Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Biol ; 20(1): 50, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35177083

RESUMO

BACKGROUND: Activins and bone morphogenetic proteins (BMPs) play critical, sometimes opposing roles, in multiple physiological and pathological processes and diseases. They signal to distinct Smad branches; activins signal mainly to Smad2/3, while BMPs activate mainly Smad1/5/8. This gives rise to the possibility that competition between the different type I receptors through which activin and BMP signal for common type II receptors can provide a mechanism for fine-tuning the cellular response to activin/BMP stimuli. Among the transforming growth factor-ß superfamily type II receptors, ACVR2A/B are highly promiscuous, due to their ability to interact with different type I receptors (e.g., ALK4 vs. ALK2/3/6) and with their respective ligands [activin A (ActA) vs. BMP9/2]. However, studies on complex formation between these full-length receptors situated at the plasma membrane, and especially on the potential competition between the different activin and BMP type I receptors for a common activin type II receptor, were lacking. RESULTS: We employed a combination of IgG-mediated patching-immobilization of several type I receptors in the absence or presence of ligands with fluorescence recovery after photobleaching (FRAP) measurements on the lateral diffusion of an activin type II receptor, ACVR2A, to demonstrate the principle of competition between type I receptors for ACVR2. Our results show that ACVR2A can form stable heteromeric complexes with ALK4 (an activin type I receptor), as well as with several BMP type I receptors (ALK2/3/6). Of note, ALK4 and the BMP type I receptors competed for binding ACVR2A. To assess the implications of this competition for signaling output, we first validated that in our cell model system (U2OS cells), ACVR2/ALK4 transduce ActA signaling to Smad2/3, while BMP9 signaling to Smad1/5/8 employ ACVR2/ALK2 or ACVR2/ALK3. By combining ligand stimulation with overexpression of a competing type I receptor, we showed that differential complex formation of distinct type I receptors with a common type II receptor balances the signaling to the two Smad branches. CONCLUSIONS: Different type I receptors that signal to distinct Smad pathways (Smad2/3 vs. Smad1/5/8) compete for binding to common activin type II receptors. This provides a novel mechanism to balance signaling between Smad2/3 and Smad1/5/8.


Assuntos
Ativinas , Fator de Crescimento Transformador beta , Ativinas/química , Ativinas/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Ligantes , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo
2.
Cells ; 13(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38334613

RESUMO

Mutations in activin-like kinase 2 (ALK2), e.g., ALK2-R206H, induce aberrant signaling to SMAD1/5/8, leading to Fibrodysplasia Ossificans Progressiva (FOP). In spite of extensive studies, the underlying mechanism is still unclear. Here, we quantified the homomeric and heteromeric interactions of ACVR2A, ACVR2B, ALK2-WT, and ALK2-R206H by combining IgG-mediated immobilization of one receptor with fluorescence recovery after photobleaching (FRAP) measurements on the lateral diffusion of a co-expressed receptor. ACVR2B formed stable homomeric complexes that were enhanced by Activin A (ActA), while ACVR2A required ActA for homodimerization. ALK2-WT, but not ALK2-R206H, exhibited homomeric complexes unaffected by ActA. ACVR2B formed ActA-enhanced heterocomplexes with ALK2-R206H or ALK2-WT, while ACVR2A interacted mainly with ALK2-WT. The extent of the homomeric complex formation of ACVR2A or ACVR2B was reflected in their ability to induce the oligomerization of ALK2-R206H and ALK2-WT. Thus, ACVR2B, which forms dimers without ligand, induced ActA-independent ALK2-R206H clustering but required ActA for enhancing the oligomerization of the largely dimeric ALK2-WT. In contrast, ACVR2A, which undergoes homodimerization in response to ActA, required ActA to induce ALK2-R206H oligomerization. To investigate whether these interactions are translated into signaling, we studied signaling by the FOP-inducing hyperactive ALK2-R206H mutant, with ALK2-WT signaling as control. The activation of SMAD1/5/8 signaling in cells expressing ALK2-R206H alone or together with ACVR2A or ACVR2B was measured by blotting for pSMAD1/5/8 and by transcriptional activation assays using BRE-Luc reporter. In line with the biophysical studies, ACVR2B activated ALK2-R206H without ligand, while activation by ACVR2A was weaker and required ActA. We propose that the homodimerization of ACVR2B or ACVR2A dictates their ability to recruit ALK2-R206H into higher complexes, enabling the homomeric interactions of ALK2-R206H receptors and, subsequently, their activation.


Assuntos
Miosite Ossificante , Humanos , Miosite Ossificante/genética , Ligantes , Mutação/genética , Ativinas , Transdução de Sinais/fisiologia , Receptores de Activinas Tipo II/genética
3.
Methods Mol Biol ; 2488: 23-34, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35347680

RESUMO

Signaling by receptors from the transforming growth factor-ß (TGF-ß) superfamily plays critical roles in multiple physiological and pathological processes. Their signaling requires complex formation between type I and type II receptors with Ser/Thr kinase activity, whereby the type II receptor phosphorylates and activates the relevant type I receptor(s), which transduces downstream signaling. It is therefore important to study complex formation among receptors from this family. In the current chapter, we use the type I (ALK5) and type II TGF-ß receptors (TßRI and TßRII) as an example for measuring complex formation among cell-surface receptors in live cells by patch-FRAP, a variation of fluorescence recovery after photobleaching (FRAP).


Assuntos
Receptores de Fatores de Crescimento Transformadores beta , Fator de Crescimento Transformador beta , Membrana Celular/metabolismo , Fosforilação , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo
4.
Mol Biol Cell ; 32(7): 605-621, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33566682

RESUMO

Complex formation and endocytosis of transforming growth factor-ß (TGF-ß) receptors play important roles in signaling. However, their interdependence remained unexplored. Here, we demonstrate that ALK1, a TGF-ß type I receptor prevalent in endothelial cells, forms stable complexes at the cell surface with endoglin and with type III TGF-ß receptors (TßRIII). We show that ALK1 undergoes clathrin-mediated endocytosis (CME) faster than ALK5, type II TGF-ß receptor (TßRII), endoglin, or TßRIII. These complexes regulate the endocytosis of the TGF-ß receptors, with a major effect mediated by ALK1. Thus, ALK1 enhances the endocytosis of TßRIII and endoglin, while ALK5 and TßRII mildly enhance endoglin, but not TßRIII, internalization. Conversely, the slowly endocytosed endoglin has no effect on the endocytosis of either ALK1, ALK5, or TßRII, while TßRIII has a differential effect, slowing the internalization of ALK5 and TßRII, but not ALK1. Such effects may be relevant to signaling, as BMP9-mediated Smad1/5/8 phosphorylation is inhibited by CME blockade in endothelial cells. We propose a model that links TGF-ß receptor oligomerization and endocytosis, based on which endocytosis signals are exposed/functional in specific receptor complexes. This has broad implications for signaling, implying that complex formation among various receptors regulates their surface levels and signaling intensities.


Assuntos
Receptores de Activinas Tipo II/metabolismo , Endoglina/metabolismo , Proteoglicanas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Receptores de Activinas Tipo II/fisiologia , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Endocitose , Endoglina/fisiologia , Células Endoteliais/metabolismo , Humanos , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Proteoglicanas/fisiologia , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/fisiologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa