RESUMO
The first aim of this study was to characterize the luminal contents and their micellar phase after the administration of a heterogeneous liquid meal to healthy adults. The second aim was to evaluate the impact of micellar lipids and coarse lipid particles on danazol flux through intestinal monolayers. A third aim was to compare the micellar composition in the upper small intestine with the composition of fed state simulating intestinal fluid (FeSSIF-V2), a medium that has been proposed for investigating dissolution of poorly soluble drugs in the fed state. Danazol (150 mg), predissolved in the olive oil portion of the meal, was administered via the gastric port of a two-lumen tube to the antrum of eight adults. Aspirates from the ligament of Treitz [collected up to 4 h postdosing (~15 mL every 30 min)] were characterized physicochemically. Comparison of these characteristics with FeSSIF-V2 indicates that FeSSIF-V2 is an appropriate medium for evaluating drug solubilization in the luminal micellar phase in the fed state. Individual aspirates and their corresponding micellar phases were also diluted with aqueous transport medium and subjected to Caco-2 cell permeation experiments. Permeability coefficients for danazol in the diluted aspirates were smaller than those for the diluted micellar phases, which in turn were similar to those for aqueous transport medium. The high danazol concentrations overcompensated the reduced permeability coefficient values in the diluted aspirates in terms of total drug flux. We conclude that drug dissolved in the coarse lipid particles formed after administration of a triglyceride solution can directly contribute to the flux of lipophilic drugs across the intestinal mucosa.
Assuntos
Danazol/química , Soluções/química , Triglicerídeos/química , Células CACO-2 , Humanos , MicelasRESUMO
PURPOSE: To develop an in vitro methodology for prediction of concentrations and potential precipitation of highly permeable, lipophilic weak bases in fasted upper small intestine based on ketoconazole and dipyridamole luminal data. Evaluate usefulness of methodology in predicting luminal precipitation of AZD0865 and SB705498 based on plasma data. METHODS: A three-compartment in vitro setup was used. Depending on the dosage form administered in in vivo studies, a solution or a suspension was placed in the gastric compartment. A medium simulating the luminal environment (FaSSIF-V2plus) was initially placed in the duodenal compartment. Concentrated FaSSIF-V2plus was placed in the reservoir compartment. RESULTS: In vitro ketoconazole and dipyridamole concentrations and precipitated fractions adequately reflected luminal data. Unlike luminal precipitates, in vitro ketoconazole precipitates were crystalline. In vitro AZD0865 data confirmed previously published human pharmacokinetic data suggesting that absorption rates are not affected by luminal precipitation. In vitro SB705498 data predicted that significant luminal precipitation occurs after a 100 mg or 400 mg but not after a 10 mg dose, consistent with human pharmacokinetic data. CONCLUSIONS: An in vitro methodology for predicting concentrations and potential precipitation in fasted upper small intestine, after administration of highly permeable, lipophilic weak bases in fasted upper small intestine was developed and evaluated for its predictability in regard to luminal precipitation.