Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(2): 105652, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38224947

RESUMO

The physiological importance of cardiac myosin regulatory light chain (RLC) phosphorylation by its dedicated cardiac myosin light chain kinase has been established in both humans and mice. Constitutive RLC-phosphorylation, regulated by the balanced activities of cardiac myosin light chain kinase and myosin light chain phosphatase (MLCP), is fundamental to the biochemical and physiological properties of myofilaments. However, limited information is available on cardiac MLCP. In this study, we hypothesized that the striated muscle-specific MLCP regulatory subunit, MYPT2, targets the phosphatase catalytic subunit to cardiac myosin, contributing to the maintenance of cardiac function in vivo through the regulation of RLC-phosphorylation. To test this hypothesis, we generated a floxed-PPP1R12B mouse model crossed with a cardiac-specific Mer-Cre-Mer to conditionally ablate MYPT2 in adult cardiomyocytes. Immunofluorescence microscopy using the gene-ablated tissue as a control confirmed the localization of MYPT2 to regions where it overlaps with a subset of RLC. Biochemical analysis revealed an increase in RLC-phosphorylation in vivo. The loss of MYPT2 demonstrated significant protection against pressure overload-induced hypertrophy, as evidenced by heart weight, qPCR of hypertrophy-associated genes, measurements of myocyte diameters, and expression of ß-MHC protein. Furthermore, mantATP chase assays revealed an increased ratio of myosin heads distributed to the interfilament space in MYPT2-ablated heart muscle fibers, confirming that RLC-phosphorylation regulated by MLCP, enhances cardiac performance in vivo. Our findings establish MYPT2 as the regulatory subunit of cardiac MLCP, distinct from the ubiquitously expressed canonical smooth muscle MLCP. Targeting MYPT2 to increase cardiac RLC-phosphorylation in vivo may improve baseline cardiac performance, thereby attenuating pathological hypertrophy.


Assuntos
Miócitos Cardíacos , Quinase de Cadeia Leve de Miosina , Animais , Humanos , Camundongos , Hipertrofia/metabolismo , Miócitos Cardíacos/metabolismo , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosforilação , Camundongos Endogâmicos C57BL
2.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35177471

RESUMO

In this study, we investigated the role of the super-relaxed (SRX) state of myosin in the structure-function relationship of sarcomeres in the hearts of mouse models of cardiomyopathy-bearing mutations in the human ventricular regulatory light chain (RLC, MYL2 gene). Skinned papillary muscles from hypertrophic (HCM-D166V) and dilated (DCM-D94A) cardiomyopathy models were subjected to small-angle X-ray diffraction simultaneously with isometric force measurements to obtain the interfilament lattice spacing and equatorial intensity ratios (I11/I10) together with the force-pCa relationship over a full range of [Ca2+] and at a sarcomere length of 2.1 µm. In parallel, we studied the effect of mutations on the ATP-dependent myosin energetic states. Compared with wild-type (WT) and DCM-D94A mice, HCM-D166V significantly increased the Ca2+ sensitivity of force and left shifted the I11/I10-pCa relationship, indicating an apparent movement of HCM-D166V cross-bridges closer to actin-containing thin filaments, thereby allowing for their premature Ca2+ activation. The HCM-D166V model also disrupted the SRX state and promoted an SRX-to-DRX (super-relaxed to disordered relaxed) transition that correlated with an HCM-linked phenotype of hypercontractility. While this dysregulation of SRX ↔ DRX equilibrium was consistent with repositioning of myosin motors closer to the thin filaments and with increased force-pCa dependence for HCM-D166V, the DCM-D94A model favored the energy-conserving SRX state, but the structure/function-pCa data were similar to WT. Our results suggest that the mutation-induced redistribution of myosin energetic states is one of the key mechanisms contributing to the development of complex clinical phenotypes associated with human HCM-D166V and DCM-D94A mutations.


Assuntos
Miosinas Cardíacas/genética , Cardiomiopatias/metabolismo , Cadeias Leves de Miosina/genética , Actinas/metabolismo , Animais , Miosinas Cardíacas/metabolismo , Cardiomiopatias/genética , Cardiomiopatia Hipertrófica/genética , Modelos Animais de Doenças , Feminino , Humanos , Hipertrofia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Contração Miocárdica/genética , Cadeias Leves de Miosina/metabolismo , Miosinas/metabolismo , Miosinas/fisiologia , Fenótipo , Fosforilação , Sarcômeros/metabolismo , Relação Estrutura-Atividade , Difração de Raios X/métodos
3.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555229

RESUMO

In this study, we aimed to investigate whether short-term and low-dose treatment with hydroxychloroquine (HCQ), an antimalarial drug, can modulate heart function in a preclinical model of dilated cardiomyopathy (DCM) expressing the D94A mutation in cardiac myosin regulatory light chain (RLC) compared with healthy non-transgenic (NTg) littermates. Increased interest in HCQ came with the COVID-19 pandemic, but the risk of cardiotoxic side effects of HCQ raised concerns, especially in patients with an underlying heart condition, e.g., cardiomyopathy. Effects of HCQ treatment vs. placebo (H2O), administered in Tg-D94A vs. NTg mice over one month, were studied by echocardiography and muscle contractile mechanics. Global longitudinal strain analysis showed the HCQ-mediated improvement in heart performance in DCM mice. At the molecular level, HCQ promoted the switch from myosin's super-relaxed (SRX) to disordered relaxed (DRX) state in DCM-D94A hearts. This result indicated more myosin cross-bridges exiting a hypocontractile SRX-OFF state and assuming the DRX-ON state, thus potentially enhancing myosin motor function in DCM mice. This bottom-up investigation of the pharmacological use of HCQ at the level of myosin molecules, muscle fibers, and whole hearts provides novel insights into mechanisms by which HCQ therapy mitigates some abnormal phenotypes in DCM-D94A mice and causes no harm in healthy NTg hearts.


Assuntos
COVID-19 , Cardiomiopatia Dilatada , Camundongos , Humanos , Animais , Camundongos Transgênicos , Cardiomiopatia Dilatada/tratamento farmacológico , Cardiomiopatia Dilatada/genética , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Pandemias , Tratamento Farmacológico da COVID-19 , Mutação , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Fenótipo , Contração Miocárdica
4.
Am J Physiol Heart Circ Physiol ; 320(2): H881-H890, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33337957

RESUMO

Morbidity and mortality associated with heart disease is a growing threat to the global population, and novel therapies are needed. Mavacamten (formerly called MYK-461) is a small molecule that binds to cardiac myosin and inhibits myosin ATPase. Mavacamten is currently in clinical trials for the treatment of obstructive hypertrophic cardiomyopathy (HCM), and it may provide benefits for treating other forms of heart disease. We investigated the effect of mavacamten on cardiac muscle contraction in two transgenic mouse lines expressing the human isoform of cardiac myosin regulatory light chain (RLC) in their hearts. Control mice expressed wild-type RLC (WT-RLC), and HCM mice expressed the N47K RLC mutation. In the absence of mavacamten, skinned papillary muscle strips from WT-RLC mice produced greater isometric force than strips from N47K mice. Adding 0.3 µM mavacamten decreased maximal isometric force and reduced Ca2+ sensitivity of contraction for both genotypes, but this reduction in pCa50 was nearly twice as large for WT-RLC versus N47K. We also used stochastic length-perturbation analysis to characterize cross-bridge kinetics. The cross-bridge detachment rate was measured as a function of [MgATP] to determine the effect of mavacamten on myosin nucleotide handling rates. Mavacamten increased the MgADP release and MgATP binding rates for both genotypes, thereby contributing to faster cross-bridge detachment, which could speed up myocardial relaxation during diastole. Our data suggest that mavacamten reduces isometric tension and Ca2+ sensitivity of contraction via decreased strong cross-bridge binding. Mavacamten may become a useful therapy for patients with heart disease, including some forms of HCM.NEW & NOTEWORTHY Mavacamten is a pharmaceutical that binds to myosin, and it is under investigation as a therapy for some forms of heart disease. We show that mavacamten reduces isometric tension and Ca2+ sensitivity of contraction in skinned myocardial strips from a mouse model of hypertrophic cardiomyopathy that expresses the N47K mutation in cardiac myosin regulatory light chain. Mavacamten reduces contractility by decreasing strong cross-bridge binding, partially due to faster cross-bridge nucleotide handling rates that speed up myosin detachment.


Assuntos
Benzilaminas/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Cardiomiopatia Hipertrófica/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Contração Miocárdica/efeitos dos fármacos , Cadeias Leves de Miosina/metabolismo , Músculos Papilares/efeitos dos fármacos , Uracila/análogos & derivados , Miosinas Ventriculares/antagonistas & inibidores , Animais , Cardiomiopatia Hipertrófica/enzimologia , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/fisiopatologia , Modelos Animais de Doenças , Humanos , Cinética , Masculino , Camundongos Transgênicos , Mutação , Cadeias Leves de Miosina/genética , Músculos Papilares/enzimologia , Músculos Papilares/fisiopatologia , Uracila/farmacologia , Miosinas Ventriculares/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(10): E2338-E2347, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463717

RESUMO

Dilated cardiomyopathy (DCM) is a devastating heart disease that affects about 1 million people in the United States, but the underlying mechanisms remain poorly understood. In this study, we aimed to determine the biomechanical and structural causes of DCM in transgenic mice carrying a novel mutation in the MYL2 gene, encoding the cardiac myosin regulatory light chain. Transgenic D94A (aspartic acid-to-alanine) mice were created and investigated by echocardiography and invasive hemodynamic and molecular structural and functional assessments. Consistent with the DCM phenotype, a significant reduction of the ejection fraction (EF) was observed in ∼5- and ∼12-mo-old male and female D94A lines compared with respective WT controls. Younger male D94A mice showed a more pronounced left ventricular (LV) chamber dilation compared with female counterparts, but both sexes of D94A lines developed DCM by 12 mo of age. The hypocontractile activity of D94A myosin motors resulted in the rightward shift of the force-pCa dependence and decreased actin-activated myosin ATPase activity. Consistent with a decreased Ca2+ sensitivity of contractile force, a small-angle X-ray diffraction study, performed in D94A fibers at submaximal Ca2+ concentrations, revealed repositioning of the D94A cross-bridge mass toward the thick-filament backbone supporting the hypocontractile state of D94A myosin motors. Our data suggest that structural perturbations at the level of sarcomeres result in aberrant cardiomyocyte cytoarchitecture and lead to LV chamber dilation and decreased EF, manifesting in systolic dysfunction of D94A hearts. The D94A-induced development of DCM in mice closely follows the clinical phenotype and suggests that MYL2 may serve as a new therapeutic target for dilated cardiomyopathy.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Cadeias Leves de Miosina/metabolismo , Sarcômeros/metabolismo , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Cadeias Leves de Miosina/genética , Sarcômeros/genética
6.
Circulation ; 140(9): 765-778, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31315475

RESUMO

BACKGROUND: Restrictive cardiomyopathy is a rare heart disease associated with mutations in sarcomeric genes and with phenotypic overlap with hypertrophic cardiomyopathy. There is no approved therapy directed at the underlying cause. Here, we explore the potential of an interfering RNA (RNAi) therapeutic for a human sarcomeric mutation in MYL2 causative of restrictive cardiomyopathy in a mouse model. METHODS: A short hairpin RNA (M7.8L) was selected from a pool for specificity and efficacy. Two groups of myosin regulatory light chain N47K transgenic mice were injected with M7.8L packaged in adeno-associated virus 9 at 3 days of age and 60 days of age. Mice were subjected to treadmill exercise and echocardiography after treatment to determine maximal oxygen uptake and left ventricular mass. At the end of treatment, heart, lung, liver, and kidney tissue was harvested to determine viral tropism and for transcriptomic and proteomic analysis. Cardiomyocytes were isolated for single-cell studies. RESULTS: A one-time injection of AAV9-M7.8L RNAi in 3-day-old humanized regulatory light chain mutant transgenic mice silenced the mutated allele (RLC-47K) with minimal effects on the normal allele (RLC-47N) assayed at 16 weeks postinjection. AAV9-M7.8L RNAi suppressed the expression of hypertrophic biomarkers, reduced heart weight, and attenuated a pathological increase in left ventricular mass. Single adult cardiac myocytes from mice treated with AAV9-M7.8L showed partial restoration of contraction, relaxation, and calcium kinetics. In addition, cardiac stress protein biomarkers, such as calmodulin-dependent protein kinase II and the transcription activator Brg1 were reduced, suggesting recovery toward a healthy myocardium. Transcriptome analyses further revealed no significant changes of argonaute (AGO1, AGO2) and endoribonuclease dicer (DICER1) transcripts, and endogenous microRNAs were preserved, suggesting that the RNAi pathway was not saturated. CONCLUSIONS: Our results show the feasibility, efficacy, and safety of RNAi therapeutics directed towards human restrictive cardiomyopathy. This is a promising step toward targeted therapy for a prevalent human disease.


Assuntos
Cardiomiopatia Restritiva/patologia , Cadeias Leves de Miosina/metabolismo , Interferência de RNA , Alelos , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomiopatia Restritiva/prevenção & controle , DNA Helicases/genética , DNA Helicases/metabolismo , Modelos Animais de Doenças , Redes Reguladoras de Genes , Vetores Genéticos/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Contração Muscular , Mutagênese Sítio-Dirigida , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Cadeias Leves de Miosina/antagonistas & inibidores , Cadeias Leves de Miosina/genética , RNA Interferente Pequeno/metabolismo
7.
FASEB J ; 33(3): 3152-3166, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30365366

RESUMO

Myosin light chain 2 ( MYL2) gene encodes the myosin regulatory light chain (RLC) simultaneously in heart ventricles and in slow-twitch skeletal muscle. Using transgenic mice with cardiac-specific expression of the human R58Q-RLC mutant, we sought to determine whether the hypertrophic cardiomyopathy phenotype observed in papillary muscles (PMs) of R58Q mice is also manifested in slow-twitch soleus (SOL) muscles. Skinned SOL muscles and ventricular PMs of R58Q animals exhibited lower contractile force that was not observed in the fast-twitch extensor digitorum longus muscles of R58Q vs. wild-type-RLC mice, but mutant animals did not display gross muscle weakness in vivo. Consistent with SOL muscle abnormalities in R58Q vs. wild-type mice, myosin ATPase staining revealed a decreased proportion of fiber type I/type II only in SOL muscles but not in the extensor digitorum longus muscles. The similarities between SOL muscles and PMs of R58Q mice were further supported by quantitative proteomics. Differential regulation of proteins involved in energy metabolism, cell-cell interactions, and protein-protein signaling was concurrently observed in the hearts and SOL muscles of R58Q mice. In summary, even though R58Q expression was restricted to the heart of mice, functional similarities were clearly observed between the hearts and slow-twitch skeletal muscle, suggesting that MYL2 mutated models of hypertrophic cardiomyopathy may be useful research tools to study the molecular, structural, and energetic mechanisms of cardioskeletal myopathy associated with myosin RLC.-Kazmierczak, K., Liang, J., Yuan, C.-C., Yadav, S., Sitbon, Y. H., Walz, K., Ma, W., Irving, T. C., Cheah, J. X., Gomes, A. V., Szczesna-Cordary, D. Slow-twitch skeletal muscle defects accompany cardiac dysfunction in transgenic mice with a mutation in the myosin regulatory light chain.


Assuntos
Miosinas Cardíacas/genética , Miosinas Cardíacas/fisiologia , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/fisiopatologia , Fibras Musculares de Contração Lenta/fisiologia , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/fisiologia , Substituição de Aminoácidos , Animais , Cardiomiopatia Hipertrófica/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Contração Muscular/genética , Contração Muscular/fisiologia , Fibras Musculares de Contração Lenta/patologia , Mutação de Sentido Incorreto , Contração Miocárdica/genética , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Miocárdio/patologia , Músculos Papilares/patologia , Músculos Papilares/fisiopatologia , Proteômica
8.
J Muscle Res Cell Motil ; 41(4): 313-327, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31131433

RESUMO

The activity of cardiac and skeletal muscles depends upon the ATP-coupled actin-myosin interactions to execute the power stroke and muscle contraction. The goal of this review article is to provide insight into the function of myosin II, the molecular motor of the heart and skeletal muscles, with a special focus on the role of myosin II light chain (MLC) components. Specifically, we focus on the involvement of myosin regulatory (RLC) and essential (ELC) light chains in striated muscle development, isoform appearance and their function in normal and diseased muscle. We review the consequences of isoform switching and knockout of specific MLC isoforms on cardiac and skeletal muscle function in various animal models. Finally, we discuss how dysregulation of specific RLC/ELC isoforms can lead to cardiac and skeletal muscle diseases and summarize the effects of most studied mutations leading to cardiac or skeletal myopathies.


Assuntos
Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Cadeias Leves de Miosina/metabolismo , Animais , Humanos , Camundongos
9.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33217970

RESUMO

Sarcomere and cytoskeleton genes, or actomyosin genes, regulate cell biology including mechanical stress, cell motility, and cell division. While actomyosin genes are recurrently dysregulated in cancers, their oncogenic roles have not been examined in a lineage-specific fashion. In this report, we investigated dysregulation of nine sarcomeric and cytoskeletal genes across 20 cancer lineages. We found that uterine cancers harbored the highest frequencies of amplification and overexpression of the gamma actin gene, ACTG1. Each of the four subtypes of uterine cancers, mixed endometrial carcinomas, serous carcinomas, endometroid carcinomas, and carcinosarcomas harbored between 5~20% of ACTG1 gene amplification or overexpression. Clinically, patients with ACTG1 gains had a poor prognosis. ACTG1 gains showed transcriptional patterns that reflect activation of oncogenic signals, repressed response to innate immunity, or immunotherapy. Functionally, the CRISPR-CAS9 gene deletion of ACTG1 had the most robust and consistent effects in uterine cancer cells relative to 20 other lineages. Overall, we propose that ACTG1 regulates the fitness of uterine cancer cells by modulating cell-intrinsic properties and the tumor microenvironment. In summary, the ACTG1 functions relative to other actomyosin genes support the notion that it is a potential biomarker and a target gene in uterine cancer precision therapies.


Assuntos
Actinas , Biomarcadores Tumorais , Amplificação de Genes , Proteínas de Neoplasias , Neoplasias Uterinas , Actinas/genética , Actinas/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Intervalo Livre de Doença , Feminino , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Taxa de Sobrevida , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/mortalidade , Neoplasias Uterinas/patologia
10.
Pflugers Arch ; 471(5): 683-699, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30706179

RESUMO

Genetic cardiomyopathies, a group of cardiovascular disorders based on ventricular morphology and function, are among the leading causes of morbidity and mortality worldwide. Such genetically driven forms of hypertrophic (HCM), dilated (DCM), and restrictive (RCM) cardiomyopathies are chronic, debilitating diseases that result from biomechanical defects in cardiac muscle contraction and frequently progress to heart failure (HF). Locus and allelic heterogeneity, as well as clinical variability combined with genetic and phenotypic overlap between different cardiomyopathies, have challenged proper clinical prognosis and provided an incentive for identification of pathogenic variants. This review attempts to provide an overview of inherited cardiomyopathies with a focus on their genetic etiology in myosin regulatory (RLC) and essential (ELC) light chains, which are EF-hand protein family members with important structural and regulatory roles. From the clinical discovery of cardiomyopathy-linked light chain mutations in patients to an array of exploratory studies in animals, and reconstituted and recombinant systems, we have summarized the current state of knowledge on light chain mutations and how they induce physiological disease states via biochemical and biomechanical alterations at the molecular, tissue, and organ levels. Cardiac myosin RLC phosphorylation and the N-terminus ELC have been discussed as two important emerging modalities with important implications in the regulation of myosin motor function, and thus cardiac performance. A comprehensive understanding of such triggers is absolutely necessary for the development of target-specific rescue strategies to ameliorate or reverse the effects of myosin light chain-related inherited cardiomyopathies.


Assuntos
Cardiomiopatia Dilatada/genética , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Restritiva/genética , Cadeias Leves de Miosina/genética , Animais , Cardiomiopatia Dilatada/etiologia , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Hipertrófica/etiologia , Cardiomiopatia Hipertrófica/patologia , Cardiomiopatia Restritiva/etiologia , Cardiomiopatia Restritiva/patologia , Modelos Animais de Doenças , Humanos , Mutação
11.
Proc Natl Acad Sci U S A ; 112(30): E4138-46, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26124132

RESUMO

Myosin light chain kinase (MLCK)-dependent phosphorylation of the regulatory light chain (RLC) of cardiac myosin is known to play a beneficial role in heart disease, but the idea of a phosphorylation-mediated reversal of a hypertrophic cardiomyopathy (HCM) phenotype is novel. Our previous studies on transgenic (Tg) HCM-RLC mice revealed that the D166V (Aspartate166 → Valine) mutation-induced changes in heart morphology and function coincided with largely reduced RLC phosphorylation in situ. We hypothesized that the introduction of a constitutively phosphorylated Serine15 (S15D) into the hearts of D166V mice would prevent the development of a deleterious HCM phenotype. In support of this notion, MLCK-induced phosphorylation of D166V-mutated hearts was found to rescue some of their abnormal contractile properties. Tg-S15D-D166V mice were generated with the human cardiac RLC-S15D-D166V construct substituted for mouse cardiac RLC and were subjected to functional, structural, and morphological assessments. The results were compared with Tg-WT and Tg-D166V mice expressing the human ventricular RLC-WT or its D166V mutant, respectively. Echocardiography and invasive hemodynamic studies demonstrated significant improvements of intact heart function in S15D-D166V mice compared with D166V, with the systolic and diastolic indices reaching those monitored in WT mice. A largely reduced maximal tension and abnormally high myofilament Ca(2+) sensitivity observed in D166V-mutated hearts were reversed in S15D-D166V mice. Low-angle X-ray diffraction study revealed that altered myofilament structures present in HCM-D166V mice were mitigated in S15D-D166V rescue mice. Our collective results suggest that expression of pseudophosphorylated RLC in the hearts of HCM mice is sufficient to prevent the development of the pathological HCM phenotype.


Assuntos
Cardiomiopatia Hipertrófica/metabolismo , Cadeias Leves de Miosina/química , Cadeias Leves de Miosina/genética , Animais , Cálcio/química , Cristalografia por Raios X , Progressão da Doença , Ecocardiografia , Feminino , Coração/fisiopatologia , Hemodinâmica , Humanos , Hipertrofia/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Contração Miocárdica , Miofibrilas/metabolismo , Fenótipo , Fosforilação , Estrutura Secundária de Proteína , Difração de Raios X
12.
Biochemistry ; 55(1): 186-98, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26671638

RESUMO

Muscle myosin cyclically hydrolyzes ATP to translate actin. Ventricular cardiac myosin (ßmys) moves actin with three distinct unitary step-sizes resulting from its lever-arm rotation and with step-frequencies that are modulated in a myosin regulation mechanism. The lever-arm associated essential light chain (vELC) binds actin by its 43 residue N-terminal extension. Unitary steps were proposed to involve the vELC N-terminal extension with the 8 nm step engaging the vELC/actin bond facilitating an extra ∼19 degrees of lever-arm rotation while the predominant 5 nm step forgoes vELC/actin binding. A minor 3 nm step is the unlikely conversion of the completed 5 to the 8 nm step. This hypothesis was tested using a 17 residue N-terminal truncated vELC in porcine ßmys (Δ17ßmys) and a 43 residue N-terminal truncated human vELC expressed in transgenic mouse heart (Δ43αmys). Step-size and step-frequency were measured using the Qdot motility assay. Both Δ17ßmys and Δ43αmys had significantly increased 5 nm step-frequency and coincident loss in the 8 nm step-frequency compared to native proteins suggesting the vELC/actin interaction drives step-size preference. Step-size and step-frequency probability densities depend on the relative fraction of truncated vELC and relate linearly to pure myosin species concentrations in a mixture containing native vELC homodimer, two truncated vELCs in the modified homodimer, and one native and one truncated vELC in the heterodimer. Step-size and step-frequency, measured for native homodimer and at two or more known relative fractions of truncated vELC, are surmised for each pure species by using a new analytical method.


Assuntos
Miosinas Cardíacas/metabolismo , Miocárdio/metabolismo , Cadeias Leves de Miosina/química , Cadeias Leves de Miosina/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Miosinas Cardíacas/química , Humanos , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Miocárdio/química , Conformação Proteica , Multimerização Proteica , Suínos
13.
Arch Biochem Biophys ; 601: 121-32, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26906074

RESUMO

Using microarray and bioinformatics, we examined the gene expression profiles in transgenic mouse hearts expressing mutations in the myosin regulatory light chain shown to cause hypertrophic cardiomyopathy (HCM). We focused on two malignant RLC-mutations, Arginine 58→Glutamine (R58Q) and Aspartic Acid 166 â†’ Valine (D166V), and one benign, Lysine 104 â†’ Glutamic Acid (K104E)-mutation. Datasets of differentially expressed genes for each of three mutants were compared to those observed in wild-type (WT) hearts. The changes in the mutant vs. WT samples were shown as fold-change (FC), with stringency FC ≥ 2. Based on the gene profiles, we have identified the major signaling pathways that underlie the R58Q-, D166V- and K104E-HCM phenotypes. The correlations between different genotypes were also studied using network-based algorithms. Genes with strong correlations were clustered into one group and the central gene networks were identified for each HCM mutant. The overall gene expression patterns in all mutants were distinct from the WT profiles. Both malignant mutations shared certain classes of genes that were up or downregulated, but most similarities were noted between D166V and K104E mice, with R58Q hearts showing a distinct gene expression pattern. Our data suggest that all three HCM mice lead to cardiomyopathy in a mutation-specific manner and thus develop HCM through diverse mechanisms.


Assuntos
Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Regulação da Expressão Gênica , Mutação , Cadeias Leves de Miosina/metabolismo , Algoritmos , Animais , Arginina/química , Biologia Computacional , Perfilação da Expressão Gênica , Ácido Glutâmico/química , Glutamina/química , Lisina/química , Camundongos , Camundongos Transgênicos , Família Multigênica , Miocárdio/metabolismo , Cadeias Leves de Miosina/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Análise de Componente Principal , Valina/química
14.
Arch Biochem Biophys ; 580: 14-21, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26116789

RESUMO

Familial hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy and myofibrillar disarray, and often results in sudden cardiac death. Two HCM mutations, N47K and R58Q, are located in the myosin regulatory light chain (RLC). The RLC mechanically stabilizes the myosin lever arm, which is crucial to myosin's ability to transmit contractile force. The N47K and R58Q mutations have previously been shown to reduce actin filament velocity under load, stemming from a more compliant lever arm (Greenberg, 2010). In contrast, RLC phosphorylation was shown to impart stiffness to the myosin lever arm (Greenberg, 2009). We hypothesized that phosphorylation of the mutant HCM-RLC may mitigate distinct mutation-induced structural and functional abnormalities. In vitro motility assays were utilized to investigate the effects of RLC phosphorylation on the HCM-RLC mutant phenotype in the presence of an α-actinin frictional load. Porcine cardiac ß-myosin was depleted of its native RLC and reconstituted with mutant or wild-type human RLC in phosphorylated or non-phosphorylated form. Consistent with previous findings, in the presence of load, myosin bearing the HCM mutations reduced actin sliding velocity compared to WT resulting in 31-41% reductions in force production. Myosin containing phosphorylated RLC (WT or mutant) increased sliding velocity and also restored mutant myosin force production to near WT unphosphorylated values. These results point to RLC phosphorylation as a general mechanism to increase force production of the individual myosin motor and as a potential target to ameliorate the HCM-induced phenotype at the molecular level.


Assuntos
Actinina/química , Actinas/química , Cadeias Leves de Miosina/química , Quinase de Cadeia Leve de Miosina/química , Miosinas Ventriculares/química , Actinina/genética , Actinas/genética , Animais , Galinhas , Expressão Gênica , Ventrículos do Coração/química , Humanos , Cinética , Movimento (Física) , Músculo Esquelético/química , Músculo Liso/química , Mutação , Cadeias Leves de Miosina/genética , Quinase de Cadeia Leve de Miosina/genética , Fosforilação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Suínos , Miosinas Ventriculares/genética
15.
J Muscle Res Cell Motil ; 36(6): 433-45, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26385864

RESUMO

We discuss here the potential mechanisms of action associated with hypertrophic (HCM) or dilated (DCM) cardiomyopathy causing mutations in the myosin regulatory (RLC) and essential (ELC) light chains. Specifically, we focus on four HCM mutations: RLC-A13T, RLC-K104E, ELC-A57G and ELC-M173V, and one DCM RLC-D94A mutation shown by population studies to cause different cardiomyopathy phenotypes in humans. Our studies indicate that RLC and ELC mutations lead to heart disease through different mechanisms with RLC mutations triggering alterations of the secondary structure of the RLC which further affect the structure and function of the lever arm domain and impose changes in the cross bridge cycling rates and myosin force generation ability. The ELC mutations exert their detrimental effects through changes in the interaction of the N-terminus of ELC with actin altering the cross talk between the thick and thin filaments and ultimately resulting in an altered force-pCa relationship. We also discuss the effect of mutations on myosin light chain phosphorylation. Exogenous myosin light chain phosphorylation and/or pseudo-phosphorylation were explored as potential rescue tools to treat hypertrophy-related cardiac phenotypes.


Assuntos
Cardiomiopatia Hipertrófica Familiar/genética , Cardiomiopatia Hipertrófica Familiar/patologia , Mutação/genética , Cadeias Leves de Miosina/genética , Animais , Humanos , Fenótipo , Fosforilação/genética
16.
J Muscle Res Cell Motil ; 36(6): 447-61, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26668058

RESUMO

In this study we aimed to provide an in-depth proteomic analysis of differentially expressed proteins in the hearts of transgenic mouse models of pathological and physiological cardiac hypertrophy using tandem mass tag labeling and liquid chromatography tandem mass spectrometry. The Δ43 mouse model, expressing the 43-amino-acid N-terminally truncated myosin essential light chain (ELC) served as a tool to study the mechanisms of physiological cardiac remodeling, while the pathological hypertrophy was investigated in A57G (Alanine 57 â†’ Glycine) ELC mice. The results showed that 30 proteins were differentially expressed in Δ43 versus A57G hearts as determined by multiple pair comparisons of the mutant versus wild-type (WT) samples with P < 0.05. The A57G hearts showed differential expression of nine mitochondrial proteins involved in metabolic processes compared to four proteins for ∆43 hearts when both mutants were compared to WT hearts. Comparisons between ∆43 and A57G hearts showed an upregulation of three metabolically important mitochondrial proteins but downregulation of nine proteins in ∆43 hearts. The physiological model of cardiac hypertrophy (∆43) showed no changes in the levels of Ca(2+)-binding proteins relative to WT, while the pathologic model (A57G) showed the upregulation of three Ca(2+)-binding proteins, including sarcalumenin. Unique differences in chaperone and fatty acid metabolism proteins were also observed in Δ43 versus A57G hearts. The proteomics data support the results from functional studies performed previously on both animal models of cardiac hypertrophy and suggest that the A57G- and not ∆43- mediated alterations in fatty acid metabolism and Ca(2+) homeostasis may contribute to pathological cardiac remodeling in A57G hearts.


Assuntos
Coração/fisiologia , Mutação/genética , Miocárdio/metabolismo , Cadeias Leves de Miosina/genética , Proteoma/metabolismo , Remodelação Ventricular/fisiologia , Animais , Cálcio/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Modelos Animais de Doenças , Regulação para Baixo/fisiologia , Feminino , Camundongos , Camundongos Transgênicos , Proteínas Mitocondriais/metabolismo , Cadeias Leves de Miosina/metabolismo , Proteômica/métodos , Regulação para Cima/fisiologia , Remodelação Ventricular/genética
17.
J Mol Cell Cardiol ; 74: 318-29, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24992035

RESUMO

We have examined, for the first time, the effects of the familial hypertrophic cardiomyopathy (HCM)-associated Lys104Glu mutation in the myosin regulatory light chain (RLC). Transgenic mice expressing the Lys104Glu substitution (Tg-MUT) were generated and the results were compared to Tg-WT (wild-type human ventricular RLC) mice. Echocardiography with pulse wave Doppler in 6month-old Tg-MUT showed early signs of diastolic disturbance with significantly reduced E/A transmitral velocities ratio. Invasive hemodynamics in 6month-old Tg-MUT mice also demonstrated a borderline significant prolonged isovolumic relaxation time (Tau) and a tendency for slower rate of pressure decline, suggesting alterations in diastolic function in Tg-MUT. Six month-old mutant animals had no LV hypertrophy; however, at >13months they displayed significant hypertrophy and fibrosis. In skinned papillary muscles from 5 to 6month-old mice a mutation induced reduction in maximal tension and slower muscle relaxation rates were observed. Mutated cross-bridges showed increased rates of binding to the thin filaments and a faster rate of the power stroke. In addition, ~2-fold lower level of RLC phosphorylation was observed in the mutant compared to Tg-WT. In line with the higher mitochondrial content seen in Tg-MUT hearts, the MUT-myosin ATPase activity was significantly higher than WT-myosin, indicating increased energy consumption. In the in vitro motility assay, MUT-myosin produced higher actin sliding velocity under zero load, but the velocity drastically decreased with applied load in the MUT vs. WT myosin. Our results suggest that diastolic disturbance (impaired muscle relaxation, lower E/A) and inefficiency of energy use (reduced contractile force and faster ATP consumption) may underlie the Lys104Glu-mediated HCM phenotype.


Assuntos
Cardiomiopatia Hipertrófica/genética , Mutação , Miócitos Cardíacos/metabolismo , Cadeias Leves de Miosina/genética , Músculos Papilares/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Diástole , Regulação da Expressão Gênica , Frequência Cardíaca , Masculino , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Relaxamento Muscular , Contração Miocárdica , Miócitos Cardíacos/patologia , Cadeias Leves de Miosina/metabolismo , Músculos Papilares/diagnóstico por imagem , Músculos Papilares/patologia , Cultura Primária de Células , Transdução de Sinais , Técnicas de Cultura de Tecidos , Ultrassonografia Doppler de Pulso
18.
Arch Biochem Biophys ; 552-553: 29-39, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24374283

RESUMO

Pseudo-phosphorylation of cardiac myosin regulatory light chain (RLC) has never been examined as a rescue method to alleviate a cardiomyopathy phenotype brought about by a disease causing mutation in the myosin RLC. This study focuses on the aspartic acid to valine substitution (D166V) in the myosin RLC shown to be associated with a malignant phenotype of familial hypertrophic cardiomyopathy (FHC). The mutation has also been demonstrated to cause severe functional abnormalities in transgenic mice expressing D166V in the heart. To explore this novel rescue strategy, pseudo-phosphorylation of D166V was used to determine whether the D166V-induced detrimental phenotype could be brought back to the level of wild-type (WT) RLC. The S15D substitution at the phosphorylation site of RLC was inserted into the recombinant WT and D166V mutant to mimic constitutively phosphorylated RLC proteins. Non-phosphorylatable (S15A) constructs were used as controls. A multi-faceted approach was taken to determine the effect of pseudo-phosphorylation on the ability of myosin to generate force and motion. Using mutant reconstituted porcine cardiac muscle preparations, we showed an S15D-induced rescue of both the enzymatic and binding properties of D166V-myosin to actin. A significant increase in force production capacity was noted in the in vitro motility assays for S15D-D166V vs. D166V reconstituted myosin. A similar pseudo-phosphorylation induced effect was observed on the D166V-elicited abnormal Ca(2+) sensitivity of force in porcine papillary muscle strips reconstituted with phosphomimic recombinant RLCs. Results from this study demonstrate a novel in vitro rescue strategy that could be utilized in vivo to ameliorate a malignant cardiomyopathic phenotype. We show for the first time that pseudo-RLC phosphorylation can reverse the majority of the mutation-induced phenotypes highlighting the importance of RLC phosphorylation in combating cardiac disease.


Assuntos
Actinas/metabolismo , Cardiomiopatia Hipertrófica Familiar/genética , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Mutação Puntual , Animais , Cálcio/metabolismo , Cardiomiopatia Hipertrófica Familiar/metabolismo , Humanos , Camundongos , Modelos Moleculares , Miocárdio/metabolismo , Fenótipo , Fosforilação , Ligação Proteica , Coelhos , Suínos
19.
Artigo em Inglês | MEDLINE | ID: mdl-38494592

RESUMO

We investigated the impact of the phosphomimetic (Ser15 → Asp15) myosin regulatory light chain (S15D-RLC) on the Super-Relaxed (SRX) state of myosin using previously characterized transgenic (Tg) S15D-D166V rescue mice, comparing them to the Hypertrophic Cardiomyopathy (HCM) Tg-D166V model and wild-type (WT) RLC mice. In the Tg-D166V model, we observed a disruption of the SRX state, resulting in a transition from SRX to DRX (Disordered Relaxed) state, which explains the hypercontractility of D166V-mutated myosin motors. The presence of the S15D moiety in Tg-S15D-D166V mice restored the SRX/DRX balance to levels comparable to Tg-WT, thus mitigating the hypercontractile behavior associated with the HCM-D166V mutation. Additionally, we investigated the impact of delivering the S15D-RLC molecule to the hearts of Tg-D166V mice via adeno-associated virus (AAV9) and compared their condition to AAV9-empty vector-injected or non-injected Tg-D166V animals. Tg-D166V mice injected with AAV9 S15D-RLC exhibited a significantly higher proportion of myosin heads in the SRX state compared to those injected with AAV9 empty vector or left non-injected. No significant effect was observed in Tg-WT hearts treated similarly. These findings suggest that AAV9-delivered phosphomimetic S15D-RLC modality mitigates the abnormal Tg-D166V phenotype without impacting the normal function of Tg-WT hearts. Global longitudinal strain analysis supported these observations, indicating that the S15D moiety can alleviate the HCM-D166V phenotype by restoring SRX stability and the SRX ↔ DRX equilibrium.

20.
J Mol Cell Cardiol ; 62: 153-63, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23727233

RESUMO

Mechanical properties of skinned papillary muscle fibers from transgenic mice expressing familial hypertrophic cardiomyopathy associated mutations D166V and R58Q in myosin regulatory light chain were investigated. Elementary steps and the apparent rate constants of the cross-bridge cycle were characterized from the tension transients induced by sinusoidal length changes during maximal Ca(2+) activation, together with ATP, ADP, and Pi studies. The tension-pCa relation was also tested in two sets of solutions with differing Pi and ionic strength. Our results showed that in both mutants the fast apparent rate constant 2πc and the rate constants of the cross-bridge detachment step (k2) were smaller than those of wild type (WT), demonstrating the slower cross-bridge kinetics. D166V showed significantly smaller ATP (K1) and ADP (K0) association constants than WT, displaying weaker ATP binding and easier ADP release, whereas those of R58Q were not significantly different from WT. In tension-pCa study, both D166V and R58Q mutations exhibited increased Ca(2+) sensitivity and less cooperativity. We conclude that, while the two FHC mutations have similar clinical manifestations and prognosis, some of the mechanical parameters of cross-bridges (K0, K1) are differently modified, whereas some others (Ca(2+)-sensitivity, cooperativity, k2) are similarly modified by these two FHC associated mutations.


Assuntos
Cadeias Leves de Miosina/metabolismo , Músculos Papilares/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Modelos Teóricos , Mutação , Cadeias Leves de Miosina/genética , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa