Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Heart Vessels ; 38(11): 1318-1328, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37552271

RESUMO

Fractional flow reserve derived from coronary CT (FFR-CT) is a noninvasive physiological technique that has shown a good correlation with invasive FFR. However, the use of FFR-CT is restricted by strict application standards, and the diagnostic accuracy of FFR-CT analysis may potentially be decreased by severely calcified coronary arteries because of blooming and beam hardening artifacts. The aim of this study was to evaluate the utility of deep learning (DL)-based coronary computed tomography (CT) data analysis in predicting invasive fractional flow reserve (FFR), especially in cases with severely calcified coronary arteries. We analyzed 184 consecutive cases (241 coronary arteries) which underwent coronary CT and invasive coronary angiography, including invasive FFR, within a three-month period. Mean coronary artery calcium scores were 963 ± 1226. We evaluated and compared the vessel-based diagnostic accuracy of our proposed DL model and a visual assessment to evaluate functionally significant coronary artery stenosis (invasive FFR < 0.80). A deep neural network was trained with consecutive short axial images of coronary arteries on coronary CT. Ninety-one coronary arteries of 89 cases (48%) had FFR-positive functionally significant stenosis. On receiver operating characteristics (ROC) analysis to predict FFR-positive stenosis using the trained DL model, average area under the curve (AUC) of the ROC curve was 0.756, which was superior to the AUC of visual assessment of significant (≥ 70%) coronary artery stenosis on CT (0.574, P = 0.011). The sensitivity, specificity, positive and negative predictive value (PPV and NPV), and accuracy of the DL model and visual assessment for detecting FFR-positive stenosis were 82 and 36%, 68 and 78%, 59 and 48%, 87 and 69%, and 73 and 63%, respectively. Sensitivity and NPV for the prediction of FFR-positive stenosis were significantly higher with our DL model than visual assessment (P = 0.0004, and P = 0.024). DL-based coronary CT data analysis has a higher diagnostic accuracy for functionally significant coronary artery stenosis than visual assessment.


Assuntos
Doença da Artéria Coronariana , Estenose Coronária , Aprendizado Profundo , Reserva Fracionada de Fluxo Miocárdico , Humanos , Constrição Patológica , Reserva Fracionada de Fluxo Miocárdico/fisiologia , Estenose Coronária/diagnóstico por imagem , Angiografia Coronária/métodos , Valor Preditivo dos Testes , Angiografia por Tomografia Computadorizada/métodos , Tomografia Computadorizada Multidetectores/métodos
2.
Brain ; 143(7): 2089-2105, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32572488

RESUMO

Despite important efforts to solve the clinico-radiological paradox, correlation between lesion load and physical disability in patients with multiple sclerosis remains modest. One hypothesis could be that lesion location in corticospinal tracts plays a key role in explaining motor impairment. In this study, we describe the distribution of lesions along the corticospinal tracts from the cortex to the cervical spinal cord in patients with various disease phenotypes and disability status. We also assess the link between lesion load and location within corticospinal tracts, and disability at baseline and 2-year follow-up. We retrospectively included 290 patients (22 clinically isolated syndrome, 198 relapsing remitting, 39 secondary progressive, 31 primary progressive multiple sclerosis) from eight sites. Lesions were segmented on both brain (T2-FLAIR or T2-weighted) and cervical (axial T2- or T2*-weighted) MRI scans. Data were processed using an automated and publicly available pipeline. Brain, brainstem and spinal cord portions of the corticospinal tracts were identified using probabilistic atlases to measure the lesion volume fraction. Lesion frequency maps were produced for each phenotype and disability scores assessed with Expanded Disability Status Scale score and pyramidal functional system score. Results show that lesions were not homogeneously distributed along the corticospinal tracts, with the highest lesion frequency in the corona radiata and between C2 and C4 vertebral levels. The lesion volume fraction in the corticospinal tracts was higher in secondary and primary progressive patients (mean = 3.6 ± 2.7% and 2.9 ± 2.4%), compared to relapsing-remitting patients (1.6 ± 2.1%, both P < 0.0001). Voxel-wise analyses confirmed that lesion frequency was higher in progressive compared to relapsing-remitting patients, with significant bilateral clusters in the spinal cord corticospinal tracts (P < 0.01). The baseline Expanded Disability Status Scale score was associated with lesion volume fraction within the brain (r = 0.31, P < 0.0001), brainstem (r = 0.45, P < 0.0001) and spinal cord (r = 0.57, P < 0.0001) corticospinal tracts. The spinal cord corticospinal tracts lesion volume fraction remained the strongest factor in the multiple linear regression model, independently from cord atrophy. Baseline spinal cord corticospinal tracts lesion volume fraction was also associated with disability progression at 2-year follow-up (P = 0.003). Our results suggest a cumulative effect of lesions within the corticospinal tracts along the brain, brainstem and spinal cord portions to explain physical disability in multiple sclerosis patients, with a predominant impact of intramedullary lesions.


Assuntos
Encéfalo/patologia , Esclerose Múltipla/patologia , Tratos Piramidais/patologia , Adulto , Medula Cervical/patologia , Avaliação da Deficiência , Progressão da Doença , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
3.
Brain ; 142(3): 633-646, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715195

RESUMO

Spinal cord lesions detected on MRI hold important diagnostic and prognostic value for multiple sclerosis. Previous attempts to correlate lesion burden with clinical status have had limited success, however, suggesting that lesion location may be a contributor. Our aim was to explore the spatial distribution of multiple sclerosis lesions in the cervical spinal cord, with respect to clinical status. We included 642 suspected or confirmed multiple sclerosis patients (31 clinically isolated syndrome, and 416 relapsing-remitting, 84 secondary progressive, and 73 primary progressive multiple sclerosis) from 13 clinical sites. Cervical spine lesions were manually delineated on T2- and T2*-weighted axial and sagittal MRI scans acquired at 3 or 7 T. With an automatic publicly-available analysis pipeline we produced voxelwise lesion frequency maps to identify predilection sites in various patient groups characterized by clinical subtype, Expanded Disability Status Scale score and disease duration. We also measured absolute and normalized lesion volumes in several regions of interest using an atlas-based approach, and evaluated differences within and between groups. The lateral funiculi were more frequently affected by lesions in progressive subtypes than in relapsing in voxelwise analysis (P < 0.001), which was further confirmed by absolute and normalized lesion volumes (P < 0.01). The central cord area was more often affected by lesions in primary progressive than relapse-remitting patients (P < 0.001). Between white and grey matter, the absolute lesion volume in the white matter was greater than in the grey matter in all phenotypes (P < 0.001); however when normalizing by each region, normalized lesion volumes were comparable between white and grey matter in primary progressive patients. Lesions appearing in the lateral funiculi and central cord area were significantly correlated with Expanded Disability Status Scale score (P < 0.001). High lesion frequencies were observed in patients with a more aggressive disease course, rather than long disease duration. Lesions located in the lateral funiculi and central cord area of the cervical spine may influence clinical status in multiple sclerosis. This work shows the added value of cervical spine lesions, and provides an avenue for evaluating the distribution of spinal cord lesions in various patient groups.


Assuntos
Medula Cervical/patologia , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Adulto , Encéfalo/patologia , Medula Cervical/diagnóstico por imagem , Medula Cervical/metabolismo , Avaliação da Deficiência , Progressão da Doença , Feminino , Substância Cinzenta/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/patologia , Esclerose Múltipla Recidivante-Remitente/patologia , Análise Espacial , Medula Espinal/patologia , Doenças da Medula Espinal , Substância Branca/patologia
4.
Neuroimage ; 184: 901-915, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30300751

RESUMO

The spinal cord is frequently affected by atrophy and/or lesions in multiple sclerosis (MS) patients. Segmentation of the spinal cord and lesions from MRI data provides measures of damage, which are key criteria for the diagnosis, prognosis, and longitudinal monitoring in MS. Automating this operation eliminates inter-rater variability and increases the efficiency of large-throughput analysis pipelines. Robust and reliable segmentation across multi-site spinal cord data is challenging because of the large variability related to acquisition parameters and image artifacts. In particular, a precise delineation of lesions is hindered by a broad heterogeneity of lesion contrast, size, location, and shape. The goal of this study was to develop a fully-automatic framework - robust to variability in both image parameters and clinical condition - for segmentation of the spinal cord and intramedullary MS lesions from conventional MRI data of MS and non-MS cases. Scans of 1042 subjects (459 healthy controls, 471 MS patients, and 112 with other spinal pathologies) were included in this multi-site study (n = 30). Data spanned three contrasts (T1-, T2-, and T2∗-weighted) for a total of 1943 vol and featured large heterogeneity in terms of resolution, orientation, coverage, and clinical conditions. The proposed cord and lesion automatic segmentation approach is based on a sequence of two Convolutional Neural Networks (CNNs). To deal with the very small proportion of spinal cord and/or lesion voxels compared to the rest of the volume, a first CNN with 2D dilated convolutions detects the spinal cord centerline, followed by a second CNN with 3D convolutions that segments the spinal cord and/or lesions. CNNs were trained independently with the Dice loss. When compared against manual segmentation, our CNN-based approach showed a median Dice of 95% vs. 88% for PropSeg (p ≤ 0.05), a state-of-the-art spinal cord segmentation method. Regarding lesion segmentation on MS data, our framework provided a Dice of 60%, a relative volume difference of -15%, and a lesion-wise detection sensitivity and precision of 83% and 77%, respectively. In this study, we introduce a robust method to segment the spinal cord and intramedullary MS lesions on a variety of MRI contrasts. The proposed framework is open-source and readily available in the Spinal Cord Toolbox.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Redes Neurais de Computação , Medula Espinal/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Variações Dependentes do Observador , Reconhecimento Automatizado de Padrão , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Eur Radiol ; 29(11): 5999-6008, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31089847

RESUMO

PURPOSE: This study was conducted in order to assess the intra- and interoperator reproducibility of shear-wave speed (SWS) measurement on elasticity phantoms and healthy volunteers using ultrasound-based point shear-wave elastography. MATERIALS AND METHODS: This study was approved by the institutional review board. Two operators measured the SWS of five elasticity phantoms and seven organs (thyroid, lymph node, muscle, spleen, kidney, pancreas, and liver) of 30 healthy volunteers with 1.0-4.5 MHz convex (4C1) and 4.0-9.0 MHz linear (9L4) transducers. The phantom measurements were repeated ten times, while the volunteer measurements were performed five times each. Intra- and interoperator reproducibility was assessed. Interoperator reproducibility was also evaluated with the 95% Bland-Altman limits of agreement (LOA). RESULTS: In phantoms, all intraclass correlation coefficients (ICCs) were above 0.90 and the 95% LOA between the two operators were less than ± 18%. In volunteers, intraoperator ICCs were > 0.75 for all regions except the pancreas. Interoperator ICC was above 0.75 for the right lobe of the liver (depth 4 cm) and the kidney, but the 95% LOA was less than ± 25% only for the liver. CONCLUSION: Although excellent in phantoms, interoperator reproducibility was insufficient for all regions in the volunteers other than the right hepatic lobe at a depth of 4 cm. Clinicians should be aware of the 95% LOA when using SWS in patients. KEY POINTS: • Our phantom study indicated a high reproducibility for shear-wave speed (SWS) measurements with point shear-wave elastography (pSWE). • In volunteers, intraoperator reproducibility was generally high, but the interoperator reproducibility was not high enough except for the right hepatic lobe at 4 cm depth. • To evaluate interoperator reproducibility, the 95% limits of agreement (LOA) between operators should be considered in addition to the intraclass correlation coefficient (ICC).


Assuntos
Técnicas de Imagem por Elasticidade/normas , Adulto , Elasticidade , Feminino , Voluntários Saudáveis , Humanos , Rim/diagnóstico por imagem , Fígado/diagnóstico por imagem , Linfonodos/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Variações Dependentes do Observador , Pâncreas/diagnóstico por imagem , Imagens de Fantasmas , Estudos Prospectivos , Reprodutibilidade dos Testes , Baço/diagnóstico por imagem , Glândula Tireoide/diagnóstico por imagem , Transdutores , Ultrassonografia , Adulto Jovem
6.
Eur Radiol ; 26(8): 2559-66, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26443602

RESUMO

OBJECTIVES: A new method that can estimate diffusional kurtosis image (DKI), estimated DKI (eDKI), parallel and perpendicular to neuronal fibres from greatly limited image data was designed to enable quick and practical assessment of DKI in clinics. The purpose of this study was to discuss the potential of this method for clinical use. METHODS: Fourteen healthy volunteers were examined with a 3-Tesla MRI. The diffusion-weighting parameters included five different b-values (0, 500, 1,500, 2,000 and 2,500 s/mm(2)) with 64 different encoding directions for each of the b-values. K values were calculated by both conventional DKI (convDKI) and eDKI from these complete data, and also from the data that the encoding directions were abstracted to 32, 21, 15, 12 and 6. Error-pixel ratio and the root mean square error (RMSE) compared with the standard were compared between the methods (Wilcoxon signed-rank test: P < 0.05 was considered significant). RESULTS: Error-pixel ratio was smaller in eDKI than in convDKI and the difference was significant. In addition, RMSE was significantly smaller in eDKI than in convDKI, or otherwise the differences were not significant when they were obtained from the same data set. CONCLUSION: eDKI might be useful for assessing DKI in clinical settings. KEY POINTS: • A method to practically estimate axial/radial DKI from limited data was developed. • The high robustness of the proposed method can greatly improve map images. • The accuracy of the proposed method was high. • Axial/radial K maps can be calculated from limited diffusion-encoding directions. • The proposed method might be useful for assessing DKI in clinical settings.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Curva ROC , Adulto Jovem
7.
Eur Radiol ; 25(6): 1701-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25577520

RESUMO

OBJECTIVES: To compare the significance of the two-compartment model, considering diffusional anisotropy with conventional diffusion analyzing methods regarding the detection of occult changes in normal-appearing white matter (NAWM) of multiple sclerosis (MS). METHODS: Diffusion-weighted images (nine b-values with six directions) were acquired from 12 healthy female volunteers (22-52 years old, median 33 years) and 13 female MS patients (24-48 years old, median 37 years). Diffusion parameters based on the two-compartment model of water diffusion considering diffusional anisotropy was calculated by a proposed method. Other parameters including diffusion tensor imaging and conventional apparent diffusion coefficient (ADC) were also obtained. They were compared statistically between the control and MS groups. RESULTS: Diffusion of the slow diffusion compartment in the radial direction of neuron fibers was elevated in MS patients (0.121 × 10(-3) mm2/s) in comparison to control (0.100 × 10(-3) mm(2)/s), the difference being significant (P = 0.001). The difference between the groups was not significant in other comparisons, including conventional ADC and fractional anisotropy (FA) of diffusion tensor imaging. CONCLUSION: The proposed method was applicable to clinically acceptable small data. The parameters obtained by this method improved the detectability of occult changes in NAWM compared to the conventional methods. KEY POINTS: • Water diffusion was compared between the controls and multiple sclerosis patients. • A two-compartment model, considering diffusional anisotropy was selected for water diffusion analysis. • Axial and radial diffusion of fast and slow diffusion components were evaluated. • A new method was developed to obtain the metrics stably. • The metrics indicated high detectability of slight differences between the groups.


Assuntos
Esclerose Múltipla/patologia , Substância Branca/patologia , Adulto , Anisotropia , Água Corporal/fisiologia , Estudos de Casos e Controles , Difusão , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Pessoa de Meia-Idade , Neurônios/patologia
8.
Tohoku J Exp Med ; 232(1): 63-8, 2014 01.
Artigo em Inglês | MEDLINE | ID: mdl-24492629

RESUMO

Osteoma of the internal auditory canal (IAC) is an uncommon benign bone tumor. Its imaging features may be similar to other IAC lesions, such as vestibular schwannomas that are benign and usually slow-growing but sometimes life-threatening tumors. Thus, detecting IAC lesions and differentiating osteoma from other IAC lesions are both important clinically. We report a case of misdiagnosis of an IAC osteoma as an IAC schwannoma based on magnetic resonance (MR) imaging using the three-dimensional constructive interference in steady state (CISS) sequence instead of T1-weighted MR imaging with gadolinium. We also review 17 cases of IAC osteomas reported in the past 22 years. A 61-year-old female was admitted to our department with IAC lesion incidentally discovered by the CISS sequence. The lesion was diagnosed as an IAC schwannoma, and was followed up annually under "wait and scan" management. Follow-up T1-weighted MR imaging with gadolinium showed no enhancement of the tumor, and additional computed tomography (CT) of the temporal bone showed a solitary pedunculated bony lesion, resulting in the diagnosis of IAC osteoma. The CISS sequence is useful for detecting small IAC lesions, such as vestibular schwannomas. However, the CISS sequence has limitations for qualitative diagnosis and can misdiagnose osteomas as schwannomas. Use of the CISS sequence without T1-weighted MR imaging with gadolinium for the screening of a lesion of the IAC and cerebellopontine angle should consider the possibility of IAC osteomas, and temporal bone CT or T1-weighted MR imaging with gadolinium should be performed when an IAC lesion is detected.


Assuntos
Neoplasias Ósseas/diagnóstico , Orelha Interna/fisiopatologia , Neuroma Acústico/diagnóstico , Osteoma/diagnóstico , Adolescente , Adulto , Idoso , Diagnóstico Diferencial , Feminino , Gadolínio , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Osso Temporal/fisiopatologia , Zumbido/complicações , Adulto Jovem
9.
Phys Eng Sci Med ; 46(3): 1227-1237, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37349631

RESUMO

We developed a deep neural network (DNN) to generate X-ray flat panel detector (FPD) images from digitally reconstructed radiographic (DRR) images. FPD and treatment planning CT images were acquired from patients with prostate and head and neck (H&N) malignancies. The DNN parameters were optimized for FPD image synthesis. The synthetic FPD images' features were evaluated to compare to the corresponding ground-truth FPD images using mean absolute error (MAE), peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM). The image quality of the synthetic FPD image was also compared with that of the DRR image to understand the performance of our DNN. For the prostate cases, the MAE of the synthetic FPD image was improved (= 0.12 ± 0.02) from that of the input DRR image (= 0.35 ± 0.08). The synthetic FPD image showed higher PSNRs (= 16.81 ± 1.54 dB) than those of the DRR image (= 8.74 ± 1.56 dB), while SSIMs for both images (= 0.69) were almost the same. All metrics for the synthetic FPD images of the H&N cases were improved (MAE 0.08 ± 0.03, PSNR 19.40 ± 2.83 dB, and SSIM 0.80 ± 0.04) compared to those for the DRR image (MAE 0.48 ± 0.11, PSNR 5.74 ± 1.63 dB, and SSIM 0.52 ± 0.09). Our DNN successfully generated FPD images from DRR images. This technique would be useful to increase throughput when images from two different modalities are compared by visual inspection.


Assuntos
Neoplasias de Cabeça e Pescoço , Tomografia Computadorizada por Raios X , Masculino , Humanos , Tomografia Computadorizada por Raios X/métodos , Redes Neurais de Computação , Razão Sinal-Ruído , Fluoroscopia
10.
Phys Eng Sci Med ; 46(2): 659-668, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36944832

RESUMO

Since particle beam distribution is vulnerable to change in bowel gas because of its low density, we developed a deep neural network (DNN) for bowel gas segmentation on X-ray images. We used 6688 image datasets from 209 cases as training data, 736 image datasets from 23 cases as validation data and 102 image datasets from 51 cases as test data (total 283 cases). For the training data, we prepared three types of digitally reconstructed radiographic (DRR) images (all-density, bone and gas) by projecting the treatment planning CT image data. However, the real X-ray images acquired in the treatment room showed low contrast that interfered with manual delineation of bowel gas. Therefore, we used synthetic X-ray images converted from DRR images in addition to real X-ray images.We evaluated DNN segmentation accuracy for the synthetic X-ray images using Intersection over Union, recall, precision, and the Dice coefficient, which measured 0.708 ± 0.208, 0.832 ± 0.170, 0.799 ± 0.191, and 0.807 ± 0.178, respectively. The evaluation metrics for the real X-images were less accurate than those for the synthetic X-ray images (0.408 ± 0237, 0.685 ± 0.326, 0.490 ± 0272, and 0.534 ± 0.271, respectively). Computation time was 29.7 ± 1.3 ms/image. Our DNN appears useful in increasing treatment accuracy in particle beam therapy.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Tomografia Computadorizada por Raios X/métodos , Raios X , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação
11.
Phys Med ; 116: 103176, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37989043

RESUMO

PURPOSE: In deep learning-based noise reduction, larger networks offer advanced and complex functionality by utilizing its greater degree of freedom, but come with increased unpredictability, raising the potential risk of unforeseen errors. Here, we introduce a novel denoising model for diffusion-weighted images that intentionally limits the network output freedom by incorporating multiple pathways with varying degrees of freedom, with the aim of minimizing the chance of unintended alterations to the input. The purpose of this pilot study is to assess the model's ability to perform effective denoising under the constraints. METHODS: Images from 10 healthy volunteers were used. Key innovations in our model development include: (1) neural network architecture that separated the function for calculating the specific output values from the function for adjusting the calculation for each pixel and (2) training that optimised the network based on both image and secondary obtained diffusion tensor. The generated images were compared with the original ones by measuring the deviation from ground truth images (averaged across eight acquisitions). RESULTS: The generated images demonstrated closer alignment with the ground truth images, both visually and statistically (Q < 0.05), compared to the original images. Furthermore, the advantage of the generated images over the original images was also found in the secondary obtained quantitative parameter maps with significance (Q < 0.05). CONCLUSION: The usefulness of the proposed method was suggested because it was successful in improving both the quality of the generated images and accuracy of the major diffusion parameter maps under the given restrictions.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Humanos , Projetos Piloto , Razão Sinal-Ruído , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem
12.
Pediatr Radiol ; 42(3): 380-2, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21713441

RESUMO

We present a 5-year-old girl who was ultimately diagnosed with Sjögren-Larsson syndrome (SLS). Although her MRI findings were minimal compared to previously published cases, prominent and characteristic abnormal lipid peaks on single-voxel proton MR spectroscopy ((1)H-MRS) facilitated the diagnosis. This case emphasizes the importance and usefulness of (1)H-MRS in diagnosing SLS.


Assuntos
Imageamento por Ressonância Magnética/métodos , Síndrome de Sjogren-Larsson/diagnóstico , Pré-Escolar , Feminino , Humanos , Prótons , Sensibilidade e Especificidade , Análise Espectral/métodos
13.
Sci Rep ; 12(1): 8521, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595864

RESUMO

The nematode Caenorhabditis elegans is a powerful experimental model to investigate vital functions of higher organisms. We recently established a novel method, named "pond assay for the sensory systems (PASS)", that dramatically improves both the evaluation accuracy of sensory response of worms and the efficiency of experiments. This method uses many worms in numbers that are impractical to count manually. Although several automated detection systems have been introduced, detection of overlapped worms remains difficult. To overcome this problem, we developed an automated worm detection system based on a deep neural network (DNN). Our DNN was based on a "YOLOv4″ one-stage detector with one-class classification (OCC) and multi-class classification (MCC). The OCC defined a single class for worms, while the MCC defined four classes for the number of overlapped worms. For the training data, a total of 2000 model sub-images were prepared by manually drawing square worm bounding boxes from 150 images. To make simulated images, a total of 10-80 model images for each class were randomly selected and randomly placed on a simulated microscope field. A total of 19,000 training datasets and 1000 validation datasets with a ground-truth bounding-box were prepared. We evaluated detection accuracy using 150 images, which were different from the training data. Evaluation metrics were detection error, precision, recall, and average precision (AP). Precision values were 0.91 for both OCC and MCC. However, the recall value for MCC (= 0.93) was higher than that for OCC (= 0.79). The number of detection errors for OCC increased with increasing the ground truth; however, that for MCC was independent of the ground truth. AP values were 0.78 and 0.90 for the OCC and the MCC, respectively. Our worm detection system with MCC provided better detection accuracy for large numbers of worms with overlapping positions than that with the OCC.


Assuntos
Redes Neurais de Computação
14.
Sci Rep ; 12(1): 10319, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725788

RESUMO

The spatial resolution of fMRI is relatively poor and improvements are needed to indicate more specific locations for functional activities. Here, we propose a novel scheme, called Static T2*WI-based Subject-Specific Super Resolution fMRI (STSS-SRfMRI), to enhance the functional resolution, or ability to discriminate spatially adjacent but functionally different responses, of fMRI. The scheme is based on super-resolution generative adversarial networks (SRGAN) that utilize a T2*-weighted image (T2*WI) dataset as a training reference. The efficacy of the scheme was evaluated through comparison with the activation maps obtained from the raw unpreprocessed functional data (raw fMRI). MRI images were acquired from 30 healthy volunteers using a 3 Tesla scanner. The modified SRGAN reconstructs a high-resolution image series from the original low-resolution fMRI data. For quantitative comparison, several metrics were calculated for both the STSS-SRfMRI and the raw fMRI activation maps. The ability to distinguish between two different finger-tapping tasks was significantly higher [p = 0.00466] for the reconstructed STSS-SRfMRI images than for the raw fMRI images. The results indicate that the functional resolution of the STSS-SRfMRI scheme is superior, which suggests that the scheme is a potential solution to realizing higher functional resolution in fMRI images obtained using 3T MRI.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos
15.
PLoS One ; 17(4): e0266465, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35439261

RESUMO

The purpose of this study was to compare parameter estimates for the 2-compartment and diffusion kurtosis imaging models obtained from diffusion-weighted imaging (DWI) of aquaporin-4 (AQP4) expression-controlled cells, and to look for biomarkers that indicate differences in the cell membrane water permeability. DWI was performed on AQP4-expressing and non-expressing cells and the signal was analyzed with the 2-compartment and diffusion kurtosis imaging models. For the 2-compartment model, the diffusion coefficients (Df, Ds) and volume fractions (Ff, Fs, Ff = 1-Fs) of the fast and slow compartments were estimated. For the diffusion kurtosis imaging model, estimates of the diffusion kurtosis (K) and corrected diffusion coefficient (D) were obtained. For the 2-compartment model, Ds and Fs showed clear differences between AQP4-expressing and non-expressing cells. Fs was also sensitive to cell density. There was no clear relationship with the cell type for the diffusion kurtosis imaging model parameters. Changes to cell membrane water permeability due to AQP4 expression affected DWI of cell suspensions. For the 2-compartment and diffusion kurtosis imaging models, Ds was the parameter most sensitive to differences in AQP4 expression.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Aquaporina 4/metabolismo , Difusão , Imagem de Difusão por Ressonância Magnética/métodos , Água/metabolismo
16.
Front Neurosci ; 16: 1071272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685250

RESUMO

Introduction: As the movement of water in the brain is known to be involved in neural activity and various brain pathologies, the ability to assess water dynamics in the brain will be important for the understanding of brain function and the diagnosis and treatment of brain diseases. Aquaporin-4 (AQP4) is a membrane channel protein that is highly expressed in brain astrocytes and is important for the movement of water molecules in the brain. Methods: In this study, we investigated the contribution of AQP4 to brain water dynamics by administering deuterium-labeled water (D2O) intraperitoneally to wild-type and AQP4 knockout (AQP4-ko) mice that had undergone surgical occlusion of the middle cerebral artery (MCA). Water dynamics in the infarct region and on either side of the anterior cerebral artery (ACA) was monitored with proton-density-weighted imaging (PDWI) performed on a 7T animal MRI. Results: D2O caused a negative signal change quickly after administration. The AQP4-ko mice showed a delay of the time-to-minimum in both the contralateral and ipsilateral ACA regions compared to wild-type mice. Also, only the AQP4- ko mice showed a delay of the time-to-minimum in the ipsilateral ACA region compared to the contralateral side. In only the wild-type mice, the signal minimum in the ipsilateral ACA region was higher than that in the contralateral ACA region. In the infarct region, the signal attenuation was slower for the AQP4-ko mice in comparison to the wild-type mice. Discussion: These results suggest that AQP4 loss affects water dynamics in the ACA region not only in the infarct region. Dynamic PDWI after D2O administration may be a useful tool for showing the effects of AQP4 in vivo.

17.
Diagnostics (Basel) ; 12(11)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36359535

RESUMO

Contrast-enhanced imaging for choroidal malignant melanoma (CMM) is mostly limited to detecting metastatic tumors, possibly due to difficulties in fixing the eye position. We aimed to (1) validate the appropriateness of estimating iodine concentration based on dual-energy computed tomography (DECT) for CMM and optimize the calculation parameters for estimation, and (2) perform a primary clinical validation by assessing the ability of this technique to show changes in CMM after charged-particle radiation therapy. The accuracy of the optimized estimate (eIC_optimized) was compared to an estimate obtained by commercial software (eIC_commercial) by determining the difference from the ground truth. Then, eIC_optimized, tumor volume, and CT values (80 kVp, 140 kVp, and synthesized 120 kVp) were measured at pre-treatment and 3 months and 1.5−2 years after treatment. The difference from the ground truth was significantly smaller in eIC_optimized than in eIC_commercial (p < 0.01). Tumor volume, CT values, and eIC_optimized all decreased significantly at 1.5−2 years after treatment, but only eIC_commercial showed a significant reduction at 3 months after treatment (p < 0.01). eIC_optimized can quantify contrast enhancement in primary CMM lesions and has high sensitivity for detecting the response to charged-particle radiation therapy, making it potentially useful for treatment monitoring.

18.
J Magn Reson Imaging ; 34(5): 1031-6, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22002754

RESUMO

PURPOSE: To assess the anatomic variation and age-related changes of phase shifts in the neonatal cerebral venous system at susceptibility-weighted imaging (SWI). MATERIALS AND METHODS: Thirty-five neonates who had undergone SWI and who did not have any intracranial or systemic abnormalities were retrospectively assessed. Phase shifts in the veins in the deep gray matter and in the cortical veins in the frontal, rolandic, and parietal areas were measured and compared. Correlations between phase ratio (ratio of the phase shift in the vein in the deep gray matter to that in the cortical veins) and gestational age at birth, gestational age at magnetic resonance imaging (MRI), and age after birth were assessed. RESULTS: Phase shift in the veins in the deep gray matter was significantly higher than those in the cortical veins (P < 0.01). Among the cortical veins, the venous phase shift in the rolandic area was significantly higher than those in the frontal and parietal areas (P < 0.01). There was a negative correlation between the phase ratio and the gestational age at MRI (Spearman ρ = -0.35, P = 0.04). CONCLUSION: An anatomical variation in phase shifts was identified in the neonatal venous system. The observed reduction in phase shift differences between the veins in the deep gray matter and those in the cortex as gestational age at MRI increased may reflect brain development.


Assuntos
Veias Cerebrais/anatomia & histologia , Veias Cerebrais/patologia , Imageamento por Ressonância Magnética/métodos , Encéfalo/fisiologia , Circulação Cerebrovascular , Idade Gestacional , Humanos , Processamento de Imagem Assistida por Computador/métodos , Recém-Nascido , Modelos Anatômicos , Modelos Estatísticos
19.
Magn Reson Med Sci ; 20(2): 222-226, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32418924

RESUMO

We developed a Monte Carlo simulator for diffusion-weighted imaging sequences which displays the motion of water molecules and computes the dynamic phase dispersion due to the applied motion probing gradients. This simulator can be used to validate the analytical equations of diffusion models and understand their limitations due to their approximations. Here, we introduce the software and some specific use cases. The software can be downloaded from the following website: https://www.nirs.qst.go.jp/amr_diag.


Assuntos
Membrana Celular/metabolismo , Simulação por Computador , Imagem de Difusão por Ressonância Magnética/métodos , Movimento (Física) , Água/metabolismo , Difusão , Humanos , Método de Monte Carlo
20.
Eur Radiol Exp ; 5(1): 44, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34617156

RESUMO

BACKGROUND: Aquaporin-4 is a membrane channel protein that is highly expressed in brain astrocytes and facilitates the transport of water molecules. It has been suggested that suppression of aquaporin-4 function may be an effective treatment for reducing cellular edema after cerebral infarction. It is therefore important to develop clinically applicable measurement systems to evaluate and better understand the effects of aquaporin-4 suppression on the living body. METHODS: Animal models of focal cerebral ischemia were created by surgically occluding the middle cerebral artery of wild-type and aquaporin-4 knockout mice, after which multi-b-value multi-diffusion-time diffusion-weighted imaging measurements were performed. Data were analyzed with both the apparent diffusion coefficient (ADC) model and a compartmental water-exchange model. RESULTS: ADCs were estimated for five different b value ranges. The ADC of aquaporin-4 knockout mice in the contralateral region was significantly higher than that of wild-type mice for each range. In contrast, aquaporin-4 knockout mice had significantly lower ADC than wild-type mice in ischemic tissue for each b-value range. Genotype-dependent differences in the ADC were particularly significant for the lowest ranges in normal tissue and for the highest ranges in ischemic tissue. The ADCs measured at different diffusion times were significantly different for both genotypes. Fitting of the water-exchange model to the ischemic region data found that the water-exchange time in aquaporin-4 knockout mice was approximately 2.5 times longer than that in wild-type mice. CONCLUSIONS: Multi-b-value multi-diffusion-time diffusion-weighted imaging may be useful for in vivo research and clinical diagnosis of aquaporin-4-related diseases.


Assuntos
Aquaporina 4 , Aquaporinas , Água , Animais , Aquaporinas/genética , Encéfalo/diagnóstico por imagem , Membrana Celular , Imagem de Difusão por Ressonância Magnética , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa