Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 206(3): 471-480, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33361207

RESUMO

Mast cells are tissue-resident immune cells that play pivotal roles in initiating and amplifying allergic/anaphylactic reactions in humans. Their activation occurs via multiple mechanisms, which include cross-linking of the IgE-bound, high-affinity IgE receptors (FcεRI) by allergens or Ags and the binding of anaphylatoxins such as C3a to its receptor, C3aR. We have previously demonstrated that the Na+/H+ exchanger regulatory factor 1 (NHERF1) promotes C3aR functions in human mast cells. In the current study, we show that NHERF1 regulates mast cell response following FcεRI stimulation. Specifically, intracellular Ca2+ mobilization, activation of the MAPKs (ERK1/2 and P38), and production of cytokines (IL-13 and IL-6) following exposure to IgE/Ag were significantly reduced in mast cells from NHERF1+/‒ mice. In agreement with our in vitro data, mast cell-mediated passive cutaneous anaphylaxis and passive systemic anaphylaxis were reduced in NHERF1+/‒ mice and mast cell-deficient KitW-sh/W-sh mice engrafted with NHERF1+/‒ mast cells. Mechanistically, the levels of microRNAs (miRNAs) that regulate mast cell responses, miRNA 155-3p and miRNA 155-5p, were altered in mast cells from NHERF1+/‒ mice. Moreover, NHERF1 rapidly localized to the nucleus of mast cells following FcεRI stimulation. In summary, our results suggest that the NHERF1 acts as an adapter molecule and promotes IgE/Ag-induced mast cell activation. Further elucidating the mechanisms through which NHERF1 modulates mast cell responses will lend insights into the development of new therapeutic strategies to target mast cells during anaphylaxis or other allergic diseases.


Assuntos
Hipersensibilidade/imunologia , Mastócitos/imunologia , Anafilaxia Cutânea Passiva/imunologia , Fosfoproteínas/metabolismo , Receptores de IgE/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Sinalização do Cálcio , Degranulação Celular , Células Cultivadas , Imunoglobulina E/metabolismo , Imunomodulação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Fosfoproteínas/genética , Trocadores de Sódio-Hidrogênio/genética
2.
Cell Immunol ; 368: 104422, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34399172

RESUMO

MAS related G-protein coupled receptor X2 (MRGPRX2) is a G-protein coupled receptor (GPCR) expressed in human mast cells that has been implicated to play an important role in causing pseudo-allergic reactions as well as exacerbating inflammation during asthma and other allergic diseases. Lactic acid, a byproduct of glucose metabolism, is abundantly present in inflamed tissues and has been shown to regulate functions of several immune cells. Because the endogenous ligands for MRGPRX2 (substance P and LL-37) are elevated during pathologic conditions, such as cancer and asthma, and given that lactic acid levels are also enhanced in these patients, we explored the role of lactic acid in regulating mast cells response via MRGPRX2 and MrgprB2, the mouse orthologue of the human receptor. We found that lactic acid suppressed both the early (Ca2+ mobilization and degranulation) and late (chemokine/cytokine release) phases of mast cell activation; this data was confirmed in LAD2, human skin and mouse peritoneal mast cells. In LAD2 cells, the reduction in degranulation and chemokine/cytokine production mediated by lactic acid was dependent on pH. In agreement with our in vitro studies, lactic acid also reduced passive systemic anaphylaxis to compound 48/80 (a known MRGPRX2/MrgprB2 ligand) and skin inflammation in a mouse model of rosacea that is dependent on MrgprB2 expression on skin mast cells. Our data thus suggest that lactic acid may serve to inhibit mast cell-mediated inflammation during asthma and reduce immune response during cancer by affecting mast cell activation through MRGPRX2.


Assuntos
Hipersensibilidade/imunologia , Inflamação/imunologia , Ácido Láctico/metabolismo , Mastócitos/imunologia , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Rosácea/imunologia , Animais , Sinalização do Cálcio , Degranulação Celular , Glucose/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
3.
Front Immunol ; 11: 703, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32391014

RESUMO

Mast cells are tissue-resident innate immune cells known for their prominent role in mediating allergic reactions. MAS-related G-protein coupled receptor-X2 (MRGPRX2) is a promiscuous G-protein coupled receptor (GPCR) expressed on mast cells that is activated by several ligands that share cationic and amphipathic properties. Interestingly, MRGPRX2 ligands include certain FDA-approved drugs, antimicrobial peptides, and neuropeptides. Consequently, this receptor has been implicated in causing mast cell-dependent pseudo-allergic reactions to these drugs and chronic inflammation associated with asthma, urticaria and rosacea in humans. In the current study we examined the role of osthole, a natural plant coumarin, in regulating mast cell responses when activated by the MRGPRX2 ligands, including compound 48/80, the neuropeptide substance P, and the cathelicidin LL-37. We demonstrate that osthole attenuates both the early (Ca2+ mobilization and degranulation) and delayed events (chemokine/cytokine production) of mast cell activation via MRGPRX2 in vitro. Osthole also inhibits MrgprB2- (mouse ortholog of human MRGPRX2) dependent inflammation in in vivo mouse models of pseudo-allergy. Molecular docking analysis suggests that osthole does not compete with the MRGPRX2 ligands for interaction with the receptor, but rather regulates MRGPRX2 activation via allosteric modifications. Furthermore, flow cytometry and confocal microscopy experiments reveal that osthole reduces both surface and intracellular expression levels of MRGPRX2 in mast cells. Collectively, our data demonstrate that osthole inhibits MRGPRX2/MrgprB2-induced mast cell responses and provides a rationale for the use of this natural compound as a safer alternative treatment for pseudo-allergic reactions in humans.


Assuntos
Cumarínicos/administração & dosagem , Edema/tratamento farmacológico , Mastócitos/imunologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Fitoterapia/métodos , Extratos Vegetais/administração & dosagem , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores de Neuropeptídeos/antagonistas & inibidores , Animais , Sinalização do Cálcio/efeitos dos fármacos , Degranulação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Edema/imunologia , Feminino , Humanos , Masculino , Mastócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Ratos , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/química , Receptores de Neuropeptídeos/metabolismo , Doadores de Tecidos , Resultado do Tratamento
4.
Diabetes ; 67(4): 769-781, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29362226

RESUMO

Tight junctions (TJs) involve close apposition of transmembrane proteins between cells. Although TJ proteins have been studied in detail, the role of lipids is largely unknown. We addressed the role of very long-chain (VLC ≥26) ceramides in TJs using diabetes-induced loss of the blood-retinal barrier as a model. VLC fatty acids that incorporate into VLC ceramides are produced by elongase elongation of very long-chain fatty acids protein 4 (ELOVL4). ELOVL4 is significantly reduced in the diabetic retina. Overexpression of ELOVL4 significantly decreased basal permeability, inhibited vascular endothelial growth factor (VEGF)- and interleukin-1ß-induced permeability, and prevented VEGF-induced decrease in occludin expression and border staining of TJ proteins ZO-1 and claudin-5. Intravitreal delivery of AAV2-hELOVL4 reduced diabetes-induced increase in vascular permeability. Ultrastructure and lipidomic analysis revealed that ω-linked acyl-VLC ceramides colocalize with TJ complexes. Overall, normalization of retinal ELOVL4 expression could prevent blood-retinal barrier dysregulation in diabetic retinopathy through an increase in VLC ceramides and stabilization of TJs.


Assuntos
Barreira Hematorretiniana/metabolismo , Permeabilidade Capilar/genética , Ceramidas/metabolismo , Células Endoteliais/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Vasos Retinianos/metabolismo , Junções Íntimas/metabolismo , Animais , Bovinos , Claudina-5/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/etiologia , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Células Endoteliais/ultraestrutura , Humanos , Interleucina-1beta/metabolismo , Camundongos , Ocludina/metabolismo , Retina/metabolismo , Vasos Retinianos/ultraestrutura , Junções Íntimas/ultraestrutura , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa