Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Microbiol ; 23(1): 257, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704938

RESUMO

BACKGROUND: Enzybiotics are promising alternatives to conventional antibiotics for drug-resistant infections. Exolysins, as a class of enzybiotics, show antibacterial effects against methicillin-resistant Staphylococcus aureus (MRSA). This study evaluated a novel exolysin containing an SH3b domain for its antibacterial activity against MRSA. METHODS: This study designed a chimeric exolysin by fusing the Cell-binding domain (SH3b) from Lysostaphin with the lytic domain (LYZ2) from the gp61 enzyme. Subsequently, LYZ2-SH3b was cloned and expressed in Escherichia coli (E. coli). Finally, the antibacterial effects of LYZ2-SH3b compared with LYZ2 and vancomycin against reference and clinical isolates of MRSA were measured using the disc diffusion method, the minimal inhibitory concentration (MIC), and the minimal bactericidal concentration (MBC) assays. RESULTS: Analysis of bioinformatics showed that LYZ2-SH3b was stable, soluble, and non-allergenic. Protein purification was performed with a 0.8 mg/ml yield for LYZ2-SH3b. The plate lysis assay results indicated that, at the same concentrations, LYZ2-SH3b has a more inhibitory effect than LYZ2. The MICs of LYZ2 were 4 µg/mL (ATCC 43,300) and 8 µg/mL (clinical isolate ST239), whereas, for LYZ2-SH3b, they were 2 µg/mL (ATCC 43,300) and 4 µg/mL (clinical isolate ST239). This suggests a higher efficiency of LYZ2-SH3b compared to LYZ2. Furthermore, the MBCs of LYZ2 were 4 µg/mL (ATCC 43,300) and 8 µg/mL (clinical isolate ST239), whereas, for LYZ2-SH3b, they were 2 µg/mL (ATCC 43,300) and 4 µg/mL (clinical isolate ST239), thus confirming the superior lytic activity of LYZ2-SH3b over LYZ2. CONCLUSIONS: The study suggests that phage endolysins, such as LYZ2-SH3b, may represent a promising new approach to treating MRSA infections, particularly in cases where antibiotic resistance is a concern. But further studies are needed.


Assuntos
Bacteriófagos , Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus Resistente à Meticilina/genética , Escherichia coli/genética , Antibacterianos/farmacologia , Vancomicina
2.
Biotechnol Appl Biochem ; 70(3): 1044-1056, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36445196

RESUMO

The significant role of microRNAs in regulating gene expression and in disease tracking has handed the possibility of robust and accurate diagnosis of various diseases. Measurement of these biomarkers has also had a significant impact on the preparation of natural samples. Discovery of miRNAs is a major challenge due to their small size in the real sample and their short length, which is generally measured by complex and expensive methods. Electrochemical nanobiosensors have made significant progress in this field. Due to the delicate nature of nerve tissue repair and the significance of rapid-fire feature of neurodegenerative conditions, these biosensors can be reliably promising. This review presents advances in the field of neurodegenerative diseases diagnostics. At the same time, there are still numerous openings in this field that are a bright prospect for researchers in the rapid-fire opinion of neurological diseases and indeed nerve tissue repair.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Doenças Neurodegenerativas , Humanos , MicroRNAs/genética , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/genética , Técnicas Eletroquímicas , Biomarcadores
3.
Biotechnol Appl Biochem ; 70(1): 318-329, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35484728

RESUMO

Testosterone is an anabolic steroid and a major sex hormone in males. It plays vital roles, including developing the testis, penis, and prostate, increasing muscle and bone, and sperm production. In both men and women, testosterone levels should be in normal ranges. Besides, testosterone and its analogs are major global contributors to doping in sport. Due to the importance of testosterone testing, novel, accurate biosensors have been developed. This review summarizes the various methods for testosterone measurement. Also, recent optical and electrochemical approaches for the detection of testosterone and its analogs have been discussed.


Assuntos
Técnicas Biossensoriais , Sêmen , Humanos , Masculino , Feminino , Testosterona
4.
J Cell Physiol ; 237(4): 2095-2106, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35128660

RESUMO

Lung cancer therapeutic resistance, especially chemoresistance, is a key issue in the management of this malignancy. Despite the development of novel molecularly targeted drugs to promote therapeutic efficacy, 5-year survival of lung cancer patients is still dismal. Molecular studies through the recent years have fortunately presented multiple genes and signaling pathways, which contribute to lung cancer chemoresistance, providing a better perception of the biology of tumor cells, as well as the molecular mechanisms involved in their resistance to chemotherapeutic agents. Among those mechanisms, transfer of extracellular vesicles, such as exosomes, between cancer cells and the surrounding noncancerous ones is considered as an emerging route. Exosomes can desirably function as signaling vesicles to transmit multiple molecules from normal cells to cancer cells and their microenvironment, or vice versa. Using this ability, exosomes may affect the cancer cells' chemoresistance/chemosensitivity. Recently, noncoding RNAs (esp. microRNAs and long noncoding RNAs), as key molecules transferred by exosomes, have been reported to play a substantial role in the process of drug resistance, through modulation of various proteins and their corresponding genes. Accordingly, the current review principally aims to highlight exosomal micro- and long noncoding RNAs involved in lung cancer chemoresistance. Moreover, major molecular mechanisms, which connect corresponding RNA molecules to drug resistance, will briefly be addressed, for better clarifying of possible roles of exosomal noncoding RNAs in promoting the effectiveness of lung cancer therapy.


Assuntos
Exossomos , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Resistencia a Medicamentos Antineoplásicos/genética , Exossomos/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA não Traduzido/metabolismo , Microambiente Tumoral/genética
5.
Mol Cell Probes ; 66: 101865, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36162597

RESUMO

Pseudomonas aeruginosa possesses innate antibiotic resistance mechanisms, and carbapenem-resistant Pseudomonas aeruginosa has been considered the number one priority in the 2017 WHO list of antimicrobial-resistant crucial hazards. Early detection of Pseudomonas aeruginosa can circumvent treatment challenges. Various techniques have been developed for the detection of P. aeruginosa detection. Biosensors have recently attracted unprecedented attention in the field of point-of-care diagnostics due to their easy operation, rapid, low cost, high sensitivity, and selectivity. Biosensors can convert the specific interaction between bioreceptors (antibodies, aptamers) and pathogens into optical, electrical, and other signal outputs. Aptamers are novel and promising alternatives to antibodies as biorecognition elements mainly synthesized by systematic evolution of ligands by exponential enrichment and have predictable secondary structures. They have comparable affinity and specificity for binding to their target to antibody recognition. Since 2015, there have been about 2000 journal articles published in the field of aptamer biosensors, of which 30 articles were on the detection of P. aeruginosa. Here, we have focused on outlining the recent progress in the field of aptamer-based biosensors for P. aeruginosa detection based on optical, electrochemical, and piezoelectric signal transduction methods.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Pseudomonas aeruginosa , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Anticorpos
6.
Mol Biol Rep ; 49(3): 2421-2432, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34850336

RESUMO

Resistance of gastrointestinal (GI) cancer cells to therapeutic agents are one of the major problems in treating this type of cancer. Although the exact mechanism of drug resistance has not yet been fully elucidated, various factors have been identified as contributing factors involved in this process. Several studies have revealed the role of exosomes, especially exosomal microRNAs (miRNAs), in GI tumorigenesis, invasion, angiogenesis, and drug resistance. Exosomes, a type of small extracellular vesicles (EVs), are originated from endosomes and are released into the extracellular environment and body fluids by different cell types. Exosomes mediate cell-cell communication by transferring different cargos, including miRNAs, between parent and recipient cells. Therefore, identifying these exosomal miRNAs and their functions in GI cancers might provide new clues to further explore the secret of this process and thus help in drug-resistance management. This review article will discuss the roles of exosomal miRNAs and their mechanisms of action in drug resistance of different types of GI cancer cells (e.g., stomach, esophagus, liver, pancreas, and colon) to therapeutic agents.


Assuntos
Exossomos , Vesículas Extracelulares , MicroRNAs , Neoplasias , Resistencia a Medicamentos Antineoplásicos/genética , Exossomos/genética , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , MicroRNAs/metabolismo , Neoplasias/metabolismo
7.
Biotechnol Appl Biochem ; 69(6): 2658-2672, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34997643

RESUMO

Laccase belongs to the polyphenol oxidase family and is very important in removing environmental pollutants due to its structural and functional properties. Recently, the ability of laccase to oxidize phenolic and nonphenolic substances has been considered by many researchers. This enzyme's application scope includes a broad range of chemical processes and industrial usages, such as bioremediation, nanobiotechnology, woodworking industries, bleaching of paper pulp, dyeing in the textile industry, biotechnological uses in food industries, biorefining, detoxification from wastewater, production of organic matter from phenolic and amine substrates, and biofuels. Although filamentous fungi produce large amounts of laccase, high-yield industrial-scale production of laccase is still faced with many problems. At present, researchers are trying to increase the efficiency and productivity and reduce the final price of laccase by finding suitable microorganisms and improving the process of production and purification of laccase. This article reviews the introduction of laccase, its properties, production processes, and the effect of various factors on the enzyme's stability and activity, and some of its applications in various industries.


Assuntos
Poluentes Ambientais , Lacase , Lacase/química , Biotecnologia , Fungos , Biodegradação Ambiental
8.
Biotechnol Appl Biochem ; 69(4): 1633-1645, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34342377

RESUMO

Caspase-3, a cysteine-aspartic acid protease, has recently attracted much attention because of its incredible roles in tissue differentiation, regeneration, and neural development. This enzyme is a key zymogen in cell apoptosis and is not activated until it is cleaved by initiator caspases during apoptotic flux. Since caspase-3 has represented valuable capabilities in the field of medical research, biotechnological aspects of this enzyme, including the production of recombinant type, protein engineering, and designing delivery systems, have been considered as emerging therapeutic strategies in treating the apoptosis-related disorders. To date, several advances have been made in the therapeutic use of caspase-3 in the management of some diseases such as cancers, heart failure, and neurodegenerative disorders. In the current review, we intend to discuss the caspase-3's structure, functions, therapeutic applications, as well as its molecular cloning, protein engineering, and relevant delivery systems.


Assuntos
Apoptose , Caspases , Caspase 3 , Caspases/metabolismo
9.
Biotechnol Appl Biochem ; 69(2): 650-659, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33655550

RESUMO

By reducing the activation energy, enzymes accelerate the chemical reaction; therefore, they are good alternative for industrial catalysts. Amylase is a suitable enzyme as a catalyst for the chemical decomposition of starch. This enzyme is of great importance, and its production is highly profitable. α-Amylase is among the most important amylases produced naturally by animals, plants, and microorganisms. Still, the α-amylases produced by bacteria have a special place in industry and commerce. Moreover, a large volume of this enzyme can be produced by selecting an appropriate and optimized host to clone and express the α-amylase gene. The present study briefly reviews the structure, application, sources, and hosts used to produce recombinant α-amylase.


Assuntos
Amilases , alfa-Amilases , Amilases/genética , Amilases/metabolismo , Animais , Bactérias/metabolismo , Amido/metabolismo , alfa-Amilases/metabolismo
10.
Biotechnol Appl Biochem ; 69(2): 612-628, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33656174

RESUMO

Carbohydrate-active enzymes are a group of important enzymes playing a critical role in the degradation and synthesis of carbohydrates. Glycosidases can hydrolyze glycosides into oligosaccharides, polysaccharides, and glycoconjugates via a cost-effective approach. Lactase is an important member of ß-glycosidases found in higher plants, animals, and microorganisms. ß-Galactosidases can be used to degrade the milk lactose for making lactose-free milk, which is sweeter than regular milk and is suitable for lactose-intolerant people. ß-Galactosidase is employed by many food industries to degrade lactose and improve the digestibility, sweetness, solubility, and flavor of dairy products. ß-Galactosidase enzymes have various families and are applied in the food-processing industries such as hydrolyzed-milk products, whey, and galactooligosaccharides. Thus, this enzyme is a valuable protein which is now produced by recombinant technology. In this review, origins, structure, recombinant production, and critical modifications of ß-galactosidase for improving the production process are discussed. Since ß-galactosidase is a valuable enzyme in industry and health care, a study of its various aspects is important in industrial biotechnology and applied biochemistry.


Assuntos
Lactose , Oligossacarídeos , Animais , Biotecnologia , Humanos , Hidrólise , Leite/metabolismo , beta-Galactosidase/química
11.
Biotechnol Appl Biochem ; 69(3): 939-950, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33840140

RESUMO

Glucose oxidase is a subset of oxidoreductase enzymes that catalyzes the transfer of electrons from an oxidant to a reductant. Glucose oxidases use oxygen as an external electron acceptor that releases hydrogen peroxide (H2 O2 ). Glucose oxidase has many applications in commercial processes, including improving the color and taste, increasing the persistence of food materials, removing the glucose from the dried egg, and eliminating the oxygen from different juices and beverages. Moreover, glucose oxidase, along with catalase, is used in glucose testing kits (especially in biosensors) to detect and measure the presence of glucose in industrial and biological solutions (e.g., blood and urine specimens). Hence, glucose oxidase is a valuable enzyme in the industry and medical diagnostics. Therefore, evaluating the structure and function of glucose oxidase is crucial for modifying as well as improving its catalytic properties. Finding different sources of glucose oxidase is an effective way to find the type of enzyme with the desired catalysis. Besides, the recombinant production of glucose oxidase is the best approach to produce sufficient amounts of glucose oxidase for various uses. Accordingly, the study of various aspects of glucose oxidase in biotechnology and bioprocessing is crucial.


Assuntos
Técnicas Biossensoriais , Glucose Oxidase , Catálise , Glucose , Glucose Oxidase/química , Oxigênio
12.
Biotechnol Appl Biochem ; 69(6): 2592-2598, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34965611

RESUMO

Coronavirus 2019 (COVID-19) is a global concern for public health. Thus, early and accurate diagnosis is a critical step in management of this infectious disease. Currently, RT-PCR is routine diagnosis test for COVID-19, but it has some limitations and false negative results. enzyme-linked immunosorbent assay (ELISA) against SARS-CoV-2 antigens seems to be an appropriate approach for serodiagnosis of COVID-19. In the current study, an ELISA system, using a recombinant nucleocapsid (N) protein, was developed for the detection of IgM and IgG antibodies to SARS-CoV-2. The related protein was expressed, purified, and used in an ELISA system. Sera samples (67) for COVID-19 patients, as well as sera samples from healthy volunteers (112), along with sera samples from non-COVID-19 patients were examined by the ELISA system. The expression and purity of the recombinant N protein were approved by SDS-PAGE and Western blotting. The sensitivity of ELISA system was 91.04 and 92.53% for the detection of IgG and IgM antibodies, respectively. Moreover, the specificity of the developed ELISA system for IgG and IgM were 98.21 and 97.32%, respectively. Our developed ELISA system showed satisfactory sensitivity and specificity for the detection of antiSARS-CoV-2 IgM and IgG antibodies and could be used as a complementary approach for proper diagnosis of COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Proteínas do Nucleocapsídeo , Imunoglobulina G , COVID-19/diagnóstico , Nucleocapsídeo , Ensaio de Imunoadsorção Enzimática , Sensibilidade e Especificidade , Proteínas Recombinantes , Imunoglobulina M
13.
Cell Biochem Funct ; 40(3): 232-247, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35258097

RESUMO

Traumatic brain injury (TBI) is one of the most concerning health issues in which the normal brain function may be disrupted as a result of a blow, bump, or jolt to the head. Loss of consciousness, amnesia, focal neurological defects, alteration in mental state, and destructive diseases of the nervous system such as cognitive impairment, Parkinson's, and Alzheimer's disease. Parkinson's disease is a chronic progressive neurodegenerative disorder, characterized by the early loss of striatal dopaminergic neurons. TBI is a major risk factor for Parkinson's disease. Existing therapeutic approaches have not been often effective, indicating the necessity of discovering more efficient therapeutic targets. The mammalian target of rapamycin (mTOR) signaling pathway responds to different environmental cues to modulate a large number of cellular processes such as cell proliferation, survival, protein synthesis, autophagy, and cell metabolism. Moreover, mTOR has been reported to affect the regeneration of the injured nerves throughout the central nervous system (CNS). In this context, recent evaluations have revealed that mTOR inhibitors could be potential targets to defeat a group of neurological disorders, and thus, a number of clinical trials are investigating their efficacy in treating dementia, autism, epilepsy, stroke, and brain injury, as irritating neurological defects. The current review describes the interplay between mTOR signaling and major CNS-related disorders (esp. neurodegenerative diseases), as well as the mTOR signaling-TBI relationship. It also aims to discuss the promising therapeutic capacities of mTOR inhibitors during the TBI.


Assuntos
Lesões Encefálicas Traumáticas , Doenças do Sistema Nervoso Central , Doenças Neurodegenerativas , Doença de Parkinson , Lesões Encefálicas Traumáticas/tratamento farmacológico , Humanos , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
14.
Mol Cell Biochem ; 476(11): 4081-4092, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34273059

RESUMO

Glioma, as one of the most severe human malignancies, is defined as the Central Nervous System's (CNS) tumors. Glioblastoma (GBM) in this regard, is the most malignant type of gliomas. There are multiple therapeutic strategies to cure GBM, for which chemotherapy is often the first-line treatment. Still, various cellular processes, such as uncontrolled proliferation, invasion and metastasis, may disturb the treatment efficacy. Drug resistance is another process in this way, which can also cause undesirable effects. Thereupon, identifying the mechanisms, involved in developing drug resistance and the relevant mechanisms can be very helpful in GBM management. The discovery of exosomal non-coding RNAs (ncRNAs), RNA molecules that can be transferred between the cells and different tissues using the exosomes, was a milestone in this regard. It has been revealed that the key exosomal ncRNAs, including circular RNAs, microRNAs, and long ncRNAs, are able to modulate GBM drug resistance through different signaling pathways or by affecting regulatory proteins and their corresponding genes. Nowadays, researchers are trying to overcome the limitations of chemotherapy by targeting these RNA molecules. Accordingly, this review aims to clarify the substantial roles of exosomal ncRNAs in GBM drug resistance and involved mechanisms.


Assuntos
Exossomos/genética , Glioblastoma/tratamento farmacológico , MicroRNAs/genética , RNA Longo não Codificante/genética , Biomarcadores Tumorais/genética , Resistencia a Medicamentos Antineoplásicos , Exossomos/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Terapia de Alvo Molecular
15.
Transfus Apher Sci ; 60(6): 103285, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34620563

RESUMO

The most promising therapy for leukemia is hematopoietic stem cell transplantation. Engraftment of HPSCs mainly depends on some factors such as adhesion molecules, including VLAs. This study tried to delineate the relationship between HPSCs engraftment and expression level of PSGL1 and VLA4, 5, and 6 genes in candidate MM patients for autologous bone marrow transplantation. Firstly, the CD 34+ HPSCs were collected from multiple myeloma (MM) patients after five days of G-CSF therapy through apheresis processes. Then, the patients were categorized into two groups of good and bad prognosis depending on engraftment time (Less or more than 18 days). Followingly, the expression of PSGL1 and VLA4, VLA5, and VLA6 genes were assessed by the qRT-PCR technique in each patient. Finally, the correlation between the genes and engraftment time was investigated to determine the prognostic role of each gene on HPSCs transplantation. Our findings demonstrated that there is a significant correlation between VLA4 (P=< 0.0001) and 5 (P = 0.005) levels and HPSCs engraftment time. As the higher levels of VLA4 and 5, the shorter time HPSCs engraftment occurs. In contrast, there was no significant correlation between VLA6 (P = 0.2) and PSGL1 (P = 0.3) genes levels and engraftment time. So that, the patients with a good prognosis had a higher level of VLA4 and VLA5, but no relation was found between VLA6 and PSGL1. It is concluded that VLA4 and VLA5 expression could be considered a significant prognostic factor for HPSC transplantation.


Assuntos
Transplante de Células-Tronco Hematopoéticas/métodos , Integrina alfa4beta1/metabolismo , Integrina alfa5beta1/metabolismo , Integrina alfa6beta1/metabolismo , Glicoproteínas de Membrana/metabolismo , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Condicionamento Pré-Transplante/métodos , Transplante Autólogo/métodos , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/patologia
16.
Cell Biochem Funct ; 39(7): 844-853, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34227160

RESUMO

Cancerous cells are abnormal cells characterized by aberrant growth and proliferation, which can involve various types of cells and tissues. Through numerous signalling pathways, many mechanisms are involved in cells that keep them normal. These signalling pathways are tightly set by different proteins whose expression is regulated by a large number of factors. In other words, when a regulating factor does not act properly or undergoes a change in its function or expression, the result will be that the subordinate gene and subsequently the related protein will show deranged expression and activity. This leads to disordered signalling pathways which bring about uncontrolled proliferation in cells. One of the most significant factors in adjusting the expression of genes is noncoding RNAs. It should be noted that all underlying causes initiating malignancy try to alter the main regulatory factors in cellular processes and gene expression and direct the cell to an unregulated state. Microorganisms have been identified as one of the important elements to direct normal cells to abnormality. That is, they probably agitate the malignant traits through manipulating significant factors such as ncRNAs in given cells using their own or host-related factors. The present study is aimed at examining how the long noncoding RNAs are involved in microorganism-mediated cancers.


Assuntos
Neoplasias/genética , Neoplasias/microbiologia , RNA Longo não Codificante/genética , Humanos , Neoplasias/patologia
17.
J Immunoassay Immunochem ; 42(1): 19-33, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-32845824

RESUMO

Human epidermal growth factor receptor 2 (HER2) is overexpressed in breast cancer (BC) patients. Hence, immunotherapy is a proper treatment option for HER2-positive BC patients. Accumulating evidence has indicated that immunotoxin therapy is a novel approach to improve the potency of targeted therapy. Immunotoxins are antibodies or antibody fragments coupled with a toxin. We designed an immunotoxin. The physicochemical properties were evaluated using ProtParam servers and secondary structure was examined by PROSO II and GORV. Using I-TASSER, a 3D model was built and refined by GalaxyRefine. The model was validated using PROCHECK and RAMPAGE. To predict immunotoxin allergenicity and mRNA stability, AlgPred server and RNAfold were used. Furthermore, the immunotoxin and HER2 were docked by ZDOCK. The scFv+RTX-A could be a non-allergenic and stable chimeric protein, and the secondary structure of its components did not alter, and this protein had a proper 3D structure that might have stable mRNA structure which could bind to HER2. Given the fact that the designed immunotoxin was a non-allergenic and stable chimeric protein and that it could bind with high affinity to HER2 receptors, we proposed that this chimeric protein could be a useful candidate for HER-2 positive BC patients.


Assuntos
Neoplasias da Mama/imunologia , Desenho de Fármacos , Imunotoxinas/imunologia , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Feminino , Humanos , Imunotoxinas/química , Modelos Moleculares , Conformação Proteica , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia
18.
Iran J Med Sci ; 46(1): 52-60, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33487792

RESUMO

Background: The most prevalent cancer in women over the world is breast cancer. Immunotherapy is a promising method to effectively treat cancer patients. Among various immunotherapy methods, tumor antigens stimulate the immune system to eradicate cancer cells. Preferentially expressed antigen in melanoma (PRAME) is mainly overexpressed in breast cancer cells, and has no expression in normal tissues. FliCΔD2D3, as truncated flagellin (FliC), is an effective toll-like receptor 5 (TLR5) agonist with lower inflammatory responses. The objective of the present study was to utilize bioinformatics methods to design a chimeric protein against breast cancer. Methods: The physicochemical properties, solubility, and secondary structures of PRAME+FliCΔD2D3 were predicted using the tools ProtParam, Protein-sol, and GOR IV, respectively. The 3D structure of the chimeric protein was built using I-TASSER and refined with GalaxyRefine, RAMPAGE, and PROCHECK. ANTIGENpro and VaxiJen were used to evaluate protein antigenicity, and allergenicity was checked using AlgPred and Allergen FP. Major histocompatibility complex )MHC( and cytotoxic T-lymphocytes )CTL( binding peptides were predicted using HLApred and CTLpred. Finally, B-cell continuous and discontinuous epitopes were predicted using ABCpred and ElliPro, respectively. Results: The stability and solubility of PRAME+FliCΔD2D3 were analyzed, and its secondary and tertiary structures were predicted. The results showed that the derived peptides could bind to MHCs and CTLs. The designed chimeric protein possessed both linear and conformational epitopes with a high binding affinity to B-cell epitopes. Conclusion: PRAME+FliCΔD2D3 is a stable and soluble chimeric protein that can stimulate humoral and cellular immunity. The obtained results can be utilized for the development of an experimental vaccine against breast cancer.


Assuntos
Antígenos de Neoplasias/imunologia , Neoplasias da Mama/prevenção & controle , Simulação por Computador/estatística & dados numéricos , Antígenos de Neoplasias/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/normas , Vacinas Anticâncer/uso terapêutico , Epitopos de Linfócito B/imunologia , Feminino , Humanos , Irã (Geográfico)
19.
IUBMB Life ; 72(7): 1306-1321, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32233112

RESUMO

Osteosarcoma (OS) is a kind of primary bone cancer that is considered as the leading cause of children death. Surgery and chemotherapy are considered as common treatment approaches for OS; the rate of survival for patients is almost 60-70%. Besides the used therapeutic approaches, it seems that there is a crucial need to launch new treatments for OS. In this regard, more understanding about cellular and molecular pathways involved in OS can contribute to recovery and develop new therapeutic platforms. Autophagy is a cellular machinery that digests and degrades dysfunctional proteins and organelles, so it can regulate the cell proliferation and survival. Most of the time, OS cells use autophagy to increase their survival and proliferation and to gain the ability to resist chemotherapy. Although, there are several controversial evidences on how OS cells use autophagy. A variety of cellular and molecular pathways, that is, microRNAs (miRNAs) can modulate autophagy. MiRNAs are some endogenous, approximately 22 nucleotide RNAs that have an important role in posttranscriptional regulation of mRNAs by targeting them. There are many evidences that the various miRNA expressions in OS cells are dysregulated, so it can propel a normal cell to cancerous one by influencing the cell survival, apoptosis, and autophagy, and eventually increased chemoresitance. Hence, miRNAs can be considered as new biomarkers for OS diagnosis, and according to the role of autophagy in OS progression, miRNAs can use inhibiting or promoting autophagy agents. The present review summarizes the effects of aberrant expression of miRNAs in OS diagnosis and treatment with focus on their roles in autophagy.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Autofagia , Neoplasias Ósseas/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , Osteossarcoma/tratamento farmacológico , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Humanos , Terapia de Alvo Molecular , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia
20.
J Immunoassay Immunochem ; 41(6): 1010-1020, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32795213

RESUMO

BACKGROUND: Cystic echinococcosis (CE) is a widespread parasitic disease caused by the larval stage of Echinococcus granulosus. Since current methods for the diagnosis of CE are not efficient enough, rapid, and reliable tests are required for the acceleration of CE diagnosis. The present study aimed to produce recombinant B8/1 and B8/2 antigens of E. granulosus and evaluate their sensitivities and specificities separately and simultaneously for the diagnosis of CE. METHODS: The recombinant B8/1 and B8/2 antigens were produced and used in an ELISA system for the diagnosis of CE. The sera specimens including 30 sera from pathologically confirmed CE patients, 30 from other non-CE patients, and 30 from healthy controls, were evaluated by the ELISA, using AgB8/1 and AgB8/2. RESULTS: The results showed a sensitivity of 93.33%, 90%, and 96.7% for AgB8/1, AgB8/2, and their combination, respectively. The specificities were 91.7%, 93.33%, and 93.33% for AgB8/1, AgB8/2, and their combination, respectively. CONCLUSION: Simultaneous usage of AgB8/1 and AgB8/2 increased the test sensitivity for the diagnosis of CE. Furthermore, the specificity of AgB8/1 and AgB8/2 combination was more than AgB8/1 and equal to AgB8/2 alone. The findings revealed that the simultaneous usage of AgB8/1 and AgB8/2 could be a suitable approach for the diagnosis of CE.


Assuntos
Antígenos de Helmintos/sangue , Equinococose/diagnóstico , Echinococcus granulosus/química , Ensaio de Imunoadsorção Enzimática , Animais , Antígenos de Helmintos/genética , Antígenos de Helmintos/imunologia , Equinococose/sangue , Equinococose/imunologia , Echinococcus granulosus/imunologia , Humanos , Proteínas Recombinantes/sangue , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa