Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 39(21): e104858, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32935357

RESUMO

During meiosis, DNA double-strand breaks undergo interhomolog repair to yield crossovers between homologous chromosomes. To investigate how interhomolog sequence polymorphism affects crossovers, we sequenced multiple recombinant populations of the model plant Arabidopsis thaliana. Crossovers were elevated in the diverse pericentromeric regions, showing a local preference for polymorphic regions. We provide evidence that crossover association with elevated diversity is mediated via the Class I crossover formation pathway, although very high levels of diversity suppress crossovers. Interhomolog polymorphism causes mismatches in recombining molecules, which can be detected by MutS homolog (MSH) mismatch repair protein heterodimers. Therefore, we mapped crossovers in a msh2 mutant, defective in mismatch recognition, using multiple hybrid backgrounds. Although total crossover numbers were unchanged in msh2 mutants, recombination was remodelled from the diverse pericentromeres towards the less-polymorphic sub-telomeric regions. Juxtaposition of megabase heterozygous and homozygous regions causes crossover remodelling towards the heterozygous regions in wild type Arabidopsis, but not in msh2 mutants. Immunostaining showed that MSH2 protein accumulates on meiotic chromosomes during prophase I, consistent with MSH2 regulating meiotic recombination. Our results reveal a pro-crossover role for MSH2 in regions of higher sequence diversity in A. thaliana.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Polimorfismo Genético , Ciclo Celular , Cromatina , Cromossomos , Troca Genética , Reparo do DNA , Replicação do DNA , Recombinação Homóloga , Meiose , Mutagênese , Polimorfismo de Nucleotídeo Único
2.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34385313

RESUMO

The frequency and distribution of meiotic crossovers are tightly controlled; however, variation in this process can be observed both within and between species. Using crosses of two natural Arabidopsis thaliana accessions, Col and Ler, we mapped a crossover modifier locus to semidominant polymorphisms in SUPPRESSOR OF NPR1-1 INDUCIBLE 1 (SNI1), which encodes a component of the SMC5/6 complex. The sni1 mutant exhibits a modified pattern of recombination across the genome with crossovers elevated in chromosome distal regions but reduced in pericentromeres. Mutations in SNI1 result in reduced crossover interference and can partially restore the fertility of a Class I crossover pathway mutant, which suggests that the protein affects noninterfering crossover repair. Therefore, we tested genetic interactions between SNI1 and both RECQ4 and FANCM DNA helicases, which showed that additional Class II crossovers observed in the sni1 mutant are FANCM independent. Furthermore, genetic analysis of other SMC5/6 mutants confirms the observations of crossover redistribution made for SNI1 The study reveals the importance of the SMC5/6 complex in ensuring the proper progress of meiotic recombination in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Troca Genética/fisiologia , DNA Helicases/metabolismo , Variação Genética , Meiose/fisiologia , Proteínas Nucleares/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , DNA Helicases/genética , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/genética , Domínios Proteicos
3.
Nat Commun ; 14(1): 33, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596804

RESUMO

In hybrid organisms, genetically divergent homologous chromosomes pair and recombine during meiosis; however, the effect of specific types of polymorphisms on crossover is poorly understood. Here, to analyze this in Arabidopsis, we develop the seed-typing method that enables the massively parallel fine-mapping of crossovers by sequencing. We show that structural variants, observed in one of the generated intervals, do not change crossover frequency unless they are located directly within crossover hotspots. Both natural and Cas9-induced deletions result in lower hotspot activity but are not compensated by increases in immediately adjacent hotspots. To examine the effect of single nucleotide polymorphisms on crossover formation, we analyze hotspot activity in mismatch detection-deficient msh2 mutants. Surprisingly, polymorphic hotspots show reduced activity in msh2. In lines where only the hotspot-containing interval is heterozygous, crossover numbers increase above those in the inbred (homozygous). We conclude that MSH2 shapes crossover distribution by stimulating hotspot activity at polymorphic regions.


Assuntos
Arabidopsis , Arabidopsis/genética , Troca Genética , Proteína 2 Homóloga a MutS/genética , DNA , Polimorfismo de Nucleotídeo Único , Proteínas/genética , Meiose
4.
Nat Commun ; 14(1): 6716, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872134

RESUMO

Meiotic crossovers can be formed through the interfering pathway, in which one crossover prevents another from forming nearby, or by an independent non-interfering pathway. In Arabidopsis, local sequence polymorphism between homologs can stimulate interfering crossovers in a MSH2-dependent manner. To understand how MSH2 regulates crossovers formed by the two pathways, we combined Arabidopsis mutants that elevate non-interfering crossovers with msh2 mutants. We demonstrate that MSH2 blocks non-interfering crossovers at polymorphic loci, which is the opposite effect to interfering crossovers. We also observe MSH2-independent crossover inhibition at highly polymorphic sites. We measure recombination along the chromosome arms in lines differing in patterns of heterozygosity and observe a MSH2-dependent crossover increase at the boundaries between heterozygous and homozygous regions. Here, we show that MSH2 is a master regulator of meiotic DSB repair in Arabidopsis, with antagonistic effects on interfering and non-interfering crossovers, which shapes the crossover landscape in relation to interhomolog polymorphism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Troca Genética , Proteína 2 Homóloga a MutS/genética , Proteínas de Arabidopsis/genética , Polimorfismo Genético , Meiose/genética
5.
Methods Mol Biol ; 2484: 161-182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35461452

RESUMO

Investigating the process of gamete formation in plants often requires the use of mutants of selected genes in various genetic backgrounds. For example, analysis of meiotic recombination based on sequencing or genotyping requires the generation of hybrids between two lines. Although T-DNA mutant collections of Arabidopsis thaliana are vast and easily accessible, they are largely confined to Col-0 background. This chapter describes how to efficiently generate knock-out mutants in different Arabidopsis accessions using CRISPR/Cas9 technology. The presented system is based on designing two single-guide RNAs (sgRNAs), which direct the Cas9 endonuclease to generate double-strand breaks at two sites, leading to genomic deletion in targeted gene. The presence of seed-expressed dsRed fluorescence cassette in the CRISPR construct facilitates preselection of genome-edited and transgene-free plants by monitoring the seed fluorescence under the epifluorescent microscope. The protocol provides the detailed information about all steps required to perform genome editing and to obtain loss-of-function mutants in different Arabidopsis accessions within merely two generations.


Assuntos
Arabidopsis , Arabidopsis/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Plantas Geneticamente Modificadas/genética , RNA Guia de Cinetoplastídeos/genética , Sementes/genética
6.
Nat Commun ; 13(1): 277, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022409

RESUMO

Nucleosomal acetyltransferase of H4 (NuA4) is an essential transcriptional coactivator in eukaryotes, but remains poorly characterized in plants. Here, we describe Arabidopsis homologs of the NuA4 scaffold proteins Enhancer of Polycomb-Like 1 (AtEPL1) and Esa1-Associated Factor 1 (AtEAF1). Loss of AtEAF1 results in inhibition of growth and chloroplast development. These effects are stronger in the Atepl1 mutant and are further enhanced by loss of Golden2-Like (GLK) transcription factors, suggesting that NuA4 activates nuclear plastid genes alongside GLK. We demonstrate that AtEPL1 is necessary for nucleosomal acetylation of histones H4 and H2A.Z by NuA4 in vitro. These chromatin marks are diminished genome-wide in Atepl1, while another active chromatin mark, H3K9 acetylation (H3K9ac), is locally enhanced. Expression of many chloroplast-related genes depends on NuA4, as they are downregulated with loss of H4ac and H2A.Zac. Finally, we demonstrate that NuA4 promotes H2A.Z deposition and by doing so prevents spurious activation of stress response genes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Processos Autotróficos/fisiologia , Histonas/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Acetiltransferases , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Processos Autotróficos/genética , Núcleo Celular/metabolismo , Cloroplastos , Cromatina/metabolismo , Efrina-A1 , Regulação da Expressão Gênica de Plantas , Histonas/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Nucleossomos/metabolismo , Estresse Fisiológico , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa