223987, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31751350

RESUMO

Energy consuming, heat-producing beige adipocytes, located in classic white adipose tissue (WAT), hold promise for the treatment of obesity. Few reports have quantitatively assessed the contribution of browned 'WAT' to energy expenditure. There is a need for methods to examine beige-fat thermogenesis, independently of classical brown fat. The aim of this study is to optimize an inducible lentiviral shRNA to conditionally knock-down Ucp1 and assess the effects on 'browned' WAT. Primary adipocytes from mouse inguinal WAT converted into thermogenic adipocytes when stimulated with ß-adrenergic agonist and thiazolidinedione. There was increased UCP1 protein and importantly increases in various indicators of mitochondrial bioenergetics. Next, we determined optimal transfection conditions for the UCP1-shRNA lentiviral system and subsequently applied this to 'browned' WAT. UCP1 knockdown decreased the brown/beige-fat gene profile and decreased mitochondrial respiration. In summary, this study optimizes lentiviral UCP1-shRNA technology in vitro. This technique could be applied to inguinal fat depots in vivo. This would allow investigation of contribution of depots to whole-body metabolism to help elucidate the physiological relevance of beige fat.


Assuntos
Tecido Adiposo Bege/metabolismo , Metabolismo Energético/genética , Homeostase/genética , Lentivirus/genética , Interferência de RNA , Proteína Desacopladora 1/deficiência , Proteína Desacopladora 1/genética , Adipócitos/metabolismo , Tecido Adiposo Bege/citologia , Animais , Glicólise/genética , Masculino , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética , Termogênese/genética
12.
PLoS One ; 14(12): e0225332, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31800592

RESUMO

BACKGROUND AND AIM: Non-alcoholic steatohepatitis (NASH) is predicted to become the most common cause of cirrhosis and liver failure. Risk factors include obesity, insulin resistance and diabetes. Macrophages and other myeloid cells play crucial roles in initiating and driving inflammation. Aryl hydrocarbon Receptor Nuclear Translocator (ARNT) is a transcription factor which binds to a range of partners to mediate responses to environmental signals, including the diet. In people with diabetes it is decreased in liver. We hypothesised that myeloid cell ARNT activity may contribute to the development of liver pathology. METHODS: Floxed-ARNT mice were bred with LysM-Cre mice to generate mice with reduced ARNT in myeloid cells. Animals were fed a high fat diet (HFD) and liver pathology was assessed. Histology, mRNA, fat accumulation and metabolism were studied. RESULTS: Animals with reduced myeloid ARNT developed steatohepatitis on a HFD, with additional alterations of metabolism and fat deposition. Steatohepatitis was accompanied by hepatic macrophage infiltration and expression of both M1 and M2 markers. Expression of mRNAs for Cxcl1, Mcp-1, Tnf-α and Tgf-ß1 were increased. Human livers from controls and people with NASH were tested; ARNT mRNA was decreased by 80% (p = 0.0004). CONCLUSIONS: Decreased myeloid ARNT may play a role in the conversion from non-alcoholic fatty liver to steatohepatitis. Increasing ARNT may be a therapeutic strategy to reduce NASH.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Células Mieloides/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Adulto , Animais , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Dieta Hiperlipídica/efeitos adversos , Feminino , Deleção de Genes , Humanos , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
13.
J Cachexia Sarcopenia Muscle ; 10(6): 1228-1240, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31225722

RESUMO

BACKGROUND: It has long been recognized that vitamin D deficiency is associated with muscle weakness and falls. Vitamin D receptor (VDR) is present at very low levels in normal muscle. Whether vitamin D plays a direct role in muscle function is unknown and is a subject of hot debate. Myocyte-specific deletion of VDR would provide a strategy to answer this question. METHODS: Myocyte-specific vitamin D receptor (mVDR) null mice were generated by crossing human skeletal actin-Cre mice with floxed VDR mice. The effects of gene deletion on the muscle phenotype were studied in terms of body tissue composition, muscle tissue histology, and gene expression by real-time PCR. RESULTS: Unlike whole-body VDR knockout mice, mVDR mice showed a normal body size. The mVDR showed a distinct muscle phenotype featuring reduced proportional lean mass (70% vs. 78% of lean mass), reduced voluntary wheel-running distance (22% decrease, P = 0.009), reduced average running speed, and reduced grip strength (7-16% reduction depending on age at testing). With their decreased voluntary exercise, and decreased lean mass, mVDR have increased proportional fat mass at 20% compared with 13%. Surprisingly, their muscle fibres showed slightly increased diameter, as well as the presence of angular fibres and central nuclei suggesting ongoing remodelling. There were, however, no clear changes in fibre type and there was no increase in muscle fibrosis. VDR is a transcriptional regulator, and changes in the expression of candidate genes was examined in RNA extracted from skeletal muscle. Alterations were seen in myogenic gene expression, and there was decreased expression of cell cycle genes cyclin D1, D2, and D3 and cyclin-dependent kinases Cdk-2 and Cdk-4. Expression of calcium handling genes sarcoplasmic/endoplasmic reticulum calcium ATPases (SERCA) Serca2b and Serca3 was decreased and Calbindin mRNA was lower in mVDR muscle. CONCLUSIONS: This study demonstrates that vitamin D signalling is needed for myocyte function. Despite the low level of VDR protein normally found muscle, deleting myocyte VDR had important effects on muscle size and strength. Maintenance of normal vitamin D signalling is a useful strategy to prevent loss of muscle function and size.


Assuntos
Músculo Esquelético/patologia , Receptores de Calcitriol/deficiência , Sarcopenia/genética , Deficiência de Vitamina D/complicações , Actinas/genética , Animais , Proteínas de Ciclo Celular/genética , Regulação para Baixo , Técnicas de Inativação de Genes , Humanos , Masculino , Camundongos , Músculo Esquelético/metabolismo , Tamanho do Órgão , Especificidade de Órgãos , Sarcopenia/etiologia , Sarcopenia/metabolismo , Sarcopenia/fisiopatologia
14.
Cell Rep ; 27(8): 2370-2384.e6, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31116982

RESUMO

The development of autoimmune disease type 1 diabetes (T1D) is determined by both genetic background and environmental factors. Environmental triggers include RNA viruses, particularly coxsackievirus (CV), but how they induce T1D is not understood. Here, we demonstrate that deletion of the transcription factor hypoxia-inducible factor-1α (HIF-1α) from ß cells increases the susceptibility of non-obese diabetic (NOD) mice to environmentally triggered T1D from coxsackieviruses and the ß cell toxin streptozotocin. Similarly, knockdown of HIF-1α in human islets leads to a poorer response to coxsackievirus infection. Studies in coxsackievirus-infected islets demonstrate that lack of HIF-1α leads to impaired viral clearance, increased viral load, inflammation, pancreatitis, and loss of ß cell mass. These findings show an important role for ß cells and, specifically, lack of ß cell HIF-1α in the development of T1D. These data suggest new strategies for the prevention of T1D.


Assuntos
Diabetes Mellitus Tipo 1/prevenção & controle , Subunidade alfa do Fator 1 Induzível por Hipóxia/uso terapêutico , Animais , Apoptose , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/farmacologia , Masculino , Camundongos
15.
Sci Rep ; 9(1): 9511, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31266983

RESUMO

Adipocytes support key metabolic and endocrine functions of adipose tissue. Lipid is stored in two major classes of depots, namely visceral adipose (VA) and subcutaneous adipose (SA) depots. Increased visceral adiposity is associated with adverse health outcomes, whereas the impact of SA tissue is relatively metabolically benign. The precise molecular features associated with the functional differences between the adipose depots are still not well understood. Here, we characterised transcriptomes and methylomes of isolated adipocytes from matched SA and VA tissues of individuals with normal BMI to identify epigenetic differences and their contribution to cell type and depot-specific function. We found that DNA methylomes were notably distinct between different adipocyte depots and were associated with differential gene expression within pathways fundamental to adipocyte function. Most striking differential methylation was found at transcription factor and developmental genes. Our findings highlight the importance of developmental origins in the function of different fat depots.


Assuntos
Metilação de DNA , Epigênese Genética , Gordura Intra-Abdominal/metabolismo , Gordura Subcutânea/metabolismo , Transcriptoma , Adipócitos/citologia , Adipócitos/metabolismo , Adulto , Sítios de Ligação , Índice de Massa Corporal , Regulação para Baixo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Gordura Intra-Abdominal/citologia , Pessoa de Meia-Idade , Elementos Reguladores de Transcrição , Gordura Subcutânea/citologia , Fatores de Transcrição/metabolismo , Regulação para Cima
16.
Am J Clin Nutr ; 87(2): 347-53, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18258624

RESUMO

BACKGROUND: Recent studies indicated that dietary n-3 polyunsaturated fatty acids (PUFAs) increase circulating adiponectin concentrations in rodents. OBJECTIVE: We aimed to investigate whether a diet rich in n-3 PUFAs increased plasma concentrations of total or high-molecular-weight (HMW) adiponectin in healthy overweight-to-moderately obese men and women. DESIGN: Sixteen women and 10 men with a body mass index (in kg/m(2)) between 28 and 33 were randomly assigned to consume a diet rich in n-3 PUFAs (3.5% of energy intake) from both plant and marine sources or a control diet (0.5% of energy intake from n-3 PUFAs). For the first 2 wk, these diets were consumed under isocaloric conditions; then followed a 12-wk period of ad libitum consumption that was associated with a moderate loss of approximately 3.5% of body weight in both groups. Total and HMW adiponectin plasma concentrations were measured before and after each diet phase. RESULTS: Plasma fasting adiponectin concentrations did not change during the isocaloric period, but they increased modestly ( approximately 10%) during the ad libitum period when subjects lost weight [P = 0.009 for time in repeated-measures analysis of variance] and to a similar extent in subjects consuming the control (x +/- SD: 0.42 +/- 0.69 microg/mL) and n-3 PUFA (0.45 +/- 0.85 microg/mL) diets (P = 0.920 for time x treatment interaction). Plasma concentrations of HMW adiponectin did not change significantly during the study. CONCLUSION: Dietary n-3 PUFAs consumed at levels of 3.5% of energy intake do not significantly increase plasma or HMW adiponectin concentrations in overweight-to-moderately obese healthy men and women over the course of 14 wk.


Assuntos
Adiponectina/sangue , Gorduras na Dieta/administração & dosagem , Ácidos Graxos Ômega-3/administração & dosagem , Obesidade/sangue , Sobrepeso/sangue , Tecido Adiposo , Adulto , Análise de Variância , Biomarcadores/sangue , Peso Corporal , Ingestão de Energia , Jejum , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Peso Molecular , Índice de Gravidade de Doença , Redução de Peso
17.
Clin Endocrinol (Oxf) ; 69(6): 885-93, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18410550

RESUMO

OBJECTIVE: Here we use a novel ELISA that is specific for full-length visfatin (PBEF/NAMPT), compare it with the existing C-terminal based assay and use it to investigate associations of visfatin with metabolic parameters. DESIGN, PATIENTS AND MEASUREMENTS: We established the specificity and effectiveness of the new ELISA and evaluated the associations of full-length visfatin with clinical, anthropometric and metabolic parameters in a cross-sectional study of 129 Thai subjects, consisting of 50 outpatients with type 2 diabetes and 79 healthy volunteers. RESULTS: The new ELISA accurately recovered full-length recombinant visfatin and detected visfatin secreted by primary human and rat adipocytes. We found serum full-length visfatin was significantly higher in subjects with diabetes compared to their nondiabetic peers (median 2.75 vs. 2.22 ng/ml, P = 0.0142). After adjustment for age, gender and traditional metabolic risk factors, adjusted mean visfatin remained significantly higher in the diabetes group (3.80 vs. 2.10 ng/ml, P = 0.0021). On Spearman univariate correlation analysis, visfatin was significantly associated with resistin (r = 0.30, P = 0.0011), but not with any other anthropometric or metabolic variables, including adiponectin multimers. On multiple linear regression analysis, the only covariates independently associated with visfatin were diabetes (t = 3.11, P = 0.0024) and log resistin (t = 2.68, P = 0.0086). CONCLUSIONS: Circulating visfatin is independently associated with diabetes and resistin concentration, but is not related to adiponectin multimers or other metabolic covariates. These data are suggestive of a potential role of visfatin in subclinical inflammatory states.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Nicotinamida Fosforribosiltransferase/sangue , Células 3T3-L1 , Adipócitos/metabolismo , Adiponectina/sangue , Animais , Estudos Transversais , Diabetes Mellitus Experimental/sangue , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Ratos , Análise de Regressão , Resistina/sangue
18.
Am J Clin Pathol ; 129(5): 815-22, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18426744

RESUMO

The metabolic syndrome (MetS) confers an increased risk for diabetes and cardiovascular disease. Although high-sensitive C-reactive protein (hsCRP) concentrations are higher and adiponectin concentrations lower in MetS, there is no reliable biochemical measure that can capture its various features. We evaluated whether hsCRP, adiponectin, or the ratio of adiponectin or its oligomers, especially the high-molecular-weight (HMW) oligomer, to hsCRP predict MetS in 123 subjects with MetS compared with that in 91 healthy control subjects. MetS subjects had significantly higher hsCRP levels and lower total adiponectin and oligomer levels relative to control subjects (P < .0001). The HMW/total adiponectin and adiponectin/CRP ratios were significantly lower in MetS subjects than control subjects (P < .005). The odds ratio (OR) of MetS using the 75th percentile cutoff for CRP was 3.8 (95% confidence interval [CI], 2.1-6.8) and equivalent to low total adiponectin (OR, 2.5; 95% CI, 1.3-4.5), its oligomers, or the adiponectin/ hsCRP ratio (OR, 2.6; 95% CI, 1.5, 4.8). Thus, measurements of CRP, adiponectin, or its oligomers provide robust biomarkers for predicting MetS.


Assuntos
Adiponectina/sangue , Biomarcadores/sangue , Proteína C-Reativa/análise , Síndrome Metabólica/sangue , Síndrome Metabólica/diagnóstico , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Valores de Referência , Sensibilidade e Especificidade
19.
PLoS Biol ; 3(9): e315, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16122350

RESUMO

The demonstration of association between common genetic variants and chronic human diseases such as obesity could have profound implications for the prediction, prevention, and treatment of these conditions. Unequivocal proof of such an association, however, requires independent replication of initial positive findings. Recently, three (-243 A>G, +61450 C>A, and +83897 T>A) single nucleotide polymorphisms (SNPs) within glutamate decarboxylase 2 (GAD2) were found to be associated with class III obesity (body mass index > 40 kg/m2). The association was observed among 188 families (612 individuals) segregating the condition, and a case-control study of 575 cases and 646 lean controls. Functional data supporting a pathophysiological role for one of the SNPs (-243 A>G) were also presented. The gene GAD2 encodes the 65-kDa subunit of glutamic acid decarboxylase-GAD65. In the present study, we attempted to replicate this association in larger groups of individuals, and to extend the functional studies of the -243 A>G SNP. Among 2,359 individuals comprising 693 German nuclear families with severe, early-onset obesity, we found no evidence for a relationship between the three GAD2 SNPs and obesity, whether SNPs were studied individually or as haplotypes. In two independent case-control studies (a total of 680 class III obesity cases and 1,186 lean controls), there was no significant relationship between the -243 A>G SNP and obesity (OR = 0.99, 95% CI 0.83-1.18, p = 0.89) in the pooled sample. These negative findings were recapitulated in a meta-analysis, incorporating all published data for the association between the -243G allele and class III obesity, which yielded an OR of 1.11 (95% CI 0.90-1.36, p = 0.28) in a total sample of 1,252 class III obese cases and 1,800 lean controls. Moreover, analysis of common haplotypes encompassing the GAD2 locus revealed no association with severe obesity in families with the condition. We also obtained functional data for the -243 A>G SNP that does not support a pathophysiological role for this variant in obesity. Potential confounding variables in association studies involving common variants and complex diseases (low power to detect modest genetic effects, overinterpretation of marginal data, population stratification, and biological plausibility) are also discussed in the context of GAD2 and severe obesity.


Assuntos
Predisposição Genética para Doença , Glutamato Descarboxilase/genética , Isoenzimas/genética , Obesidade Mórbida/genética , Polimorfismo de Fragmento de Restrição , Adolescente , Adulto , Sequência de Bases , Feminino , Marcadores Genéticos , Genótipo , Humanos , Masculino , Dados de Sequência Molecular , Núcleo Familiar
20.
Br J Nutr ; 100(5): 947-52, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18384705

RESUMO

Fructose consumption in the USA has increased over the past three decades. During this time, obesity, insulin resistance and the metabolic syndrome have also increased in prevalence. While diets high in fructose have been shown to promote insulin resistance and increase TAG concentrations in animals, there are insufficient data available regarding the long-term metabolic effects of fructose consumption in humans. The objective of the present study was to investigate the metabolic effects of 10-week consumption of fructose-sweetened beverages in human subjects under energy-balanced conditions in a controlled research setting. Following a 4-week weight-maintaining complex carbohydrate diet, seven overweight or obese (BMI 26.8-33.3 kg/m2) postmenopausal women were fed an isoenergetic intervention diet, which included a fructose-sweetened beverage with each meal, for 10 weeks. The intervention diet provided 15 % of energy from protein, 30 % from fat and 55 % from carbohydrate (30 % complex carbohydrate, 25 % fructose). Fasting and postprandial glucose, insulin, TAG and apoB concentrations were measured. Fructose consumption increased fasting glucose concentrations and decreased meal-associated glucose and insulin responses (P = 0.0002, P = 0.007 and P = 0.013, respectively). Moreover, after 10 weeks of fructose consumption, 14 h postprandial TAG profiles were significantly increased, with the area under the curve at 10 weeks being 141 % higher than at baseline (P = 0.04). Fructose also increased fasting apoB concentrations by 19 % (P = 0.043 v. baseline). In summary, consumption of fructose-sweetened beverages increased postprandial TAG and fasting apoB concentrations, and the present results suggest that long-term consumption of diets high in fructose could lead to an increased risk of CVD.


Assuntos
Carboidratos da Dieta/efeitos adversos , Frutose/efeitos adversos , Obesidade/sangue , Sobrepeso/sangue , Idoso , Análise de Variância , Apolipoproteínas B/sangue , Área Sob a Curva , Bebidas , Biomarcadores/sangue , Glicemia/análise , Feminino , Humanos , Insulina/sangue , Lipídeos/sangue , Pessoa de Meia-Idade , Período Pós-Prandial , Tempo , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa