Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1061, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212336

RESUMO

The honey bee is the most essential pollinator and a key contributor to the natural ecosystem. There are numerous ways for thousands of bees in a hive to communicate with one another. Individual trajectories and social interactions are thus complex behavioral features that can provide valuable information for an ecological study. To study honey bee behavior, the key challenges that have resulted from unreliable studies include complexity (high density of similar objects, small objects, and occlusion), the variety of background scenes, the dynamism of individual bee movements, and the similarity between the bee body and the background in the beehive. This study investigated the tracking of individual bees in a beehive environment using a deep learning approach and a Kalman filter. Detection of multiple bees and individual object segmentation were performed using Mask R-CNN with a ResNet-101 backbone network. Subsequently, the Kalman filter was employed for tracking multiple bees by tracking the body of each bee across a sequence of image frames. Three metrics were used to assess the proposed framework: mean average precision (mAP) for multiple-object detection and segmentation tasks, CLEAR MOT for multiple object tracking tasks, and MOTS for multiple object tracking and segmentation tasks. For CLEAR MOT and MOTS metrics, accuracy (MOTA and MOTSA) and precision (MOTP and MOTSP) are considered. By employing videos from a custom-designed observation beehive, recorded at a frame rate of 30 frames per second (fps) and utilizing a continuous frame rate of 10 fps as input data, our system displayed impressive performance. It yielded satisfactory outcomes for tasks involving segmentation and tracking of multiple instances of bee behavior. For the multiple-object segmentation task based on Mask R-CNN, we achieved a 0.85 mAP. For the multiple-object-tracking task with the Kalman filter, we achieved 77.48% MOTA, 79.79% MOTSP, and 79.56% recall. For the overall system for multiple-object tracking and segmentation tasks, we achieved 77.00% MOTSA, 75.60% MOTSP, and 80.30% recall.


Assuntos
Aprendizado Profundo , Ecossistema , Abelhas , Animais
2.
Sci Rep ; 13(1): 20899, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017029

RESUMO

To precisely determine the severity of COVID-19-related pneumonia, computed tomography (CT) is an imaging modality beneficial for patient monitoring and therapy planning. Thus, we aimed to develop a deep learning-based image segmentation model to automatically assess lung lesions related to COVID-19 infection and calculate the total severity score (TSS). The entire dataset consisted of 124 COVID-19 patients acquired from Chulabhorn Hospital, divided into 28 cases without lung lesions and 96 cases with lung lesions categorized severity by radiologists regarding TSS. The model used a 3D-UNet along with DenseNet and ResNet models that had already been trained to separate the lobes of the lungs and figure out the percentage of lung involvement due to COVID-19 infection. It also used the Dice similarity coefficient (DSC) to measure TSS. Our final model, consisting of 3D-UNet integrated with DenseNet169, achieved segmentation of lung lobes and lesions with the Dice similarity coefficients of 91.52% and 76.89%, respectively. The calculated TSS values were similar to those evaluated by radiologists, with an R2 of 0.842. The correlation between the ground-truth TSS and model prediction was greater than that of the radiologist, which was 0.890 and 0.709, respectively.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Tórax , Hospitais , Radiologistas , Pulmão/diagnóstico por imagem
3.
Sci Rep ; 10(1): 21483, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293573

RESUMO

We numerically find values of four process input parameters, namely, the argon flow rate, the hydrogen flow rate, the powder feed rate, and the current, that yield the desired mean particles' temperature and the mean particle velocity (collectively called mean particles' characteristics, or MPCs) in an atmospheric plasma spray process just before the particles arrive at the substrate to be coated. Previous studies have shown that the coating quality depends upon the MPCs. The process is simulated by using the software, LAVA-P-3D, that provides MPCs close to their experimental values. Thus, numerical rather than physical experiments are conducted. We first use the design of experiments to characterize the sensitivity of the MPCs to process parameters. We then identify relationships between the significant input parameters and the MPCs by using two methods, namely, the least squares regression and the response surface methodology (RSM). Finally, we employ an optimization algorithm in conjunction with the weighted sum method to find optimum values of the process input variables to achieve desired values of the MPCs. The effects of weights assigned to the objective functions for the temperature and the velocity, and the difference in using the regression and the RSM model have been studied. It is found that these values of the process parameters provide MPCs within 5% of their desired values. This methodology is applicable to other coating processes and fabrication technologies such as hot forging, machining and casting.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa