Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Biol Chem ; 299(11): 105294, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37774972

RESUMO

The glycoside hydrolase family 55 (GH55) includes inverting exo-ß-1,3-glucosidases and endo-ß-1,3-glucanases, acting on laminarin, which is a ß1-3/1-6-glucan consisting of a ß1-3/1-6-linked main chain and ß1-6-linked branches. Despite their different modes of action toward laminarin, endo-ß-1,3-glucanases share with exo-ß-1,3-glucosidases conserved residues that form the dead-end structure of subsite -1. Here, we investigated the mechanism of endo-type action on laminarin by GH55 endo-ß-1,3-glucanase MnLam55A, identified from Microdochium nivale. MnLam55A, like other endo-ß-1,3-glucanases, degraded internal ß-d-glucosidic linkages of laminarin, producing more reducing sugars than the sum of d-glucose and gentiooligosaccharides detected. ß1-3-Glucans lacking ß1-6-linkages in the main chain were not hydrolyzed. NMR analysis of the initial degradation of laminarin revealed that MnLam55A preferentially cleaved the nonreducing terminal ß1-3-linkage of the laminarioligosaccharide moiety at the reducing end side of the main chain ß1-6-linkage. MnLam55A liberates d-glucose from laminaritriose and longer laminarioligosaccharides, but kcat/Km values to laminarioligosaccharides (≤4.21 s-1 mM-1) were much lower than to laminarin (5920 s-1 mM-1). These results indicate that ß-glucan binding to the minus subsites of MnLam55A, including exclusive binding of the gentiobiosyl moiety to subsites -1 and -2, is required for high hydrolytic activity. A crystal structure of MnLam55A, determined at 2.4 Å resolution, showed that MnLam55A adopts an overall structure and catalytic site similar to those of exo-ß-1,3-glucosidases. However, MnLam55A possesses an extended substrate-binding cleft that is expected to form the minus subsites. Sequence comparison suggested that other endo-type enzymes share the extended cleft. The specific hydrolysis of internal linkages in laminarin is presumably common to GH55 endo-ß-1,3-glucanases.


Assuntos
Glicosídeo Hidrolases , beta-Glucanas , Glucanos/metabolismo , Glucose , Glucosidases/metabolismo , Glicosídeo Hidrolases/metabolismo , Especificidade por Substrato
2.
Artigo em Inglês | MEDLINE | ID: mdl-38806254

RESUMO

Starch is a polysaccharide produced exclusively through photosynthesis in plants and algae; however, is utilized as an energy source by most organisms, from microorganisms to higher organisms. In mammals and germinating seeds of plants, starch is metabolized by simple hydrolysis pathways. Moreover, starch metabolic pathways via unique oligosaccharides have been discovered in some bacteria. Each organism has evolved enzymes responsible for starch metabolism that are diverse in their enzymatic properties. This review, focusing on eukaryotic α-glucosidases and bacterial α-glucoside-hydrolyzing enzymes, summarizes the structural aspects of starch-metabolizing enzymes belonging to glycoside hydrolase families 15, 31, and 77 and their application for oligosaccharide production.

3.
Appl Microbiol Biotechnol ; 107(7-8): 2335-2349, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36877249

RESUMO

ß-Xylosidases catalyze the hydrolysis of xylooligosaccharides to xylose in the final step of hemicellulose degradation. AnBX, which is a GH3 ß-xylosidase from Aspergillus niger, has a high catalytic efficiency toward xyloside substrates. In this study, we report the three-dimensional structure and the identification of catalytic and substrate binding residues of AnBX by performing site-directed mutagenesis, kinetic analysis, and NMR spectroscopy-associated analysis of the azide rescue reaction. The structure of the E88A mutant of AnBX, determined at 2.5-Å resolution, contains two molecules in the asymmetric unit, each of which is composed of three domains, namely an N-terminal (ß/α)8 TIM-barrel-like domain, an (α/ß)6 sandwich domain, and a C-terminal fibronectin type III domain. Asp288 and Glu500 of AnBX were experimentally confirmed to act as the catalytic nucleophile and acid/base catalyst, respectively. The crystal structure revealed that Trp86, Glu88 and Cys289, which formed a disulfide bond with Cys321, were located at subsite -1. Although the E88D and C289W mutations reduced catalytic efficiency toward all four substrates tested, the substitution of Trp86 with Ala, Asp and Ser increased the substrate preference for glucoside relative to xyloside substrates, indicating that Trp86 is responsible for the xyloside specificity of AnBX. The structural and biochemical information of AnBX obtained in this study provides invaluable insight into modulating the enzymatic properties for the hydrolysis of lignocellulosic biomass. KEY POINTS: • Asp288 and Glu500 of AnBX are the nucleophile and acid/base catalyst, respectively • Glu88 and the Cys289-Cys321 disulfide bond are crucial for the catalytic activity of AnBX • The W86A and W86S mutations in AnBX increased the preference for glucoside substrates.


Assuntos
Aspergillus niger , Xilosidases , Aspergillus niger/metabolismo , Cinética , Aminoácidos , Domínio Catalítico , Xilosidases/metabolismo , Catálise , Glucosídeos , Dissulfetos , Especificidade por Substrato , Glicosídeo Hidrolases/metabolismo
4.
J Biol Chem ; 296: 100398, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33571525

RESUMO

Glycoside hydrolase family 68 (GH68) enzymes catalyze ß-fructosyltransfer from sucrose to another sucrose, the so-called transfructosylation. Although regioselectivity of transfructosylation is divergent in GH68 enzymes, there is insufficient information available on the structural factor(s) involved in the selectivity. Here, we found two GH68 enzymes, ß-fructofuranosidase (FFZm) and levansucrase (LSZm), encoded tandemly in the genome of Zymomonas mobilis, displayed different selectivity: FFZm catalyzed the ß-(2→1)-transfructosylation (1-TF), whereas LSZm did both of 1-TF and ß-(2→6)-transfructosylation (6-TF). We identified His79FFZm and Ala343FFZm and their corresponding Asn84LSZm and Ser345LSZm respectively as the structural factors for those regioselectivities. LSZm with the respective substitution of FFZm-type His and Ala for its Asn84LSZm and Ser345LSZm (N84H/S345A-LSZm) lost 6-TF and enhanced 1-TF. Conversely, the LSZm-type replacement of His79FFZm and Ala343FFZm in FFZm (H79N/A343S-FFZm) almost lost 1-TF and acquired 6-TF. H79N/A343S-FFZm exhibited the selectivity like LSZm but did not produce the ß-(2→6)-fructoside-linked levan and/or long levanooligosaccharides that LSZm did. We assumed Phe189LSZm to be a responsible residue for the elongation of levan chain in LSZm and mutated the corresponding Leu187FFZm in FFZm to Phe. An H79N/L187F/A343S-FFZm produced a higher quantity of long levanooligosaccharides than H79N/A343S-FFZm (or H79N-FFZm), although without levan formation, suggesting that LSZm has another structural factor for levan production. We also found that FFZm generated a sucrose analog, ß-D-fructofuranosyl α-D-mannopyranoside, by ß-fructosyltransfer to d-mannose and regarded His79FFZm and Ala343FFZm as key residues for this acceptor specificity. In summary, this study provides insight into the structural factors of regioselectivity and acceptor specificity in transfructosylation of GH68 enzymes.


Assuntos
Proteínas de Bactérias/metabolismo , Hexosiltransferases/metabolismo , Sacarose/química , Sacarose/metabolismo , Zymomonas/enzimologia , beta-Frutofuranosidase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Catálise , Domínio Catalítico , Hexosiltransferases/química , Hexosiltransferases/genética , Mutagênese Sítio-Dirigida , Estereoisomerismo , Relação Estrutura-Atividade , Zymomonas/isolamento & purificação , Zymomonas/metabolismo , beta-Frutofuranosidase/química , beta-Frutofuranosidase/genética
5.
Appl Microbiol Biotechnol ; 106(2): 689-698, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35024917

RESUMO

Dextran dextrinase (DDase) catalyzes formation of the polysaccharide dextran from maltodextrin. During the synthesis of dextran, DDase also generates the beneficial material isomaltomegalosaccharide (IMS). The term megalosaccharide is used for a saccharide having DP = 10-100 or 10-200 (DP, degree of polymerization). IMS is a chimeric glucosaccharide comprising α-(1 → 6)- and α-(1 → 4)-linked portions at the nonreducing and reducing ends, respectively, in which the α-(1 → 4)-glucosyl portion originates from maltodextrin of the substrate. In this study, IMS was produced by a practical approach using extracellular DDase (DDext) or cell surface DDase (DDsur) of Gluconobacter oxydans ATCC 11894. DDsur was the original form, so we prepared DDext via secretion from intact cells by incubating with 0.5% G6/G7 (maltohexaose/maltoheptaose); this was followed by generation of IMS from various concentrations of G6/G7 substrate at different temperatures for 96 h. However, IMS synthesis by DDext was limited by insufficient formation of α-(1 → 6)-glucosidic linkages, suggesting that DDase also catalyzes elongation of α-(1 → 4)-glucosyl chain. For production of IMS using DDsur, intact cells bearing DDsur were directly incubated with 20% G6/G7 at 45 °C by optimizing conditions such as cell concentration and agitation efficiency, which resulted in generation of IMS (average DP = 14.7) with 61% α-(1 → 6)-glucosyl content in 51% yield. Increases in substrate concentration and agitation efficiency were found to decrease dextran formation and increase IMS production, which improved the reaction conditions for DDext. Under modified conditions (20% G6/G7, agitation speed of 100 rpm at 45 °C), DDext produced IMS (average DP = 14.5) with 65% α-(1 → 6)-glucosyl content in a good yield of 87%. KEY POINTS: • Beneficial IMS was produced using thermostabilized DDase. • Optimum conditions for reduced dextran formation were successfully determined. • A practical approach was established to provide IMS with a great yield of 87%.


Assuntos
Gluconobacter oxydans , Membrana Celular , Gluconobacter oxydans/genética , Glucosídeos , Glucosiltransferases
6.
Mar Drugs ; 20(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35447923

RESUMO

The glycoside hydrolase family 17 ß-1,3-glucanase of Vibrio vulnificus (VvGH17) has two unknown regions in the N- and C-termini. Here, we characterized these domains by preparing mutant enzymes. VvGH17 demonstrated hydrolytic activity of ß-(1→3)-glucan, mainly producing laminaribiose, but not of ß-(1→3)/ß-(1→4)-glucan. The C-terminal-truncated mutants (ΔC466 and ΔC441) showed decreased activity, approximately one-third of that of the WT, and ΔC415 lost almost all activity. An analysis using affinity gel containing laminarin or barley ß-glucan revealed a shift in the mobility of the ΔC466, ΔC441, and ΔC415 mutants compared to the WT. Tryptophan residues showed a strong affinity for carbohydrates. Three of four point-mutations of the tryptophan in the C-terminus (W472A, W499A, and W542A) showed a reduction in binding ability to laminarin and barley ß-glucan. The C-terminus was predicted to have a ß-sandwich structure, and three tryptophan residues (Trp472, Trp499, and Trp542) constituted a putative substrate-binding cave. Linker and substrate-binding functions were assigned to the C-terminus. The N-terminal-truncated mutants also showed decreased activity. The WT formed a trimer, while the N-terminal truncations formed monomers, indicating that the N-terminus contributed to the multimeric form of VvGH17. The results of this study are useful for understanding the structure and the function of GH17 ß-1,3-glucanases.


Assuntos
Vibrio vulnificus , beta-Glucanas , Glucanos/química , Glicosídeo Hidrolases/metabolismo , Especificidade por Substrato , Triptofano , Vibrio vulnificus/genética , Vibrio vulnificus/metabolismo , beta-Glucanas/química
7.
Plant J ; 89(2): 325-337, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27696560

RESUMO

Because structural modifications of flavonoids are closely related to their properties, such as stability, solubility, flavor and coloration, characterizing the enzymes that catalyze the modification reactions can be useful for engineering agriculturally beneficial traits of flavonoids. In this work, we examined the enzymes involved in the modification pathway of highly glycosylated and acylated anthocyanins that accumulate in Lobelia erinus. Cultivar Aqua Blue (AB) of L. erinus is blue-flowered and accumulates delphinidin 3-O-p-coumaroylrutinoside-5-O-malonylglucoside-3'5'-O-dihydroxycinnamoylglucoside (lobelinins) in its petals. Cultivar Aqua Lavender (AL) is mauve-flowered, and LC-MS analyses showed that AL accumulated delphinidin 3-O-glucoside (Dp3G), which was not further modified toward lobelinins. A crude protein assay showed that modification processes of lobelinin were carried out in a specific order, and there was no difference between AB and AL in modification reactions after rhamnosylation of Dp3G, indicating that the lack of highly modified anthocyanins in AL resulted from a single mutation of rhamnosyltransferase catalyzing the rhamnosylation of Dp3G. We cloned rhamnosyltransferase genes (RTs) from AB and confirmed their UDP-rhamnose-dependent rhamnosyltransferase activities on Dp3G using recombinant proteins. In contrast, the RT gene in AL had a 5-bp nucleotide deletion, resulting in a truncated polypeptide without the plant secondary product glycosyltransferase box. In a complementation test, AL that was transformed with the RT gene from AB produced blue flowers. These results suggest that rhamnosylation is an essential process for lobelinin synthesis, and thus the expression of RT has a great impact on the flower color and is necessary for the blue color of Lobelia flowers.


Assuntos
Antocianinas/metabolismo , Lobelia/fisiologia , Proteínas de Plantas/metabolismo , Açúcares de Uridina Difosfato/metabolismo , Clonagem Molecular , Teste de Complementação Genética , Glucosídeos/metabolismo , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Lobelia/genética , Lobelia/metabolismo , Filogenia , Pigmentação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Biosci Biotechnol Biochem ; 82(9): 1480-1487, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29806555

RESUMO

Herein, we investigated enzymatic properties and reaction specificities of Streptococcus mutans dextranase, which hydrolyzes α-(1→6)-glucosidic linkages in dextran to produce isomaltooligosaccharides. Reaction specificities of wild-type dextranase and its mutant derivatives were examined using dextran and a series of enzymatically prepared p-nitrophenyl α-isomaltooligosaccharides. In experiments with 4-mg·mL-1 dextran, isomaltooligosaccharides with degrees of polymerization (DP) of 3 and 4 were present at the beginning of the reaction, and glucose and isomaltose were produced by the end of the reaction. Increased concentrations of the substrate dextran (40 mg·mL-1) yielded isomaltooligosaccharides with higher DP, and the mutations T558H, W279A/T563N, and W279F/T563N at the -3 and -4 subsites affected hydrolytic activities of the enzyme, likely reflecting decreases in substrate affinity at the -4 subsite. In particular, T558H increased the proportion of isomaltooligosaccharide with DP of 5 in hydrolysates following reactions with 4-mg·mL-1 dextran.Abbreviations CI: cycloisomaltooligosaccharide; CITase: CI glucanotransferase; CITase-Bc: CITase from Bacillus circulans T-3040; DP: degree of polymerization of glucose unit; GH: glycoside hydrolase family; GTF: glucansucrase; HPAEC-PAD: high performance anion-exchange chromatography-pulsed amperometric detection; IG: isomaltooligosaccharide; IGn: IG with DP of n (n, 2‒5); PNP: p-nitrophenol; PNP-Glc: p-nitrophenyl α-glucoside; PNP-IG: p-nitrophenyl isomaltooligosaccharide; PNP-IGn: PNP-IG with DP of n (n, 2‒6); SmDex: dextranase from Streptococcus mutans; SmDexTM: S. mutans ATCC25175 SmDex bearing Gln100‒Ile732.


Assuntos
Dextranase/metabolismo , Oligossacarídeos/metabolismo , Streptococcus mutans/enzimologia , Sequência de Aminoácidos , Hidrólise , Oligossacarídeos/química , Polimerização , Streptococcus mutans/metabolismo , Especificidade por Substrato
9.
J Biol Chem ; 291(32): 16438-47, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27302067

RESUMO

The actinobacterium Kribbella flavida NBRC 14399(T) produces cyclobis-(1→6)-α-nigerosyl (CNN), a cyclic glucotetraose with alternate α-(1→6)- and α-(1→3)-glucosidic linkages, from starch in the culture medium. We identified gene clusters associated with the production and intracellular catabolism of CNN in the K. flavida genome. One cluster encodes 6-α-glucosyltransferase and 3-α-isomaltosyltransferase, which are known to coproduce CNN from starch. The other cluster contains four genes annotated as a transcriptional regulator, sugar transporter, glycoside hydrolase family (GH) 31 protein (Kfla1895), and GH15 protein (Kfla1896). Kfla1895 hydrolyzed the α-(1→3)-glucosidic linkages of CNN and produced isomaltose via a possible linear tetrasaccharide. The initial rate of hydrolysis of CNN (11.6 s(-1)) was much higher than that of panose (0.242 s(-1)), and hydrolysis of isomaltotriose and nigerose was extremely low. Because Kfla1895 has a strong preference for the α-(1→3)-isomaltosyl moiety and effectively hydrolyzes the α-(1→3)-glucosidic linkage, it should be termed 1,3-α-isomaltosidase. Kfla1896 effectively hydrolyzed isomaltose with liberation of ß-glucose, but displayed low or no activity toward CNN and the general GH15 enzyme substrates such as maltose, soluble starch, or dextran. The kcat/Km for isomaltose (4.81 ± 0.18 s(-1) mm(-1)) was 6.9- and 19-fold higher than those for panose and isomaltotriose, respectively. These results indicate that Kfla1896 is a new GH15 enzyme with high substrate specificity for isomaltose, suggesting the enzyme should be designated an isomaltose glucohydrolase. This is the first report to identify a starch-utilization pathway that proceeds via CNN.


Assuntos
Actinobacteria , Proteínas de Bactérias , Genoma Bacteriano/fisiologia , Glucanos/metabolismo , Glicosídeo Hidrolases , Família Multigênica/fisiologia , Actinobacteria/enzimologia , Actinobacteria/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glucanos/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo
10.
Appl Microbiol Biotechnol ; 101(16): 6399-6408, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28688044

RESUMO

Aspergillus niger α-glucosidase (ANG), a member of glycoside hydrolase family 31, catalyzes hydrolysis of α-glucosidic linkages at the non-reducing end. In the presence of high concentrations of maltose, the enzyme also catalyzes the formation of α-(1→6)-glucosyl products by transglucosylation and it is used for production of the industrially useful panose and isomaltooligosaccharides. The initial transglucosylation by wild-type ANG in the presence of 100 mM maltose [Glc(α1-4)Glc] yields both α-(1→6)- and α-(1→4)-glucosidic linkages, the latter constituting ~25% of the total transfer reaction product. The maltotriose [Glc(α1-4)Glc(α1-4)Glc], α-(1→4)-glucosyl product disappears quickly, whereas the α-(1→6)-glucosyl products panose [Glc(α1-6)Glc(α1-4)Glc], isomaltose [Glc(α1-6)Glc], and isomaltotriose [Glc(α1-6)Glc(α1-6)Glc] accumulate. To modify the transglucosylation properties of ANG, residue Asn694, which was predicted to be involved in formation of the plus subsites of ANG, was replaced with Ala, Leu, Phe, and Trp. Except for N694A, the mutations enhanced the initial velocity of the α-(1→4)-transfer reaction to produce maltotriose, which was then degraded at a rate similar to that by wild-type ANG. With increasing reaction time, N694F and N694W mutations led to the accumulation of larger amounts of isomaltose and isomaltotriose than achieved with the wild-type enzyme. In the final stage of the reaction, the major product was panose (N694A and N694L) or isomaltose (N694F and N694W).


Assuntos
Aspergillus niger/genética , Aspergillus niger/metabolismo , Mutação , alfa-Glucosidases/química , alfa-Glucosidases/genética , Aspergillus niger/efeitos dos fármacos , Aspergillus niger/enzimologia , Glucanos/metabolismo , Glucanos/farmacologia , Concentração de Íons de Hidrogênio , Hidrólise , Isomaltose/metabolismo , Cinética , Maltose/metabolismo , Maltose/farmacologia , Mutagênese Sítio-Dirigida , Especificidade por Substrato , Trissacarídeos/metabolismo , alfa-Glucosidases/metabolismo
11.
Biosci Biotechnol Biochem ; 81(8): 1503-1511, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28471318

RESUMO

The recombinant catalytic α-subunit of N-glycan processing glucosidase II from Schizosaccharomyces pombe (SpGIIα) was produced in Escherichia coli. The recombinant SpGIIα exhibited quite low stability, with a reduction in activity to <40% after 2-days preservation at 4 °C, but the presence of 10% (v/v) glycerol prevented this loss of activity. SpGIIα, a member of the glycoside hydrolase family 31 (GH31), displayed the typical substrate specificity of GH31 α-glucosidases. The enzyme hydrolyzed not only α-(1→3)- but also α-(1→2)-, α-(1→4)-, and α-(1→6)-glucosidic linkages, and p-nitrophenyl α-glucoside. SpGIIα displayed most catalytic properties of glucosidase II. Hydrolytic activity of the terminal α-glucosidic residue of Glc2Man3-Dansyl was faster than that of Glc1Man3-Dansyl. This catalytic α-subunit also removed terminal glucose residues from native N-glycans (Glc2Man9GlcNAc2 and Glc1Man9GlcNAc2) although the activity was low.


Assuntos
Domínio Catalítico/genética , Proteínas Fúngicas/metabolismo , Glucosídeos/metabolismo , Schizosaccharomyces/enzimologia , alfa-Glucosidases/metabolismo , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Expressão Gênica , Glucosídeos/química , Glicerol/química , Cinética , Polissacarídeos/química , Polissacarídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/química , Especificidade por Substrato , alfa-Glucosidases/genética
12.
J Biol Chem ; 290(3): 1796-803, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25451917

RESUMO

The α-glucosidase from sugar beet (SBG) is an exo-type glycosidase. The enzyme has a pocket-shaped active site, but efficiently hydrolyzes longer maltooligosaccharides and soluble starch due to lower Km and higher kcat/Km for such substrates. To obtain structural insights into the mechanism governing its unique substrate specificity, a series of acarviosyl-maltooligosaccharides was employed for steady-state kinetic and structural analyses. The acarviosyl-maltooligosaccharides have a longer maltooligosaccharide moiety compared with the maltose moiety of acarbose, which is known to be the transition state analog of α-glycosidases. The clear correlation obtained between log Ki of the acarviosyl-maltooligosaccharides and log(Km/kcat) for hydrolysis of maltooligosaccharides suggests that the acarviosyl-maltooligosaccharides are transition state mimics. The crystal structure of the enzyme bound with acarviosyl-maltohexaose reveals that substrate binding at a distance from the active site is maintained largely by van der Waals interactions, with the four glucose residues at the reducing terminus of acarviosyl-maltohexaose retaining a left-handed single-helical conformation, as also observed in cycloamyloses and single helical V-amyloses. The kinetic behavior and structural features suggest that the subsite structure suitable for the stable conformation of amylose lowers the Km for long-chain substrates, which in turn is responsible for higher specificity of the longer substrates.


Assuntos
Beta vulgaris/enzimologia , alfa-Glucosidases/química , Sequência de Bases , Carboidratos/química , Domínio Catalítico , Cristalização , Glucose/química , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oligossacarídeos/química , Ligação Proteica , Especificidade por Substrato
13.
Biosci Biotechnol Biochem ; 80(9): 1747-52, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26856407

RESUMO

The recombinant AglB produced by Pichia pastoris exhibited substrate inhibition behavior for the hydrolysis of p-nitrophenyl α-galactoside, whereas it hydrolyzed the natural substrates, including galactomanno-oligosaccharides and raffinose family oligosaccharides, according to the Michaelian kinetics. These contrasting kinetic behaviors can be attributed to the difference in the dissociation constant of second substrate from the enzyme and/or to the ability of the leaving group of the substrates. The enzyme displays the grater kcat/Km values for hydrolysis of the branched α-galactoside in galactomanno-oligosaccharides than that of raffinose and stachyose. A sequence comparison suggested that AglB had a shallow active-site pocket, and it can allow to hydrolyze the branched α-galactosides, but not linear raffinose family oligosaccharides.


Assuntos
Aspergillus niger/enzimologia , alfa-Galactosidase/biossíntese , alfa-Galactosidase/química , Sequência de Aminoácidos/genética , Aspergillus niger/genética , Domínio Catalítico , Hidrólise , Cinética , Pichia/genética , Rafinose/química , Especificidade por Substrato , alfa-Galactosidase/genética
14.
Biosci Biotechnol Biochem ; 80(3): 479-85, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26645800

RESUMO

Marine glycoside hydrolases hold enormous potential due to their habitat-related characteristics such as salt tolerance, barophilicity, and cold tolerance. We purified an α-glucosidase (PYG) from the midgut gland of the Japanese scallop (Patinopecten yessoensis) and found that this enzyme has unique characteristics. The use of acarbose affinity chromatography during the purification was particularly effective, increasing the specific activity 570-fold. PYG is an interesting chloride ion-dependent enzyme. Chloride ion causes distinctive changes in its enzymatic properties, increasing its hydrolysis rate, changing the pH profile of its enzyme activity, shifting the range of its pH stability to the alkaline region, and raising its optimal temperature from 37 to 55 °C. Furthermore, chloride ion altered PYG's substrate specificity. PYG exhibited the highest Vmax/Km value toward maltooctaose in the absence of chloride ion and toward maltotriose in the presence of chloride ion.


Assuntos
Cloretos/metabolismo , alfa-Glucosidases/isolamento & purificação , Animais , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Pectinidae , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato , Temperatura , alfa-Glucosidases/metabolismo
15.
J Biol Chem ; 288(26): 19296-303, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23687304

RESUMO

Sugar beet α-glucosidase (SBG), a member of glycoside hydrolase family 31, shows exceptional long-chain specificity, exhibiting higher kcat/Km values for longer malto-oligosaccharides. However, its amino acid sequence is similar to those of other short chain-specific α-glucosidases. To gain structural insights into the long-chain substrate recognition of SBG, a crystal structure complex with the pseudotetrasaccharide acarbose was determined at 1.7 Å resolution. The active site pocket of SBG is formed by a (ß/α)8 barrel domain and a long loop (N-loop) bulging from the N-terminal domain similar to other related enzymes. Two residues (Phe-236 and Asn-237) in the N-loop are important for the long-chain specificity. Kinetic analysis of an Asn-237 mutant enzyme and a previous study of a Phe-236 mutant enzyme demonstrated that these residues create subsites +2 and +3. The structure also indicates that Phe-236 and Asn-237 guide the reducing end of long substrates to subdomain b2, which is an additional element inserted into the (ß/α)8 barrel domain. Subdomain b2 of SBG includes Ser-497, which was identified as the residue at subsite +4 by site-directed mutagenesis.


Assuntos
Beta vulgaris/enzimologia , Proteínas de Plantas/química , alfa-Glucosidases/química , Acarbose/química , Sequência de Aminoácidos , Análise Mutacional de DNA , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Especificidade por Substrato
16.
Biochim Biophys Acta ; 1834(1): 329-35, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23457711

RESUMO

Glycoside hydrolase family 31 α-glucosidases (31AGs) show various specificities for maltooligosaccharides according to chain length. Aspergillus niger α-glucosidase (ANG) is specific for short-chain substrates with the highest k(cat)/K(m) for maltotriose, while sugar beet α-glucosidase (SBG) prefers long-chain substrates and soluble starch. Multiple sequence alignment of 31AGs indicated a high degree of diversity at the long loop (N-loop), which forms one wall of the active pocket. Mutations of Phe236 in the N-loop of SBG (F236A/S) decreased k(cat)/K(m) values for substrates longer than maltose. Providing a phenylalanine residue at a similar position in ANG (T228F) altered the k(cat)/K(m) values for maltooligosaccharides compared with wild-type ANG, i.e., the mutant enzyme showed the highest k(cat)/K(m) value of maltotetraose. Subsite affinity analysis indicated that modification of subsite affinities at +2 and +3 caused alterations of substrate specificity in the mutant enzymes. These results indicated that the aromatic residue in the N-loop contributes to determining the chain-length specificity of 31AGs.


Assuntos
Aspergillus niger/enzimologia , Proteínas Fúngicas/química , Oligossacarídeos/química , Fenilalanina/química , alfa-Glucosidases/química , Substituição de Aminoácidos , Aspergillus niger/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Maltose/química , Maltose/genética , Maltose/metabolismo , Mutação de Sentido Incorreto , Oligossacarídeos/genética , Oligossacarídeos/metabolismo , Fenilalanina/genética , Fenilalanina/metabolismo , Estrutura Secundária de Proteína , Alinhamento de Sequência , Especificidade por Substrato , alfa-Glucosidases/genética , alfa-Glucosidases/metabolismo
17.
Biosci Biotechnol Biochem ; 78(12): 2064-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25093855

RESUMO

α-1,4-Glucan lyases [glycoside hydrolase family (GH) 31] catalyze an elimination reaction to form 1,5-anhydro-d-fructose (AF), while GH31 α-glucosidases normally catalyze a hydrolytic reaction. We determined that a small amount of AF was produced by GH31 Aspergillus niger α-glucosidase from maltooligosaccharides by elimination reaction, likely via an oxocarbenium ion intermediate.


Assuntos
Aspergillus niger/química , Frutose/análogos & derivados , Proteínas Fúngicas/química , Oligossacarídeos/química , alfa-Glucosidases/química , Aspergillus niger/enzimologia , Biocatálise , Configuração de Carboidratos , Isótopos de Carbono , Frutose/química , Proteínas Fúngicas/isolamento & purificação , Hidrólise , Cinética , alfa-Glucosidases/isolamento & purificação
18.
Theriogenology ; 217: 159-168, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280277

RESUMO

Endometrial epidermal growth factor (EGF) shows a cyclic change with two peaks on days 2-4 and days 13-14 of the estrous cycle. In repeat breeder cows, loss of the peaks has been associated with reduced fertility. By infusing seminal plasma (SP) and osteopontin (OPN) derived from SP and milk into the vagina, their EGF profile and fertility are restored. However, SP is difficult to obtain, and both SP and OPN can transmit infectious diseases. While OPN can be sourced from recombinant protein without this risk, recombinant bovine OPN (rOPN) expressed in Escherichia coli should be examined for its effects on the EGF profile, since it does not undergo posttranslational modification, which is important for its biological activity. In study 1, PBS, SP (0.5 mL), and rOPN (0.3 mg) were infused into the vagina at estrus (day 0) in 74, 37, and 105 repeat breeder Holstein cows, respectively, with an altered EGF profile. The endometrial EGF concentrations were measured on day 3. Some cows (n = 58, 20, and 83, respectively) were inseminated immediately before the infusion and then diagnosed for pregnancy between days 30 and 35. The normalization rate of the EGF profile and conception rate in the rOPN group (58.1 % and 47.0 %, respectively) were not significantly different from those in the SP group (62.2 % and 45.0 %, respectively) but higher than those in PBS group (29.7 % and 28.1 %, respectively) (P < 0.05). In study 2, repeat breeder cows with an altered EGF profile were infused with PBS (n = 18) and rOPN (n = 17), while fertile controls with a normal EGF profile (n = 18) were infused with PBS. Two or three embryos were transferred into cows on day 7 and then recovered on day 14. Embryo recovery rates of the rOPN and fertile groups were comparable (58.7 % vs. 58.3 %) but higher than that of the PBS group (58.7 % vs. 32.0 %) (P < 0.05). The embryo recovery rate of cows with normalized EGF profile was higher than that of cows with unnormalized EGF profile (64.4 % vs. 16.7 %) (P < 0.05). The embryo sizes of cows in the rOPN and fertile groups were comparable but larger than those in the PBS group (P < 0.05). However, the embryo size was not correlated to the corresponding endometrial EGF concentrations. In conclusion, rOPN without posttranslational modifications normalized the EGF profile in repeat breeder cows. Improved fertility by normalization of the EGF profile could be attributed partly to the increased embryo viability up to day 14.


Assuntos
Fator de Crescimento Epidérmico , Escherichia coli , Gravidez , Feminino , Bovinos , Animais , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Osteopontina/genética , Fertilidade , Progesterona
19.
Biosci Biotechnol Biochem ; 77(2): 312-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23391922

RESUMO

Acarbose is a pseudo-tetrasaccharide and one of the most effective inhibitors of glycoside hydrolases. Its derivatives, acarviosyl-maltooligosaccharides, which have longer maltooligosaccharide parts than the maltose unit of acarbose, were synthesized using a disproportionating enzyme partially purified from adzuki cotyledons. The enzyme was identified as a typical type-1 disproportionating enzyme (DPE1) by primary structure analysis. It produced six compounds from 100 mM acarbose and 7.5% (w/v) of maltotetraose-rich syrup. The masses of the six products were confirmed to accord with acarviosyl-maltooligosaccharides with the degrees of polymerization = 5-10 (AC5-AC10) by electrospray ionization mass spectrometry. (1)H and (13)C NMR spectra indicated that AC5-AC10 were α-acarviosyl-(1→4)-maltooligosaccharide, which have maltotriose-maltooctaose respectively in the maltooligosaccharide part. A predominance of AC7 in the products at the early stage of the reaction indicated that DPE1 catalyzes the transfer of the acarviosyl-glucose moiety from acarbose to the acceptors. ACn can be useful tools as new inhibitors of glycoside hydrolases.


Assuntos
Acarbose/química , Inibidores Enzimáticos/síntese química , Fabaceae/química , Sistema da Enzima Desramificadora do Glicogênio/química , Oligossacarídeos/síntese química , Proteínas de Plantas/química , Sequência de Aminoácidos , Biocatálise , Sequência de Carboidratos , Inibidores Enzimáticos/química , Fabaceae/enzimologia , Sistema da Enzima Desramificadora do Glicogênio/isolamento & purificação , Glicosídeo Hidrolases/antagonistas & inibidores , Dados de Sequência Molecular , Oligossacarídeos/química , Proteínas de Plantas/isolamento & purificação , Polimerização
20.
Biosci Biotechnol Biochem ; 77(8): 1759-65, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23924743

RESUMO

The specificity for the α-1,4- and α-1,6-glucosidic linkages varies among glycoside hydrolase family 31 α-glucosidases. This difference in substrate specificity has been considered to be due to the difference in an aromatic residue on ß→α loop 1 in the catalytic domain with a (ß/α)8 barrel fold; i.e., the enzymes having Tyr and Trp on ß→α loop 1 were respectively described as α-1,4-specific and α-1,6-specific α-glucosidases. Schwanniomyces occidentalis α-glucosidase, however, prefers the α-1,4-glucosidic linkage, although the enzyme possesses Trp324 at the corresponding position. The mutation of Trp324 to Tyr decreased the ability for hydrolysis of the α-1,6-glucosidic linkage and formation of the α-1,6-glucosidic linkage in transglycosylation, indicating Trp324 to be closely associated with α-1,6 specificity, even if the enzyme preferred the α-1,4-glucosidic linkage. The mutant enzyme was found to catalyze the production of the branched oligosaccharide, 2,4-di-O-(α-D-glucopyranosyl)-D-glucopyranose, more efficiently than the wild-type enzyme.


Assuntos
Glicosídeo Hidrolases/química , Glicosídeos/metabolismo , Saccharomycetales/enzimologia , alfa-Glucosidases/química , Sequência de Aminoácidos , Aminoácidos Aromáticos/genética , Aminoácidos Aromáticos/metabolismo , Catálise , Domínio Catalítico/genética , Glicosídeo Hidrolases/genética , Glicosilação , Hidrólise , Mutação , Especificidade por Substrato , alfa-Glucosidases/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa