Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 17(2): e1009339, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33524049

RESUMO

Heat shock protein 47 (HSP47), encoded by the SERPINH1 gene, is a molecular chaperone essential for correct folding of collagens. We report a homozygous p.(R222S) substitution in HSP47 in a child with severe osteogenesis imperfecta leading to early demise. p.R222 is a highly conserved residue located within the collagen interacting surface of HSP47. Binding assays show a significantly reduced affinity of HSP47-R222S for type I collagen. This altered interaction leads to posttranslational overmodification of type I procollagen produced by dermal fibroblasts, with increased glycosylation and/or hydroxylation of lysine and proline residues as shown by mass spectrometry. Since we also observed a normal intracellular folding and secretion rate of type I procollagen, this overmodification cannot be explained by prolonged exposure of the procollagen molecules to the modifying hydroxyl- and glycosyltransferases, as is commonly observed in other types of OI. We found significant upregulation of several molecular chaperones and enzymes involved in procollagen modification and folding on Western blot and RT-qPCR. In addition, we showed that an imbalance in binding of HSP47-R222S to unfolded type I collagen chains in a gelatin sepharose pulldown assay results in increased binding of other chaperones and modifying enzymes. The elevated expression and binding of this molecular ensemble to type I procollagen suggests a compensatory mechanism for the aberrant binding of HSP47-R222S, eventually leading to overmodification of type I procollagen chains. Together, these results illustrate the importance of HSP47 for proper posttranslational modification and provide insights into the molecular pathomechanisms of the p.(R222S) alteration in HSP47, which leads to a severe OI phenotype.


Assuntos
Colágeno Tipo I/genética , Proteínas de Choque Térmico HSP47/genética , Mutação de Sentido Incorreto , Osteogênese Imperfeita/genética , Sequência de Aminoácidos , Células Cultivadas , Pré-Escolar , Colágeno Tipo I/metabolismo , Evolução Fatal , Feminino , Proteínas de Choque Térmico HSP47/química , Proteínas de Choque Térmico HSP47/metabolismo , Humanos , Lactente , Recém-Nascido , Modelos Moleculares , Osteogênese Imperfeita/metabolismo , Ligação Proteica , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
2.
Hum Genet ; 142(3): 457-476, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36697720

RESUMO

Bi-allelic mutations in the gene coding for human trans-membrane anterior-posterior transformation protein 1 (TAPT1) result in a broad phenotypic spectrum, ranging from syndromic disease with severe skeletal and congenital abnormalities to isolated early-onset cataract. We present here the first patient with a frameshift mutation in the TAPT1 gene, resulting in both bilateral early-onset cataract and skeletal abnormalities, in addition to several dysmorphic features, in this way further expanding the phenotypic spectrum associated with TAPT1 mutations. A tapt1a/tapt1b double knock-out (KO) zebrafish model generated by CRISPR/Cas9 gene editing revealed an early larval phenotype with eye malformations, loss of vision, increased photokinetics and hyperpigmentation, without visible skeletal involvement. Ultrastructural analysis of the eyes showed a smaller condensed lens, loss of integrity of the lens capsule with formation of a secondary lens and hyperplasia of the cells in the ganglion and inner plexiform layers of the retina. Transcriptomic analysis pointed to an impaired lens development with aberrant expression of many of the crystallin and other lens-specific genes. Furthermore, the phototransduction and visual perception pathways were found to be significantly disturbed. Differences in light perception are likely the cause of the increased dark photokinetics and generalized hyperpigmentation observed in this zebrafish model. In conclusion, this study validates TAPT1 as a new gene for early-onset cataract and sheds light on its ultrastructural and molecular characteristics.


Assuntos
Catarata , Cristalino , Animais , Humanos , Catarata/genética , Cristalino/metabolismo , Mutação , Retina/metabolismo , Peixe-Zebra/genética , Proteínas de Membrana/metabolismo
3.
J Med Genet ; 59(9): 865-877, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34815299

RESUMO

BACKGROUND: Musculocontractural Ehlers-Danlos syndrome is caused by biallelic loss-of-function variants in CHST14 (mcEDS-CHST14) or DSE (mcEDS-DSE). Although 48 patients in 33 families with mcEDS-CHST14 have been reported, the spectrum of pathogenic variants, accurate prevalence of various manifestations and detailed natural history have not been systematically investigated. METHODS: We collected detailed and comprehensive clinical and molecular information regarding previously reported and newly identified patients with mcEDS-CHST14 through international collaborations. RESULTS: Sixty-six patients in 48 families (33 males/females; 0-59 years), including 18 newly reported patients, were evaluated. Japanese was the predominant ethnicity (27 families), associated with three recurrent variants. No apparent genotype-phenotype correlation was noted. Specific craniofacial (large fontanelle with delayed closure, downslanting palpebral fissures and hypertelorism), skeletal (characteristic finger morphologies, joint hypermobility, multiple congenital contractures, progressive talipes deformities and recurrent joint dislocation), cutaneous (hyperextensibility, fine/acrogeria-like/wrinkling palmar creases and bruisability) and ocular (refractive errors) features were observed in most patients (>90%). Large subcutaneous haematomas, constipation, cryptorchidism, hypotonia and motor developmental delay were also common (>80%). Median ages at the initial episode of dislocation or large subcutaneous haematoma were both 6 years. Nine patients died; their median age was 12 years. Several features, including joint and skin characteristics (hypermobility/extensibility and fragility), were significantly more frequent in patients with mcEDS-CHST14 than in eight reported patients with mcEDS-DSE. CONCLUSION: This first international collaborative study of mcEDS-CHST14 demonstrated that the subtype represents a multisystem disorder with unique set of clinical phenotypes consisting of multiple malformations and progressive fragility-related manifestations; these require lifelong, multidisciplinary healthcare approaches.


Assuntos
Anormalidades Múltiplas , Síndrome de Ehlers-Danlos , Anormalidades Múltiplas/genética , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética , Feminino , Estudos de Associação Genética , Humanos , Masculino , Fenótipo , Sulfotransferases/genética
4.
Hum Mutat ; 43(12): 1994-2009, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36054293

RESUMO

The Ehlers-Danlos syndromes (EDS) are a heterogeneous group of heritable connective tissue diseases. The autosomal recessive kyphoscoliotic EDS results from deficiency of either lysyl hydroxylase 1 (encoded by PLOD1), crucial for collagen cross-linking; or the peptidyl-prolyl cis-trans isomerase family FK506-binding protein 22 kDa (FKBP22 encoded by FKBP14), a molecular chaperone of types III, IV, VI, and X collagen. This study reports the clinical manifestations of three probands with homozygous pathogenic FKBP14 variants, including the previously reported c.362dupC; p.(Glu122Argfs*7) variant, a novel missense variant (c.587A>G; p.(Asp196Gly)) and a start codon variant (c.2T>G; p.?). Consistent clinical features in the hitherto reported individuals (n = 40) are kyphoscoliosis, generalized joint hypermobility and congenital muscle hypotonia. Severe vascular complications have been observed in 12.5%. A previously unreported feature is microcornea observed in two probands reported here. Both the c.587A>G and the c.362dupC variant cause complete loss of FKBP22. With immunocytochemistry on dermal fibroblasts, we provide the first evidence for intracellular retention of types III and VI collagen in EDS-FKBP14. Scratch wound assays were largely normal. Western blot of proteins involved in the unfolded protein response and autophagy did not reveal significant upregulation in dermal fibroblasts.


Assuntos
Síndrome de Ehlers-Danlos , Escoliose , Humanos , Síndrome de Ehlers-Danlos/genética , Peptidilprolil Isomerase/genética , Homozigoto , Mutação de Sentido Incorreto
5.
Am J Physiol Cell Physiol ; 323(6): C1843-C1859, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35993517

RESUMO

Proteoglycans consist of a core protein substituted with one or more glycosaminoglycan (GAG) chains and execute versatile functions during many physiological and pathological processes. The biosynthesis of GAG chains is a complex process that depends on the concerted action of a variety of enzymes. Central to the biosynthesis of heparan sulfate (HS) and chondroitin sulfate/dermatan sulfate (CS/DS) GAG chains is the formation of a tetrasaccharide linker region followed by biosynthesis of HS or CS/DS-specific repeating disaccharide units, which then undergo modifications and epimerization. The importance of these biosynthetic enzymes is illustrated by several severe pleiotropic disorders that arise upon their deficiency. The Ehlers-Danlos syndromes (EDS) constitute a special group among these disorders. Although most EDS types are caused by defects in fibrillar types I, III, or V collagen, or their modifying enzymes, a few rare EDS types have recently been linked to defects in GAG biosynthesis. Spondylodysplastic EDS (spEDS) is caused by defective formation of the tetrasaccharide linker region, either due to ß4GalT7 or ß3GalT6 deficiency, whereas musculocontractural EDS (mcEDS) results from deficiency of D4ST1 or DS-epi1, impairing DS formation. This narrative review highlights the consequences of GAG deficiency in these specific EDS types, summarizes the associated phenotypic features and the molecular spectrum of reported pathogenic variants, and defines the current knowledge on the underlying pathophysiological mechanisms based on studies in patient-derived material, in vitro analyses, and animal models.


Assuntos
Dermatan Sulfato , Síndrome de Ehlers-Danlos , Animais , Dermatan Sulfato/metabolismo , Sulfotransferases/metabolismo , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/metabolismo , Síndrome de Ehlers-Danlos/patologia , Colágeno/metabolismo , Proteoglicanas
6.
Clin Exp Rheumatol ; 40 Suppl 134(5): 46-62, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35587586

RESUMO

The vast majority of reported (likely) pathogenic missense variants in the genes coding for the fibrillar collagens leads to the substitution of one of the obligatory glycine residues in the Gly-Xaa-Yaa repeat sequence of the triple helical domain. Their phenotypic consequences and deleterious effects have been well-documented. However, with increasing access to molecular diagnostic testing based on next-generation sequencing techniques, such as sequencing of multi-gene panels and whole-exome sequencing, non-glycine substitutions are more frequently identified in individuals suspected to have a heritable collagen disorder, but their pathogenic effect is often difficult to predict.Some specific non-glycine substitutions in the proα1(I)- (p.(Arg312Cys)) and proα1(III)- (glutamic acid to lysine at different positions) collagen chain have been identified in a number of individuals presenting a phenotype showing features of both classical and vascular Ehlers-Danlos syndrome. The number of reported individuals with these defects is currently very low, and several of these non-glycine substitutions had initially been categorised as variants of unknown significance (VUS), complicating early diagnosis, accurate counselling, management guidelines, and correct classification. This collaborative study reports on the phenotype of 22 and 7 individuals harbouring these rare variants in COL1A1 and COL3A1, respectively, expanding our knowledge on clinical presentation, phenotypic variability, and natural history, and informing on the risk for potentially life-threatening events, such as vascular, gastro-intestinal, and pregnancy-related complications.


Assuntos
Cadeia alfa 1 do Colágeno Tipo I , Síndrome de Ehlers-Danlos , Colágeno , Colágeno Tipo III/genética , Síndrome de Ehlers-Danlos/complicações , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética , Humanos , Mutação , Fenótipo
7.
Hum Mutat ; 42(10): 1294-1306, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34265140

RESUMO

Classical Ehlers-Danlos syndrome (cEDS) is a heritable connective tissue disorder mainly caused by pathogenic variants in COL5A1 or COL5A2, encoding type V collagen. Its diagnosis, based on clinical criteria and molecular confirmation, can be challenging. We report the molecular and clinical characteristics of 168 probands (72 clinically evaluated at our center) and 65 relatives with a clinical presentation of cEDS. Type V collagen defects were found in 145 probands, 121 (83.5%) were located in COL5A1 and 24 (16.5%) in COL5A2. Although 85.6% of molecularly confirmed patients presented the two major clinical criteria (generalized joint hypermobility, hyperextensible skin with atrophic scarring), significant inter- and intrafamilial phenotypic variability was noted. COL5A2 variants often caused a more severe phenotype. Vascular complications were rare in individuals with type V collagen defects (1.4%). Among the 72 probands clinically evaluated in our center, the mutation detection rate was 82.0%. The majority (68.1%) harbored COL5A1/COL5A2 defects. Yet, 13.9% harbored a defect in another gene (COL1A1, PLOD1, TNXB, AEBP1) highlighting important clinical overlap and the need for molecular confirmation of the diagnosis as this has implications regarding follow-up and genetic counseling. Eighteen percent of the 72 probands remained molecularly unexplained and a COL5A1 variant of unknown significance was identified in 6.9%.


Assuntos
Síndrome de Ehlers-Danlos , Instabilidade Articular , Carboxipeptidases/genética , Colágeno Tipo V/genética , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética , Humanos , Mutação , Fenótipo , Proteínas Repressoras/genética
8.
Hum Mutat ; 42(6): 711-730, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33739556

RESUMO

Brittle cornea syndrome (BCS) is a rare autosomal recessive disorder characterized by corneal thinning and fragility, leading to corneal rupture, the main hallmark of this disorder. Non-ocular symptoms include not only hearing loss but also signs of connective tissue fragility, placing it in the Ehlers-Danlos syndrome (EDS) spectrum. It is caused by biallelic pathogenic variants in ZNF469 or PRDM5, which presumably encode transcription factors for extracellular matrix components. We report the clinical and molecular features of nine novel BCS families, four of which harbor variants in ZNF469 and five in PRDM5. We also performed a genotype- and phenotype-oriented literature overview of all (n = 85) reported patients with ZNF469 (n = 53) and PRDM5 (n = 32) variants. Musculoskeletal findings may be the main reason for referral and often raise suspicion of another heritable connective tissue disorder, such as kyphoscoliotic EDS, osteogenesis imperfecta, or Marfan syndrome, especially when a corneal rupture has not yet occurred. Our findings highlight the multisystemic nature of BCS and validate its inclusion in the EDS classification. Importantly, gene panels for heritable connective tissue disorders should include ZNF469 and PRDM5 to allow for timely diagnosis and appropriate preventive measures for this rare condition.


Assuntos
Proteínas de Ligação a DNA/genética , Anormalidades do Olho/genética , Instabilidade Articular/congênito , Anormalidades da Pele/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Criança , Pré-Escolar , Análise Mutacional de DNA , Anormalidades do Olho/epidemiologia , Anormalidades do Olho/patologia , Família , Feminino , Estudos de Associação Genética , Humanos , Lactente , Instabilidade Articular/epidemiologia , Instabilidade Articular/genética , Instabilidade Articular/patologia , Masculino , Mutação , Linhagem , Anormalidades da Pele/epidemiologia , Anormalidades da Pele/patologia , Sequenciamento do Exoma , Adulto Jovem
9.
Am J Med Genet C Semin Med Genet ; 187(4): 429-445, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34797601

RESUMO

Chronic pain is one of the most common, yet poorly studied, complaints in people suffering from Ehlers-Danlos syndromes (EDS). This heterogeneous group of heritable connective tissue disorders is typically characterized by skin hyperextensibility, joint hypermobility, and generalized connective tissue fragility. Most EDS types are caused by genetic defects that affect connective tissue biosynthesis, thereby compromising collagen biosynthesis or fibrillogenesis and resulting in a disorganized extracellular matrix. Even though chronic pain is a major source of disability, functional impairment, and psychosocial suffering in EDS, currently used analgesics and other treatment strategies provide inadequate pain relief and thus represents an important unmet medical need. An important contributor to this is the lack of knowledge about the underlying mechanisms. In this narrative review, we summarize the current understanding of pain and the associated mechanisms in EDS based on clinical studies focusing on questionnaires and experimental pain testing as well as studies in animal models of EDS. In addition, we highlight the challenges, gaps, and opportunities in EDS-pain research.


Assuntos
Doenças do Tecido Conjuntivo , Síndrome de Ehlers-Danlos , Instabilidade Articular , Anormalidades da Pele , Síndrome de Ehlers-Danlos/genética , Humanos , Dor
10.
Hum Mol Genet ; 28(11): 1801-1809, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30657919

RESUMO

The cyclic adenosine monophosphate responsive element binding protein 3-like 1 (CREB3L1) gene codes for the endoplasmic reticulum stress transducer old astrocyte specifically induced substance (OASIS), which has an important role in osteoblast differentiation during bone development. Deficiency of OASIS is linked to a severe form of autosomal recessive osteogenesis imperfecta (OI), but only few patients have been reported. We identified the first homozygous pathogenic missense variant [p.(Ala304Val)] in a patient with lethal OI, which is located within the highly conserved basic leucine zipper domain, four amino acids upstream of the DNA binding domain. In vitro structural modeling and luciferase assays demonstrate that this missense variant affects a critical residue in this functional domain, thereby decreasing the type I collagen transcriptional binding ability. In addition, overexpression of the mutant OASIS protein leads to decreased transcription of the SEC23A and SEC24D genes, which code for components of the coat protein complex type II (COPII), and aberrant OASIS signaling also results in decreased protein levels of SEC24D. Our findings therefore provide additional proof of the potential involvement of the COPII secretory complex in the context of bone-associated disease.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Estresse do Retículo Endoplasmático/genética , Proteínas do Tecido Nervoso/genética , Osteogênese Imperfeita/genética , Domínios Proteicos/genética , Astrócitos/metabolismo , Astrócitos/patologia , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Pré-Escolar , Colágeno Tipo I/química , Colágeno Tipo I/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/química , Proteínas de Ligação a DNA/genética , Feminino , Homozigoto , Humanos , Masculino , Modelos Moleculares , Mutação de Sentido Incorreto/genética , Proteínas do Tecido Nervoso/química , Osteogênese Imperfeita/metabolismo , Osteogênese Imperfeita/patologia , Linhagem , Fenótipo , Ligação Proteica , Proteínas de Transporte Vesicular/genética
11.
Hum Mol Genet ; 28(11): 1853-1864, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668708

RESUMO

The Ehlers-Danlos syndromes (EDSs) are a clinically and molecularly diverse group of heritable connective tissue disorders caused by defects in a wide range of genes. Recently, bi-allelic loss-of-function mutations in the adipocyte enhancer-binding protein 1 (AEBP1) gene were reported in three families with an autosomal recessive EDS-like condition characterized by thin and hyperextensible skin, poor wound healing with prominent atrophic scarring, joint hypermobility and osteoporosis. Using whole exome sequencing, we identified novel bi-allelic AEBP1 variants in two unrelated adult patients, previously diagnosed with an undefined EDS type, which shows important clinical resemblance to several other EDS subtypes. Our patients present with similar cutaneous and musculoskeletal features as the previously reported patients. They also show unreported clinical features, including pectus deformity, premature aged appearance, sparse and frizzled hair, fatigue and pain. AEBP1 is ubiquitously expressed and encodes the secreted aortic carboxypeptidase-like protein (ACLP) that can bind fibrillar collagens and assist in collagen polymerization. Transmission electron microscopy studies on the patients' skin biopsies show ultrastructural alterations in collagen fibril diameter and appearance, underscoring an important role for ACLP in collagen fibril organization. This report further expands the clinical, molecular and ultrastructural spectrum associated with AEBP1 defects and highlights the complex and variable phenotype associated with this new EDS variant.


Assuntos
Carboxipeptidases/genética , Síndrome de Ehlers-Danlos/genética , Instabilidade Articular/genética , Proteínas Repressoras/genética , Anormalidades da Pele/genética , Adolescente , Adulto , Alelos , Criança , Pré-Escolar , Colágeno/genética , Síndrome de Ehlers-Danlos/fisiopatologia , Matriz Extracelular/genética , Feminino , Humanos , Instabilidade Articular/fisiopatologia , Masculino , Pessoa de Meia-Idade , Mutação/genética , Fenótipo , Pele/patologia , Anormalidades da Pele/fisiopatologia , Adulto Jovem
12.
Genet Med ; 23(12): 2378-2385, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34272483

RESUMO

PURPOSE: Infantile Caffey disease is a rare disorder characterized by acute inflammation with subperiosteal new bone formation, associated with fever, pain, and swelling of the overlying soft tissue. Symptoms arise within the first weeks after birth and spontaneously resolve before the age of two years. Many, but not all, affected individuals carry the heterozygous pathogenic COL1A1 variant (c.3040C>T, p.(Arg1014Cys)). METHODS: We sequenced COL1A1 in 28 families with a suspicion of Caffey disease and performed ultrastructural, immunocytochemical, and biochemical collagen studies on patient skin biopsies. RESULTS: We identified the p.(Arg1014Cys) variant in 23 families and discovered a novel heterozygous pathogenic COL1A1 variant (c.2752C>T, p.(Arg918Cys)) in five. Both arginine to cysteine substitutions are located in the triple helical domain of the proα1(I) procollagen chain. Dermal fibroblasts (one patient with p.(Arg1014Cys) and one with p.(Arg918Cys)) produced molecules with disulfide-linked proα1(I) chains, which were secreted only with p.(Arg1014Cys). No intracellular accumulation of type I procollagen was detected. The dermis revealed mild ultrastructural abnormalities in collagen fibril diameter and packing. CONCLUSION: The discovery of this novel pathogenic variant expands the limited spectrum of arginine to cysteine substitutions in type I procollagen. Furthermore, it confirms allelic heterogeneity in Caffey disease and impacts its molecular confirmation.


Assuntos
Cadeia alfa 1 do Colágeno Tipo I/genética , Cisteína , Hiperostose Cortical Congênita , Arginina/genética , Pré-Escolar , Colágeno Tipo I , Cisteína/genética , Humanos , Mutação , Pró-Colágeno/genética
13.
Hum Mol Genet ; 27(20): 3475-3487, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29931299

RESUMO

Proteoglycans are among the most abundant and structurally complex biomacromolecules and play critical roles in connective tissues. They are composed of a core protein onto which glycosaminoglycan (GAG) side chains are attached via a linker region. Biallelic mutations in B3GALT6, encoding one of the linker region glycosyltransferases, are known to cause either spondyloepimetaphyseal dysplasia (SEMD) or a severe pleiotropic form of Ehlers-Danlos syndromes (EDS). This study provides clinical, molecular and biochemical data on 12 patients with biallelic B3GALT6 mutations. Notably, all patients have features of both EDS and SEMD. In addition, some patients have severe and potential life-threatening complications such as aortic dilatation and aneurysm, cervical spine instability and respiratory insufficiency. Whole-exome sequencing, next generation panel sequencing and direct sequencing identified biallelic B3GALT6 mutations in all patients. We show that these mutations reduce the amount of ß3GalT6 protein and lead to a complete loss of galactosyltransferase activity. In turn, this leads to deficient GAG synthesis, and ultrastructural abnormalities in collagen fibril organization. In conclusion, this study redefines the phenotype associated with B3GALT6 mutations on the basis of clinical, molecular and biochemical data in 12 patients, and provides an in-depth assessment of ß3GalT6 activity and GAG synthesis to better understand this rare condition.


Assuntos
Síndrome de Ehlers-Danlos/genética , Sequenciamento do Exoma , Galactosiltransferases/genética , Mutação , Fenótipo , Adulto , Criança , Pré-Escolar , Síndrome de Ehlers-Danlos/enzimologia , Síndrome de Ehlers-Danlos/patologia , Ensaios Enzimáticos , Feminino , Galactosiltransferases/metabolismo , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino
14.
Am J Hum Genet ; 100(2): 216-227, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28065471

RESUMO

Defects of the V-type proton (H+) ATPase (V-ATPase) impair acidification and intracellular trafficking of membrane-enclosed compartments, including secretory granules, endosomes, and lysosomes. Whole-exome sequencing in five families affected by mild to severe cutis laxa, dysmorphic facial features, and cardiopulmonary involvement identified biallelic missense mutations in ATP6V1E1 and ATP6V1A, which encode the E1 and A subunits, respectively, of the V1 domain of the heteromultimeric V-ATPase complex. Structural modeling indicated that all substitutions affect critical residues and inter- or intrasubunit interactions. Furthermore, complexome profiling, a method combining blue-native gel electrophoresis and liquid chromatography tandem mass spectrometry, showed that they disturb either the assembly or the stability of the V-ATPase complex. Protein glycosylation was variably affected. Abnormal vesicular trafficking was evidenced by delayed retrograde transport after brefeldin A treatment and abnormal swelling and fragmentation of the Golgi apparatus. In addition to showing reduced and fragmented elastic fibers, the histopathological hallmark of cutis laxa, transmission electron microscopy of the dermis also showed pronounced changes in the structure and organization of the collagen fibers. Our findings expand the clinical and molecular spectrum of metabolic cutis laxa syndromes and further link defective extracellular matrix assembly to faulty protein processing and cellular trafficking caused by genetic defects in the V-ATPase complex.


Assuntos
Cútis Laxa/genética , Mutação de Sentido Incorreto , ATPases Vacuolares Próton-Translocadoras/genética , Adolescente , Alelos , Sequência de Aminoácidos , Estudos de Casos e Controles , Criança , Feminino , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Glicosilação , Complexo de Golgi/metabolismo , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , Conformação Proteica , Transporte Proteico , Espectrometria de Massas em Tandem
15.
Genet Med ; 22(1): 112-123, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31273343

RESUMO

PURPOSE: To date, heterozygous or homozygous COL12A1 variants have been reported in 13 patients presenting with a clinical phenotype overlapping with collagen VI-related myopathies and Ehlers-Danlos syndrome (EDS). The small number of reported patients limits thorough investigation of this newly identified syndrome, currently coined as myopathic EDS. METHODS: DNA from 78 genetically unresolved patients fulfilling the clinical criteria for myopathic EDS was sequenced using a next-generation panel of COL12A1, COL6A1, COL6A2, and COL6A3. RESULTS: Among this cohort, we identified four pathogenic heterozygous in-frame exon skipping (∆) defects in COL12A1, clustering to the thrombospondin N-terminal region and the adjacent collagenous domain (Δ52, Δ53, Δ54, and Δ56 respectively), one heterozygous COL12A1 arginine-to-cysteine substitution of unclear significance (p.(Arg1863Cys)), and compound heterozygous pathogenic COL6A1 variants (c.[98-6G>A];[301C>T]) in one proband. Variant-specific intracellular accumulation of collagen XII chains, extracellular overmodification of the long isoform and near-absence of the short isoform of collagen XII, and extracellular decrease of decorin and tenascin-X were observed for the COL12A1 variants. In contrast, the COL6A1 variants abolished collagen VI and V deposition and increased tenascin-X levels. CONCLUSION: Our data further support the significant clinical overlap between myopathic EDS and collagen VI-related myopathies, and emphasize the variant-specific consequences of collagen XII defects.


Assuntos
Colágeno Tipo VI/genética , Colágeno Tipo XII/genética , Síndrome de Ehlers-Danlos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Doenças Musculares/genética , Mutação , Adolescente , Adulto , Células Cultivadas , Criança , Pré-Escolar , Colágeno Tipo V/metabolismo , Colágeno Tipo VI/química , Colágeno Tipo XII/química , Decorina/metabolismo , Síndrome de Ehlers-Danlos/metabolismo , Matriz Extracelular/metabolismo , Feminino , Humanos , Masculino , Doenças Musculares/metabolismo , Linhagem , Domínios Proteicos , Análise de Sequência de DNA , Tenascina/metabolismo
16.
Hum Mutat ; 40(5): 539-551, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30668888

RESUMO

Sorsby fundus dystrophy (SFD) is a macular degeneration caused by mutations in TIMP3, the majority of which introduce a novel cysteine. However, the exact molecular mechanisms underlying SFD remain unknown. We aimed to provide novel insights into the functional consequences of a distinct N-terminal mutation. Haplotype reconstruction in three SFD families revealed that the identified c.113C>G, p.(Ser38Cys) mutation is a founder in Belgian and northern French families with a late-onset SFD phenotype. Functional consequences of the p.(Ser38Cys) mutation were investigated by high-resolution Western blot analysis of wild type and mutant TIMP3 using patient fibroblasts and in vitro generated proteins, and by molecular modeling of TIMP3 and its interaction partners. We could not confirm a previous hypothesis on dimerization of mutant TIMP3 proteins. However, we identified aberrant intramolecular disulfide bonding. Our data provide evidence for disruption of the established Cys36-Cys143 disulfide bond and formation of a novel Cys36-Cys38 bond, possibly associated with increased glycosylation of the protein. In conclusion, we propose a novel pathogenetic mechanism underlying the p.(Ser38Cys) TIMP3 founder mutation involving intramolecular disulfide bonding. These results provide new insights into the pathogenesis of SFD and other retinopathies linked to mutations in TIMP3, such as age-related macular degeneration.


Assuntos
Efeito Fundador , Degeneração Macular/diagnóstico , Degeneração Macular/genética , Mutação , Domínios e Motivos de Interação entre Proteínas , Inibidor Tecidual de Metaloproteinase-3/química , Inibidor Tecidual de Metaloproteinase-3/genética , Idoso , Dissulfetos , Feminino , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Haplótipos , Humanos , Masculino , Metaloproteinase 2 da Matriz/química , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Peso Molecular , Linhagem , Conformação Proteica , Relação Estrutura-Atividade , Inibidor Tecidual de Metaloproteinase-3/metabolismo
17.
Am J Hum Genet ; 97(4): 521-34, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26365339

RESUMO

The evolutionarily conserved transmembrane anterior posterior transformation 1 protein, encoded by TAPT1, is involved in murine axial skeletal patterning, but its cellular function remains unknown. Our study demonstrates that TAPT1 mutations underlie a complex congenital syndrome, showing clinical overlap between lethal skeletal dysplasias and ciliopathies. This syndrome is characterized by fetal lethality, severe hypomineralization of the entire skeleton and intra-uterine fractures, and multiple congenital developmental anomalies affecting the brain, lungs, and kidneys. We establish that wild-type TAPT1 localizes to the centrosome and/or ciliary basal body, whereas defective TAPT1 mislocalizes to the cytoplasm and disrupts Golgi morphology and trafficking and normal primary cilium formation. Knockdown of tapt1b in zebrafish induces severe craniofacial cartilage malformations and delayed ossification, which is shown to be associated with aberrant differentiation of cranial neural crest cells.


Assuntos
Cílios/genética , Transtornos da Motilidade Ciliar/genética , Anormalidades Craniofaciais/genética , Proteínas de Membrana/genética , Mutação/genética , Ossificação Heterotópica/genética , Osteocondrodisplasias/genética , Sequência de Aminoácidos , Animais , Padronização Corporal , Diferenciação Celular , Movimento Celular , Cílios/metabolismo , Cílios/patologia , Embrião não Mamífero/anormalidades , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hibridização In Situ , Masculino , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Crista Neural/citologia , Crista Neural/metabolismo , Linhagem , Transporte Proteico , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Peixe-Zebra/embriologia , Peixe-Zebra/genética
19.
Curr Rheumatol Rep ; 20(2): 9, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29480410

RESUMO

PURPOSE OF REVIEW: Osteoarthritis (OA) is the most common form of arthritis and a major source of pain and disability worldwide. OA-associated pain is usually refractory to classically used analgesics, and disease-modifying therapies are still lacking. Therefore, a better understanding of mechanisms and mediators contributing to the generation and maintenance of OA pain is critical for the development of efficient and safe pain-relieving therapies. RECENT FINDINGS: Both peripheral and central mechanisms contribute to OA pain. Clinical evidence suggests that a strong peripheral nociceptive drive from the affected joint maintains pain and central sensitization associated with OA. Mediators present in the OA joint, including nerve growth factor, chemokines, cytokines, and inflammatory cells can contribute to sensitization. Furthermore, structural alterations in joint innervation and nerve damage occur in the course of OA. Several interrelated pathological processes, including joint damage, structural reorganization of joint afferents, low-grade inflammation, neuroplasticity, and nerve damage all contribute to the pain observed in OA. It can be anticipated that elucidating exactly how these mechanisms are operational in the course of progressive OA may lead to the identification of novel targets for intervention.


Assuntos
Dor Crônica/etiologia , Osteoartrite/complicações , Analgésicos/uso terapêutico , Animais , Artrite Experimental/etiologia , Artrite Experimental/fisiopatologia , Dor Crônica/tratamento farmacológico , Dor Crônica/imunologia , Dor Crônica/fisiopatologia , Citocinas/imunologia , Humanos , Imunidade Inata , Neurônios Aferentes/fisiologia , Nociceptividade/fisiologia , Osteoartrite/imunologia , Osteoartrite/fisiopatologia
20.
Clin Exp Rheumatol ; 35 Suppl 107(5): 116-122, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28967365

RESUMO

Chronic widespread pain is a common complaint among individuals affected by generalised joint hypermobility. In the absence of other conditions that cause chronic pain, these individuals are usually diagnosed with joint hypermobility syndrome (JHS). JHS is a multifactorial trait with a strong genetic basis, but no specific genetic markers. Clinical overlap of JHS is seen with heritable connective tissue disorders, particularly with the Ehlers-Danlos syndrome, hypermobile type (hEDS). The Ehlers-Danlos syndromes (EDS) comprise a heterogeneous group of rare monogenic conditions that are characterised by joint hypermobility, skin and vascular fragility and generalised connective tissue friability, and are caused by genetic defects in an array of extracellular matrix genes. The genetic basis of hEDS remains however unknown, in contrast to other well-described EDS subtypes. In view of the considerable clinical overlap with JHS, many consider it and hEDS to be a single clinical entity. Clinical experience and a limited number of clinical studies show that chronic pain also is common in EDS patients, especially in hEDS. The specific underlying causes and mechanisms of pain in JHS and EDS remain poorly understood. Factors likely contributing to the generation and chronicity of pain include nociceptive pain, directly based on structural changes in affected joints, muscle and connective tissue; neuropathic pain; impaired proprioception and muscle weakness; and central sensitisation. These mechanisms are not mutually exclusive, and likely more than one mechanism may be present. Furthermore, anxiety, depression, and other variables may influence the phenotype. Chronic pain in JHS and EDS patients often is inadequately controlled by traditional analgesics and physical therapy. In view of the high prevalence of these underrecognised conditions, future studies addressing the nature and mediators of chronic pain are needed in order to potentially identify novel targets for therapeutic intervention and optimise treatment.


Assuntos
Dor Crônica/etiologia , Síndrome de Ehlers-Danlos/fisiopatologia , Instabilidade Articular/fisiopatologia , Dor Crônica/terapia , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa