Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(3): e0180923, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38349150

RESUMO

Antimicrobial resistance (AMR) is an ever-present threat to the treatment of infectious diseases. However, the potential relevance of this phenomenon in environmental reservoirs still raises many questions. Detection of antimicrobial-resistant bacteria in the environment is a critical aspect for understanding the prevalence of resistance outside of clinical settings, as detection in the environment indicates that resistance is likely already widespread. We isolated antimicrobial-resistant Escherichia coli from three urban waterbodies over a 15-month time series, determined their antimicrobial susceptibilities, investigated their population structure, and identified genetic determinants of resistance. We found that E. coli populations at each site were composed of different dominant phylotypes and showed distinct patterns of antimicrobial and multidrug resistance, despite close geographic proximity. Many strains that were genome-sequenced belonged to sequence types of international concern, particularly the ST131 clonal complex. We found widespread resistance to clinically important antimicrobials such as amoxicillin, cefotaxime, and ciprofloxacin, but found that all strains were susceptible to amikacin and the last-line antimicrobials meropenem and fosfomycin. Resistance was most often due to acquirable antimicrobial resistance genes, while chromosomal mutations in gyrA, parC, and parE conferred resistance to quinolones. Whole-genome analysis of a subset of strains further revealed the diversity of the population of E. coli present, with a wide array of AMR and virulence genes identified, many of which were present on the chromosome, including blaCTX-M. Finally, we determined that environmental persistence, transmission between sites, most likely mediated by wild birds, and transfer of mobile genetic elements likely contributed significantly to the patterns observed.IMPORTANCEA One Health perspective is crucial to understand the extent of antimicrobial resistance (AMR) globally, and investigation of AMR in the environment has been increasing in recent years. However, most studies have focused on waterways that are directly polluted by sewage, industrial manufacturing, or agricultural activities. Therefore, there remains a lack of knowledge about more natural, less overtly impacted environments. Through phenotypic and genotypic investigation of AMR in Escherichia coli, this study adds to our understanding of the extent and patterns of resistance in these types of environments, including over a time series, and showed that complex biotic and abiotic factors contribute to the patterns observed. Our study further emphasizes the importance of incorporating the surveillance of microbes in freshwater environments in order to better comprehend potential risks for both human and animal health and how the environment may serve as a sentinel for potential future clinical infections.


Assuntos
Anti-Infecciosos , Infecções por Escherichia coli , Animais , Humanos , Escherichia coli , Antibacterianos/farmacologia , Lagos , Infecções por Escherichia coli/microbiologia , Farmacorresistência Bacteriana/genética
2.
Can J Microbiol ; 69(5): 199-206, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36867856

RESUMO

Specialized metabolites produced by microorganisms found in ocean sediments display a wide range of clinically relevant bioactivities, including antimicrobial, anticancer, antiviral, and anti-inflammatory. Due to limitations in our ability to culture many benthic microorganisms under laboratory conditions, their potential to produce bioactive compounds remains underexplored. However, the advent of modern mass spectrometry technologies and data analysis methods for chemical structure prediction has aided in the discovery of such metabolites from complex mixtures. In this study, ocean sediments were collected from Baffin Bay (Canadian Arctic) and the Gulf of Maine for untargeted metabolomics using mass spectrometry. A direct examination of prepared organic extracts identified 1468 spectra, of which ∼45% could be annotated using in silico analysis methods. A comparable number of spectral features were detected in sediments collected from both locations, but 16S rRNA gene sequencing revealed a significantly more diverse bacterial community in samples from Baffin Bay. Based on spectral abundance, 12 specialized metabolites known to be associated with bacteria were selected for discussion. The application of metabolomics directly on marine sediments provides an avenue for culture-independent detection of metabolites produced under natural settings. The strategy can help prioritize samples for novel bioactive metabolite discovery using traditional workflows.


Assuntos
Baías , Sedimentos Geológicos , Sedimentos Geológicos/microbiologia , Maine , RNA Ribossômico 16S/genética , Canadá , Bactérias/genética , Bactérias/metabolismo
3.
J Membr Biol ; 251(1): 105-117, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29098330

RESUMO

Infections caused by mycobacteria are difficult to treat due to their inherent physiology, cellular structure, and intracellular lifestyle. Mycobacterium tuberculosis is a pathogen of global concern as it causes tuberculosis (TB) in humans, which requires 6-9 months of chemotherapy. The situation is further exacerbated in the case of infections caused by drug-resistant strains, which necessitate the prolonged use of agents associated with increased host toxicities. Great effort has been invested into the development of new agents for the treatment of drug-resistant infections, in addition to novel strategies to reduce treatment time. Energy production using oxidative phosphorylation is essential for the survival of M. tuberculosis, even under conditions of dormancy. Many compounds have been recently discovered that inhibit different aspects of energy metabolism in mycobacteria, some of which have been approved for human use or are currently undergoing development. The most successful examples include inhibitors of QcrB and AtpE, which are part of the cytochrome bc 1 complex and FoF1-ATP synthase, respectively. In addition, many of the discovered inhibitors are active against drug-resistant strains of M. tuberculosis, inhibit nonreplicating cells, and also show potential for the treatment of other mycobacterial infections. In the current review, we focus on the discovery of mycobacterial QcrB and AtpE inhibitors, their modes of action, and the associated mechanisms of resistance observed to date.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mycobacterium tuberculosis/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Proteínas de Membrana/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética
4.
J Ind Microbiol Biotechnol ; 44(4-5): 517-524, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27766439

RESUMO

The δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine (ACV) tripeptide is the first dedicated intermediate in the biosynthetic pathway leading to the penicillin and cephalosporin classes of ß-lactam natural products in bacteria and fungi. It is synthesized nonribosomally by the ACV synthetase (ACVS) enzyme, which has been purified and partially characterized from many sources. Due to its large size and instability, many details regarding the reaction mechanism of ACVS are still not fully understood. In this review we discuss the chronology and associated methodology that led to the discovery of ACVS, some of the main findings regarding its activities, and some recent/current studies being conducted on the enzyme. In addition, we conclude with perspectives on what can be done to increase our understating of this very important protein in the future.


Assuntos
Genes Bacterianos , Genes Fúngicos , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Oligopeptídeos/química , Penicillium chrysogenum/enzimologia , Penicillium chrysogenum/genética , Streptomyces/enzimologia , Streptomyces/genética
5.
J Ind Microbiol Biotechnol ; 43(4): 537-55, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26790415

RESUMO

The genus Streptomyces comprises bacteria that undergo a complex developmental life cycle and produce many metabolites of importance to industry and medicine. Streptomyces clavuligerus produces the ß-lactamase inhibitor clavulanic acid, which is used in combination with ß-lactam antibiotics to treat certain ß-lactam resistant bacterial infections. Many aspects of how clavulanic acid production is globally regulated in S. clavuligerus still remains unknown. We conducted comparative proteomics analysis using the wild type strain of S. clavuligerus and two mutants (ΔbldA and ΔbldG), which are defective in global regulators and vary in their ability to produce clavulanic acid. Approximately 33.5 % of the predicted S. clavuligerus proteome was detected and 192 known or putative regulatory proteins showed statistically differential expression levels in pairwise comparisons. Interestingly, the expression of many proteins whose corresponding genes contain TTA codons (predicted to require the bldA tRNA for translation) was unaffected in the bldA mutant.


Assuntos
Ácido Clavulânico/biossíntese , Regulação Bacteriana da Expressão Gênica , Proteômica , Streptomyces/crescimento & desenvolvimento , Streptomyces/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Códon/genética , Proteoma/genética , Proteoma/metabolismo , Streptomyces/genética , Inibidores de beta-Lactamases/metabolismo
6.
Appl Environ Microbiol ; 79(1): 240-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23104404

RESUMO

Carboxyethylarginine synthase is the first dedicated enzyme of clavam biosynthesis in Streptomyces clavuligerus and is present in two isoforms encoded by two separate genes. When grown on a liquid soy medium, strains with ceaS1 deleted showed only a mild reduction of clavam biosynthesis, while disruption of ceaS2 abolished all clavam biosynthesis. Creation of an in-frame ceaS2 deletion mutant to avoid polarity did not restore clavam production, nor did creation of a site-directed mutant altered only in a single amino acid residue important for activity. Reverse transcriptase PCR analyses of these mutants indicated that the failure to produce clavam metabolites could be traced to reduced or abolished transcription of ceaS1 in the ceaS2 mutants, despite the location of ceaS1 on a replicon completely separate from that of ceaS2. Western analyses further showed that the CeaS1 protein (as well as the CeaS2 protein) was absent from the ceaS2 mutants. Complementation experiments were able to restore clavam production partially, but only by virtue of restoring CeaS2 production. CeaS1 was still absent from the complemented strains. While this dependence of CeaS1 production on the expression of ceaS2 from its native chromosomal location was seen in all of the ceaS2 mutants, the effect was limited to growth in liquid medium. When the same mutants were grown on solid soy medium, clavam production was restored and CeaS1 was produced, albeit at low levels compared to the wild type.


Assuntos
Ácidos Clavulânicos/biossíntese , Regulação Bacteriana da Expressão Gênica , Streptomyces/enzimologia , Streptomyces/genética , Substituição de Aminoácidos , Western Blotting , Meios de Cultura/química , Deleção de Genes , Perfilação da Expressão Gênica , Teste de Complementação Genética
7.
Nat Chem Biol ; 7(4): 228-35, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21378984

RESUMO

The detection of tuberculosis currently relies upon insensitive and unspecific techniques; newer diagnostics would ideally co-opt specific bacterial processes to provide real-time readouts. The trehalose mycolyltransesterase enzymes (antigens 85A, 85B and 85C (Ag85A, Ag85B, Ag85C)) serve as essential mediators of cell envelope function and biogenesis in Mycobacterium tuberculosis. Through the construction of a systematically varied sugar library, we show here that Ag85 enzymes have exceptionally broad substrate specificity. This allowed exogenously added synthetic probes to be specifically incorporated into M. tuberculosis growing in vitro and within macrophages. Even bulky substituents, such as a fluorescein-containing trehalose probe (FITC-trehalose), were incorporated by growing bacilli, thereby producing fluorescent bacteria; microscopy revealed selective labeling of poles and membrane. Addition of FITC-trehalose to M. tuberculosis-infected macrophages allowed selective, sensitive detection of M. tuberculosis within infected mammalian macrophages. These studies suggest that analogs of trehalose may prove useful as probes of function and for other imaging modalities.


Assuntos
Genes Reporter , Mycobacterium tuberculosis/metabolismo , Trealose/metabolismo , Animais , Linhagem Celular , Corantes Fluorescentes/química , Macrófagos/citologia , Macrófagos/metabolismo , Espectrometria de Massas , Camundongos , Microscopia de Fluorescência , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Especificidade por Substrato , Trealose/análogos & derivados , Trealose/genética
8.
Microbiol Spectr ; : e0171623, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37584606

RESUMO

Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne's Disease (JD) in ruminants, which is responsible for significant economic loss to the global dairy industry. Mixed strain infection (MSI) refers to the concurrent infection of a susceptible host with genetically distinct strains of a pathogen, whereas within-host changes in an infecting strain leading to genetically distinguishable progeny is called microevolution. The two processes can influence host-pathogen dynamics, disease progression and outcomes, but not much is known about their prevalence and impact on JD. Therefore, we obtained up to 10 MAP isolates each from 14 high-shedding animals and subjected them to whole-genome sequencing. Twelve of the 14 animals examined showed evidence for the presence of MSIs and microevolution, while the genotypes of MAP isolates from the remaining two animals could be attributed solely to microevolution. All MAP isolates that were otherwise isogenic had differences in short sequence repeats (SSRs), of which SSR1 and SSR2 were the most diverse and homoplastic. Variations in SSR1 and SSR2, which are located in ORF1 and ORF2, respectively, affect the genetic reading frame, leading to protein products with altered sequences and computed structures. The ORF1 gene product is predicted to be a MAP surface protein with possible roles in host immune modulation, but nothing could be inferred regarding the function of ORF2. Both genes are conserved in Mycobacterium avium complex members, but SSR1-based modulation of ORF1 reading frames seems to only occur in MAP, which could have potential implications on the infectivity of this pathogen. IMPORTANCE Johne's disease (JD) is a major problem in dairy animals, and concerns have been raised regarding the association of Mycobacterium avium subsp. paratuberculosis (MAP) with Crohn's disease in humans. MAP is an extremely slow-growing bacterium with low genome evolutionary rates. Certain short sequence repeats (SSR1 and SSR2) in the MAP chromosome are highly variable and evolve at a faster rate than the rest of the chromosome. In the current study, multiple MAP isolates with genetic variations such as single-nucleotide polymorphisms, and more noticeably, diverse SSRs, could simultaneously infect animals. Variations in SSR1 and SSR2 affect the products of the respective genes containing them. Since multiple MAP isolates can infect the same animal and the possibility that the pathogen undergoes further changes within the host due to unstable SSRs, this could provide a compensative mechanism for an otherwise slow-evolving pathogen to increase phenotypic diversity for overcoming host responses.

9.
Front Genet ; 14: 1043598, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816022

RESUMO

Mycobacterium avium subsp. paratuberculosis (MAP) is the pathogen responsible for paratuberculosis or Johne's Disease (JD) in ruminants, which is responsible for substantial economic losses worldwide. MAP transmission primarily occurs through the fecal-oral route, and the introduction of an MAP infected animal into a herd is an important transmission route. In the current study, we characterized MAP isolates from 67 cows identified in 20 herds from the provinces of Quebec and Ontario, Canada. Whole genome sequencing (WGS) was performed and an average genome coverage (relative to K-10) of ∼14.9 fold was achieved. The total number of SNPs present in each isolate varied from 51 to 132 and differed significantly between herds. Isolates with the highest genetic variability were generally present in herds from Quebec. The isolates were broadly separated into two main clades and this distinction was not influenced by the province from which they originated. Analysis of 8 MIRU-VNTR loci and 11 SSR loci was performed on the 67 isolates from the 20 dairy herds and publicly available references, notably major genetic lineages and six isolates from the province of Newfoundland and Labrador. All 67 field isolates were phylogenetically classified as Type II (C-type) and according to MIRU-VNTR, the predominant type was INMV 2 (76.1%) among four distinct patterns. Multilocus SSR typing identified 49 distinct INMV SSR patterns. The discriminatory index of the multilocus SSR typing was 0.9846, which was much higher than MIRU-VNTR typing (0.3740). Although multilocus SSR analysis provides good discriminatory power, the resolution was not informative enough to determine inter-herd transmission. In select cases, SNP-based analysis was the only approach able to document disease transmission between herds, further validated by animal movement data. The presence of SNPs in several virulence genes, notably for PE, PPE, mce and mmpL, is expected to explain differential antigenic or pathogenetic host responses. SNP-based studies will provide insight into how MAP genetic variation may impact host-pathogen interactions. Our study highlights the informative power of WGS which is now recommended for epidemiological studies and to document mixed genotypes infections.

10.
Antimicrob Agents Chemother ; 56(9): 4845-55, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22751548

RESUMO

Streptomyces clavuligerus produces a collection of five clavam metabolites, including the clinically important ß-lactamase inhibitor clavulanic acid, as well as four structurally related metabolites called 5S clavams. The paralogue gene cluster of S. clavuligerus is one of three clusters of genes for the production of these clavam metabolites. A region downstream of the cluster was analyzed, and snk, res1, and res2, encoding elements of an atypical two-component regulatory system, were located. Mutation of any one of the three genes had no effect on clavulanic acid production, but snk and res2 mutants produced no 5S clavams, whereas res1 mutants overproduced 5S clavams. Reverse transcriptase PCR analyses showed that transcription of cvm7p (which encodes a transcriptional activator of 5S clavam biosynthesis) and 5S clavam biosynthetic genes was eliminated in snk and in res2 mutants but that snk and res2 transcription was unaffected in a cvm7p mutant. Both snk and res2 mutants could be complemented by introduction of cvm7p under the control of an independently regulated promoter. In vitro assays showed that Snk can autophosphorylate and transfer its phosphate group to both Res1 and Res2, and Snk-H365, Res1-D52, and Res2-D52 were identified as the phosphorylation sites for the system. Dephosphorylation assays indicated that Res1 stimulates dephosphorylation of Res2∼P. These results suggest a regulatory cascade in which Snk and Res2 form a two-component system controlling cvm7p transcription, with Res1 serving as a checkpoint to modulate phosphorylation levels. Cvm7P then activates transcription of 5S clavam biosynthetic genes.


Assuntos
Ácido Clavulânico/biossíntese , Ácidos Clavulânicos/biossíntese , Genes Bacterianos , Genes Reguladores , Streptomyces/genética , Sequência de Aminoácidos , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Dados de Sequência Molecular , Família Multigênica , Mutação , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Streptomyces/metabolismo , Ativação Transcricional , Inibidores de beta-Lactamases
11.
Antimicrob Agents Chemother ; 56(4): 1797-809, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22252828

RESUMO

SQ109, a 1,2-diamine related to ethambutol, is currently in clinical trials for the treatment of tuberculosis, but its mode of action remains unclear. Here, we demonstrate that SQ109 disrupts cell wall assembly, as evidenced by macromolecular incorporation assays and ultrastructural analyses. SQ109 interferes with the assembly of mycolic acids into the cell wall core of Mycobacterium tuberculosis, as bacilli exposed to SQ109 show immediate inhibition of trehalose dimycolate (TDM) production and fail to attach mycolates to the cell wall arabinogalactan. These effects were not due to inhibition of mycolate synthesis, since total mycolate levels were unaffected, but instead resulted in the accumulation of trehalose monomycolate (TMM), the precursor of TDM and cell wall mycolates. In vitro assays using purified enzymes showed that this was not due to inhibition of the secreted Ag85 mycolyltransferases. We were unable to achieve spontaneous generation of SQ109-resistant mutants; however, analogs of this compound that resulted in similar shutdown of TDM synthesis with concomitant TMM accumulation were used to spontaneously generate resistant mutants that were also cross-resistant to SQ109. Whole-genome sequencing of these mutants showed that these all had mutations in the essential mmpL3 gene, which encodes a transmembrane transporter. Our results suggest that MmpL3 is the target of SQ109 and that MmpL3 is a transporter of mycobacterial TMM.


Assuntos
Adamantano/análogos & derivados , Antituberculosos/farmacologia , Proteínas de Bactérias/efeitos dos fármacos , Parede Celular/metabolismo , Fatores Corda/metabolismo , Etilenodiaminas/farmacologia , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos/metabolismo , Aciltransferases/metabolismo , Adamantano/farmacologia , Aerobiose , Antígenos de Bactérias/metabolismo , Parede Celular/efeitos dos fármacos , Cromatografia em Camada Fina , Farmacorresistência Bacteriana/genética , Metabolismo dos Lipídeos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica , Mutação/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/ultraestrutura
12.
Microbiol Spectr ; 10(2): e0231421, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35225656

RESUMO

Streptomyces bacteria are a key source of microbial specialized metabolites with useful applications in medicine and agriculture. In addition, some species are important plant pathogens and cause diseases such as potato scab, which reduces the quality and market value of affected potato crops. Most scab-associated Streptomyces spp. produce the phytotoxic metabolite thaxtomin A as the principal pathogenicity factor. However, recent reports have described scab-causing strains that do not produce thaxtomin A, but instead produce other phytotoxins that are thought to contribute to plant host infection and symptom development. Streptomyces sp. 11-1-2 is a highly pathogenic strain that was originally isolated from a scab symptomatic potato tuber in Newfoundland, Canada. The strain secretes one or more phytotoxic compounds of unknown identity, and it is hypothesized that these compounds serve as virulence factors for this organism. We analyzed the genome sequence of Streptomyces sp. 11-1-2 and found biosynthetic gene clusters for producing the known herbicidal compounds nigericin and geldanamycin. Phytotoxic culture extracts were analyzed using liquid chromatography-coupled tandem mass spectrometry and molecular networking, and this confirmed the production of both compounds by Streptomyces sp. 11-1-2 along with other, potentially related metabolites. The biosynthesis of both metabolites was found to be suppressed by the addition of N-acetylglucosamine to the culture medium, and pure nigericin and geldanamycin were able to exhibit phytotoxic effects against both radish seedlings and potato tuber tissue. Furthermore, the coadministration of the two compounds produced greater phytotoxic effects against potato tuber tissue than administration of each compound alone. IMPORTANCE Plant pathogens use a variety of mechanisms, including the production of phytotoxic specialized metabolites, to establish an infection of host tissue. Although thaxtomin A is considered the key phytotoxin involved in the development of potato scab disease, there is increasing evidence that other phytotoxins can play a role in disease development in some instances. In this study, we show that the highly pathogenic Streptomyces sp. 11-1-2 is capable of producing nigericin and geldanamycin, which individually and combined can cause significant damage to potato tuber tissue and radish seedlings. Our results suggest that the pathogenic phenotype of Streptomyces sp. 11-1-2 is due in part to the production of these specialized metabolites. As the biological activity of nigericin and geldanamycin is vastly different from the proposed activity of thaxtomin A against plants, the secretion of these compounds may represent a novel mechanism of plant pathogenicity exhibited by some Streptomyces species.


Assuntos
Solanum tuberosum , Streptomyces , Benzoquinonas , Lactamas Macrocíclicas , Nigericina/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Solanum tuberosum/microbiologia , Streptomyces/genética , Streptomyces/metabolismo
13.
Microbiol Spectr ; 10(4): e0055222, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35900081

RESUMO

Streptomyces species produce a wide variety of specialized metabolites, some of which are used for communication or competition for resources in their natural environments. In addition, many natural products used in medicine and industry are derived from Streptomyces, and there has been interest in their capacity to produce volatile organic compounds (VOCs) for different industrial and agricultural applications. Recently, a machine-learning workflow called MSHub/GNPS was developed, which enables auto-deconvolution of gas chromatography-mass spectrometry (GC-MS) data, molecular networking, and library search capabilities, but it has not been applied to Streptomyces volatilomes. In this study, 131 Streptomyces isolates from the island of Newfoundland were phylogenetically typed, and 37 were selected based on their phylogeny and growth characteristics for VOC analysis using both a user-guided (conventional) and an MSHub/GNPS-based approach. More VOCs were annotated by MSHub/GNPS than by the conventional method. The number of unknown VOCs detected by the two methods was higher than those annotated, suggesting that many novel compounds remain to be identified. The molecular network generated by GNPS can be used to guide the annotation of such unknown VOCs in future studies. However, the number of overlapping VOCs annotated by the two methods is relatively small, suggesting that a combination of analysis methods might be required for robust volatilome analysis. More than half of the VOCs annotated with high confidence by the two approaches are plant-associated, many with reported bioactivities such as insect behavior modulation. Details regarding the properties and reported functions of such VOCs are described. IMPORTANCE This study represents the first detailed analysis of Streptomyces volatilomes using MSHub/GNPS, which in combination with a routinely used conventional method led to many annotations. More VOCs could be annotated using MSHub/GNPS as compared to the conventional method, many of which have known antimicrobial, anticancer, and insect behavior-modulating activities. The identification of numerous plant-associated VOCs by both approaches in the current study suggests that their production could be a more widespread phenomenon by members of the genus, highlighting opportunities for their large-scale production using Streptomyces. Plant-associated VOCs with antimicrobial activities, such as 1-octen-3-ol, octanol, and phenylethyl alcohol, have potential applications as fumigants. Furthermore, many of the annotated VOCs are reported to influence insect behavior, alluding to a possible explanation for their production based on the functions of other recently described Streptomyces VOCs in dispersal and nutrient acquisition.


Assuntos
Streptomyces , Compostos Orgânicos Voláteis , Agricultura , Streptomyces/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo
14.
ACS Omega ; 6(17): 11474-11487, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34056303

RESUMO

Streptomyces scabiei is a key causative agent of common scab disease, which causes significant economic losses to potato growers worldwide. This organism produces several phytotoxins that are known or suspected to contribute to host-pathogen interactions and disease development; however, the full metabolic potential of S. scabiei has not been previously investigated. In this study, we used a combined metabolomic and genomic approach to investigate the metabolites that are produced by S. scabiei. The genome sequence was analyzed using antiSMASH and DeepBGC to identify specialized metabolite biosynthetic gene clusters. Using untargeted liquid chromatography-coupled tandem mass spectrometry (LC-MS2), the metabolic profile of S. scabiei was compared after cultivation on three different growth media. MS2 data were analyzed using Feature-Based Molecular Networking and hierarchical clustering in BioDendro. Metabolites were annotated by performing a Global Natural Products Social Molecular Networking (GNPS) spectral library search or using Network Annotation Propagation, SIRIUS, MetWork, or Competitive Fragmentation Modeling for Metabolite Identification. Using this approach, we were able to putatively identify new analogues of known metabolites as well as molecules that were not previously known to be produced by S. scabiei. To our knowledge, this study represents the first global analysis of specialized metabolites that are produced by this important plant pathogen.

15.
Metabolites ; 11(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924621

RESUMO

Bacterial specialized metabolites are of immense importance because of their medicinal, industrial, and agricultural applications. Streptomyces clavuligerus is a known producer of such compounds; however, much of its metabolic potential remains unknown, as many associated biosynthetic gene clusters are silent or expressed at low levels. The overexpression of ribosome recycling factor (frr) and ribosome engineering (induced rpsL mutations) in other Streptomyces spp. has been reported to increase the production of known specialized metabolites. Therefore, we used an overexpression strategy in combination with untargeted metabolomics, molecular networking, and in silico analysis to annotate 28 metabolites in the current study, which have not been reported previously in S. clavuligerus. Many of the newly described metabolites are commonly found in plants, further alluding to the ability of S. clavuligerus to produce such compounds under specific conditions. In addition, the manipulation of frr and rpsL led to different metabolite production profiles in most cases. Known and putative gene clusters associated with the production of the observed compounds are also discussed. This work suggests that the combination of traditional strain engineering and recently developed metabolomics technologies together can provide rapid and cost-effective strategies to further speed up the discovery of novel natural products.

16.
Front Microbiol ; 11: 585456, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178168

RESUMO

Thaxtomin A is a potent phytotoxin that serves as the principle pathogenicity determinant of the common scab pathogen, Streptomyces scabiei, and is also a promising natural herbicide for agricultural applications. The biosynthesis of thaxtomin A involves the non-ribosomal peptide synthetases (NRPSs) TxtA and TxtB, and an MbtH-like protein (MLP), TxtH, which may function as a chaperone by promoting the proper folding of the two NRPS enzymes in S. scabiei. MLPs are required for the proper function of many NRPS enzymes in bacteria, and they are often capable of interacting with NRPSs from different biosynthetic pathways, though the mechanism by which this occurs is still poorly understood. To gain additional insights into MLP functional cross-talk, we conducted a broad survey of MLPs from diverse phylogenetic lineages to determine if they could functionally replace TxtH. The MLPs were assessed using a protein solubility assay to determine whether they could promote the soluble expression of the TxtA and TxtB adenylation domains. In addition, the MLPs were tested for their ability to restore thaxtomin production in a S. scabiei mutant that lacked TxtH and other endogenous MLPs. Our results showed that the MLPs investigated vary in their ability to exhibit functional cross-talk with TxtH, with two of the MLPs being unable to compensate for the loss of TxtH in the assays performed. The ability of an MLP to serve as a functional partner for the thaxtomin NRPS was not correlated with its overall amino acid similarity with TxtH, but instead with the presence of highly conserved residues. In silico structural analysis of TxtH in association with the TxtA and TxtB adenylation domains revealed that several such residues are situated at the predicted interaction interface, suggesting that they might be critical for promoting functional interactions between MLPs and the thaxtomin NRPS enzymes. Overall, our study provides additional insights into the mechanism of MLP cross-talk, and it enhances our understanding of the thaxtomin biosynthetic machinery. It is anticipated that our findings will have useful applications for both the control of common scab disease and the commercial production of thaxtomin A for agricultural use.

17.
Front Genet ; 11: 600692, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33408740

RESUMO

Mixed strain infection (MSI) refers to the concurrent infection of a susceptible host with multiple strains of a single pathogenic species. Known to occur in humans and animals, MSIs deserve special consideration when studying transmission dynamics, evolution, and treatment of mycobacterial diseases, notably tuberculosis in humans and paratuberculosis (or Johne's disease) in ruminants. Therefore, a systematic review was conducted to examine how MSIs are defined in the literature, how widespread the phenomenon is across the host species spectrum, and to document common methods used to detect such infections. Our search strategy identified 121 articles reporting MSIs in both humans and animals, the majority (78.5%) of which involved members of the Mycobacterium tuberculosis complex, while only a few (21.5%) examined non-tuberculous mycobacteria (NTM). In addition, MSIs exist across various host species, but most reports focused on humans due to the extensive amount of work done on tuberculosis. We reviewed the strain typing methods that allowed for MSI detection and found a few that were commonly employed but were associated with specific challenges. Our review notes the need for standardization, as some highly discriminatory methods are not adapted to distinguish between microevolution of one strain and concurrent infection with multiple strains. Further research is also warranted to examine the prevalence of NTM MSIs in both humans and animals. In addition, it is envisioned that the accurate identification and a better understanding of the distribution of MSIs in the future will lead to important information on the epidemiology and pathophysiology of mycobacterial diseases.

18.
Microorganisms ; 8(11)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187102

RESUMO

The Streptomyces produce a great diversity of specialized metabolites, including highly volatile compounds with potential biological activities. Volatile organic compounds (VOCs) produced by nine Streptomyces spp., some of which are of industrial importance, were collected and identified using gas chromatography-mass spectrometry (GC-MS). Biosynthetic gene clusters (BGCs) present in the genomes of the respective Streptomyces spp. were also predicted to match them with the VOCs detected. Overall, 33 specific VOCs were identified, of which the production of 16 has not been previously reported in the Streptomyces. Among chemical classes, the most abundant VOCs were terpenes, which is consistent with predicted biosynthetic capabilities. In addition, 27 of the identified VOCs were plant-associated, demonstrating that some Streptomyces spp. can also produce such molecules. It is possible that some of the VOCs detected in the current study have roles in the interaction of Streptomyces with plants and other higher organisms, which might provide opportunities for their application in agriculture or industry.

19.
Mol Plant Pathol ; 20(10): 1379-1393, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31282068

RESUMO

Streptomyces scabies causes potato common scab disease, which reduces the quality and market value of affected tubers. The predominant pathogenicity determinant produced by S. scabies is the thaxtomin A phytotoxin, which is essential for common scab disease development. Production of thaxtomin A involves the nonribosomal peptide synthetases (NRPSs) TxtA and TxtB, both of which contain an adenylation (A-) domain for selecting and activating the appropriate amino acid during thaxtomin biosynthesis. The genome of S. scabies 87.22 contains three small MbtH-like protein (MLP)-coding genes, one of which (txtH) is present in the thaxtomin biosynthesis gene cluster. MLP family members are typically required for the proper folding of NRPS A-domains and/or stimulating their activities. This study investigated the importance of TxtH during thaxtomin biosynthesis in S. scabies. Biochemical studies showed that TxtH is required for promoting the soluble expression of both the TxtA and TxtB A-domains in Escherichia coli, and amino acid residues essential for this activity were identified. Deletion of txtH in S. scabies significantly reduced thaxtomin A production, and deletion of one of the two additional MLP homologues in S. scabies completely abolished production. Engineered expression of all three S. scabies MLPs could restore thaxtomin A production in a triple MLP-deficient strain, while engineered expression of MLPs from other Streptomyces spp. could not. Furthermore, the constructed MLP mutants were reduced in virulence compared to wild-type S. scabies. The results of our study confirm that TxtH plays a key role in thaxtomin A biosynthesis and plant pathogenicity in S. scabies.


Assuntos
Proteínas de Bactérias/metabolismo , Solanum tuberosum/microbiologia , Streptomyces/metabolismo , Streptomyces/patogenicidade , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Indóis/metabolismo , Família Multigênica/genética , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Piperazinas/metabolismo , Doenças das Plantas/microbiologia , Streptomyces/genética , Virulência
20.
PLoS One ; 14(4): e0215960, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31013337

RESUMO

In Streptomyces clavuligerus, the gene cluster involved in the biosynthesis of the clinically used ß-lactamase inhibitor clavulanic acid contains a gene (orf12 or cpe) encoding a protein with a C-terminal class A ß-lactamase-like domain. The cpe gene is essential for clavulanic acid production, and the recent crystal structure of its product (Cpe) was shown to also contain an N-terminal isomerase/cyclase-like domain, but the function of the protein remains unknown. In the current study, we show that Cpe is a cytoplasmic protein and that both its N- and C-terminal domains are required for in vivo clavulanic acid production in S. clavuligerus. Our results along with those from previous studies allude towards a biosynthetic role for Cpe during the later stages of clavulanic acid production in S. clavuligerus. Amino acids from Cpe essential for biosynthesis were also identified, including one (Lys89) from the recently described N-terminal isomerase-like domain of unknown function. Homologues of Cpe from other clavulanic acid-producing Streptomyces spp. were shown to be functionally equivalent to the S. clavuligerus protein, whereas those from non-producers containing clavulanic acid-like gene clusters were not. The suggested in vivo involvement of an isomerase-like domain recruited by an ancestral ß-lactamase related protein, supports a previous hypothesis that Cpe could be involved in a step requiring the opening and modification of the clavulanic acid core during its biosynthesis from 5S precursors.


Assuntos
Aminoácidos/genética , Proteínas de Bactérias/biossíntese , Isomerases/química , Streptomyces/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Ácido Clavulânico , Regulação Bacteriana da Expressão Gênica , Isomerases/genética , Família Multigênica/genética , Domínios Proteicos/genética , Streptomyces/genética , beta-Lactamases/química , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa