Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Exp Bot ; 75(11): 3521-3541, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38469677

RESUMO

We hypothesized that anthocyanins act as a sugar-buffer and an alternative electron sink during leaf senescence to prevent sugar-mediated early senescence and photoinhibition. To elucidate the role of anthocyanin, we monitored seasonal changes in photosynthetic traits, sugar, starch and N contents, pigment composition, and gene expression profiles in leaves exposed to substantially different light conditions within a canopy of an adult fullmoon maple (Acer japonicum) tree. Enhancement of starch amylolysis accompanied by cessation of starch synthesis occurred in the same manner independent of light conditions. Leaf sugar contents increased, but reached upper limits in the late stage of leaf senescence, even though leaf anthocyanins further increased after complete depletion of starch. Sun-exposed leaves maintained higher energy consumption via electron flow than shade-grown leaves during leaf N resorption. Thus, anthocyanins accumulated in sun-exposed leaves might have a regulative role as a sugar-buffer, retarding leaf senescence, and an indirect photoprotective role as an alternative sink for electron consumption to compensate declines in other metabolic processes such as starch and protein synthesis. In this context, anthocyanins may be key substrates protecting both outer-canopy leaves (against photoinhibition) and inner-canopy leaves (via shading by outer-canopy leaves) from high light stress during N resorption.


Assuntos
Acer , Antocianinas , Folhas de Planta , Amido , Acer/fisiologia , Acer/metabolismo , Amido/metabolismo , Antocianinas/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Senescência Vegetal , Fotossíntese
2.
J Exp Bot ; 74(1): 336-351, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36269314

RESUMO

Jatropha curcas is a drought-tolerant plant that maintains its photosynthetic pigments under prolonged drought, and quickly regains its photosynthetic capacity when water is available. It has been reported that drought stress leads to increased thermal dissipation in PSII, but that of PSI has been barely investigated, perhaps due to technical limitations in measuring the PSI absolute quantum yield. In this study, we combined biochemical analysis and spectroscopic measurements using an integrating sphere, and verified that the quantum yields of both photosystems are temporarily down-regulated under drought. We found that the decrease in the quantum yield of PSII was accompanied by a decrease in the core complexes of PSII while light-harvesting complexes are maintained under drought. In addition, in drought-treated plants, we observed a decrease in the absolute quantum yield of PSI as compared with the well-watered control, while the amount of PSI did not change, indicating that non-photochemical quenching occurs in PSI. The down-regulation of both photosystems was quickly lifted in a few days upon re-watering. Our results indicate, that in J. curcas under drought, the down-regulation of both PSII and PSI quantum yield protects the photosynthetic machinery from uncontrolled photodamage.


Assuntos
Jatropha , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/metabolismo , Jatropha/metabolismo , Transporte de Elétrons/fisiologia , Secas , Regulação para Baixo , Folhas de Planta/metabolismo , Fotossíntese/fisiologia , Água/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila
3.
J Plant Res ; 135(2): 361-376, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35146632

RESUMO

The assembly process of photosystem II (PSII) requires several auxiliary proteins to form assembly intermediates. In plants, early assembly intermediates comprise D1 and D2 subunits of PSII together with a few auxiliary proteins including at least ONE-HELIX PROTEIN1 (OHP1), OHP2, and HIGH-CHLOROPHYLL FLUORESCENCE 244 (HCF244) proteins. Herein, we report the basic characterization of the assembling intermediates, which we purified from Arabidopsis transgenic plants overexpressing a tagged OHP1 protein and named the OHP1 complexes. We analyzed two major forms of OHP1 complexes by mass spectrometry, which revealed that the complexes consist of OHP1, OHP2, and HCF244 in addition to the PSII subunits D1, D2, and cytochrome b559. Analysis of chlorophyll fluorescence showed that a major form of the complex binds chlorophyll a and carotenoids and performs quenching with a time constant of 420 ps. To identify the localization of the auxiliary proteins, we solubilized thylakoid membranes using a digitonin derivative, glycodiosgenin, and separated them into three fractions by ultracentrifugation, and detected these proteins in the loose pellet containing the stroma lamellae and the grana margins together with two chlorophyll biosynthesis enzymes. The results indicated that chlorophyll biosynthesis and assembly may take place in the same compartments of thylakoid membranes. Inducible suppression of the OHP2 mRNA substantially decreased the OHP2 protein in mature Arabidopsis leaves without a significant reduction in the maximum quantum yield of PSII under low-light conditions, but it compromised the yields under high-light conditions. This implies that the auxiliary protein is required for acclimation to high-light conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Clorofila A/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/metabolismo
4.
Plant Cell Physiol ; 62(3): 436-446, 2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-33416834

RESUMO

Land plants evolved from a single group of streptophyte algae. One of the key factors needed for adaptation to a land environment is the modification in the peripheral antenna systems of photosystems (PSs). Here, the PSs of Mesostigma viride, one of the earliest-branching streptophyte algae, were analyzed to gain insight into their evolution. Isoform sequencing and phylogenetic analyses of light-harvesting complexes (LHCs) revealed that M. viride possesses three algae-specific LHCs, including algae-type LHCA2, LHCA9 and LHCP, while the streptophyte-specific LHCB6 was not identified. These data suggest that the acquisition of LHCB6 and the loss of algae-type LHCs occurred after the M. viride lineage branched off from other streptophytes. Clear-native (CN)-polyacrylamide gel electrophoresis (PAGE) resolved the photosynthetic complexes, including the PSI-PSII megacomplex, PSII-LHCII, two PSI-LHCI-LHCIIs, PSI-LHCI and the LHCII trimer. Results indicated that the higher-molecular weight PSI-LHCI-LHCII likely had more LHCII than the lower-molecular weight one, a unique feature of M. viride PSs. CN-PAGE coupled with mass spectrometry strongly suggested that the LHCP was bound to PSII-LHCII, while the algae-type LHCA2 and LHCA9 were bound to PSI-LHCI, both of which are different from those in land plants. Results of the present study strongly suggest that M. viride PSs possess unique features that were inherited from a common ancestor of streptophyte and chlorophyte algae.


Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Estreptófitas/metabolismo , Centrifugação com Gradiente de Concentração , Eletroforese em Gel de Poliacrilamida , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/isolamento & purificação , Espectrometria de Massas , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/isolamento & purificação , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Filogenia , Análise de Sequência de DNA , Estreptófitas/genética
5.
Plant Cell Physiol ; 62(2): 348-355, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33399873

RESUMO

Native polyacrylamide gel electrophoresis (PAGE) is a powerful technique for protein complex separation that retains both their activity and structure. In photosynthetic research, native-PAGE is particularly useful given that photosynthetic complexes are generally large in size, ranging from 200 kD to 1 MD or more. Recently, it has been reported that the addition of amphipol A8-35 to solubilized protein samples improved protein complex stability. In a previous study, we found that amphipol A8-35 could substitute sodium deoxycholate (DOC), a conventional electrophoretic carrier, in clear-native (CN)-PAGE. In this study, we present the optimization of amphipol-based CN-PAGE. We found that the ratio of amphipol A8-35 to α-dodecyl maltoside, a detergent commonly used to solubilize photosynthetic complexes, was critical for resolving photosynthetic machinery in CN-PAGE. In addition, LHCII dissociation from PSII-LHCII was effectively prevented by amphipol-based CN-PAGE compared with that of DOC-based CN-PAGE. Our data strongly suggest that majority of the PSII-LHCII in vivo forms C2S2M2 at least in Arabidopsis and Physcomitrella. The other forms might appear owing to the dissociation of LHCII from PSII during sample preparation and electrophoresis, which could be prevented by the addition of amphipol A8-35 after solubilization from thylakoid membranes. These results suggest that amphipol-based CN-PAGE may be a better alternative to DOC-based CN-PAGE for the study of labile protein complexes.


Assuntos
Ácido Desoxicólico , Eletroforese em Gel de Poliacrilamida/métodos , Proteínas de Plantas/isolamento & purificação , Polímeros , Propilaminas , Proteínas de Arabidopsis/isolamento & purificação , Bryopsida , Complexo de Proteína do Fotossistema II/isolamento & purificação
6.
Mol Biol Evol ; 36(12): 2830-2841, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31432082

RESUMO

The relationship between enzymes and substrates does not perfectly match the "lock and key" model, because enzymes act on molecules other than their true substrate in different catalytic reactions. Such biologically nonfunctional reactions are called "promiscuous activities." Promiscuous activities are apparently useless, but they can be an important starting point for enzyme evolution. It has been hypothesized that enzymes with low promiscuous activity will show enhanced promiscuous activity under selection pressure and become new specialists through gene duplication. Although this is the prevailing scenario, there are two major problems: 1) it would not apply to prokaryotes because horizontal gene transfer is more significant than gene duplication and 2) there is no direct evidence that promiscuous activity is low without selection pressure. We propose a new scenario including various levels of promiscuous activity throughout a clade and horizontal gene transfer. STAY-GREEN (SGR), a chlorophyll a-Mg dechelating enzyme, has homologous genes in bacteria lacking chlorophyll. We found that some bacterial SGR homologs have much higher Mg-dechelating activities than those of green plant SGRs, while others have no activity, indicating that the level of promiscuous activity varies. A phylogenetic analysis suggests that a bacterial SGR homolog with high dechelating activity was horizontally transferred to a photosynthetic eukaryote. Some SGR homologs acted on various chlorophyll molecules that are not used as substrates by green plant SGRs, indicating that SGR acquired substrate specificity after transfer to eukaryotes. We propose that horizontal transfer of high promiscuous activity is one process of new enzyme acquisition.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Clorofila/metabolismo , Proteínas de Cloroplastos/genética , Evolução Molecular , Transferência Genética Horizontal , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Cloroplastos/metabolismo , Magnésio/metabolismo , Filogenia , Especificidade por Substrato
7.
Plant Cell Physiol ; 60(5): 1098-1108, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753722

RESUMO

Energy dissipation is crucial for land and shallow-water plants exposed to direct sunlight. Almost all green plants dissipate excess excitation energy to protect the photosystem reaction centers, photosystem II (PSII) and photosystem I (PSI), and continue to grow under strong light. In our previous work, we reported that about half of the photosystem reaction centers form a PSI-PSII megacomplex in Arabidopsis thaliana, and that the excess energy was transferred from PSII to PSI fast. However, the physiological function and structure of the megacomplex remained unclear. Here, we suggest that high-light adaptable sun-plants accumulate the PSI-PSII megacomplex more than shade-plants. In addition, PSI of sun-plants has a deep trap to receive excitation energy, which is low-energy chlorophylls showing fluorescence maxima longer than 730 nm. This deep trap may increase the high-light tolerance of PSI by improving excitation energy dissipation. Electron micrographs suggest that one PSII dimer is directly sandwiched between two PSIs with 2-fold rotational symmetry in the basic form of the PSI-PSII megacomplex in green plants. This structure should enable fast energy transfer from PSII to PSI and allow energy in PSII to be dissipated via the deep trap in PSI.


Assuntos
Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Viridiplantae/metabolismo , Transferência de Energia/fisiologia
8.
J Plant Res ; 132(6): 867-880, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31541373

RESUMO

Mosses are one of the earliest land plants that diverged from fresh-water green algae. They are considered to have acquired a higher capacity for thermal energy dissipation to cope with dynamically changing solar irradiance by utilizing both the "algal-type" light-harvesting complex stress-related (LHCSR)-dependent and the "plant-type" PsbS-dependent mechanisms. It is hypothesized that the formation of photosystem (PS) I and II megacomplex is another mechanism to protect photosynthetic machinery from strong irradiance. Herein, we describe the analysis of the PSI-PSII megacomplex from the model moss, Physcomitrella patens, which was resolved using large-pore clear-native polyacrylamide gel electrophoresis (lpCN-PAGE). The similarity in the migration distance of the Physcomitrella PSI-PSII megacomplex to the Arabidopsis megacomplex shown during lpCN-PAGE suggested that the Physcomitrella PSI-PSII and Arabidopsis megacomplexes have similar structures. Time-resolved chlorophyll fluorescence measurements show that excitation energy was rapidly and efficiently transferred from PSII to PSI, providing evidence of an ordered association of the two photosystems. We also found that LHCSR and PsbS co-migrated with the Physcomitrella PSI-PSII megacomplex. The megacomplex showed pH-dependent chlorophyll fluorescence quenching, which may have been induced by LHCSR and/or PsbS proteins with the collaboration of zeaxanthin. We discuss the mechanism that regulates the energy distribution balance between two photosystems in Physcomitrella.


Assuntos
Bryopsida/genética , Complexos de Proteínas Captadores de Luz/genética , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema II/genética , Proteínas de Plantas/genética , Bryopsida/enzimologia , Eletroforese em Gel de Poliacrilamida , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/metabolismo
9.
Photosynth Res ; 136(1): 49-61, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28856533

RESUMO

Diverse light-harvesting complexes (LHCs) have been found in photosynthetic microalgae that originated from secondary endosymbiosis involving primary red algae. However, the associations between LHCs and photosystem I (PSI) and photosystem II (PSII) in these microalgae are not fully understood. Eustigmatophyta is a red algal lineage that appears to have a unique organization in its photosynthetic machinery, consisting of only chlorophyll a and carotenoids that are atypical compared with other closely related groups. In this study, the supramolecular organization of pigment-protein complexes in the eustigmatophyte alga, Nannochloropsis granulata was investigated using Clear Native (CN) PAGE coupled with two-dimensional (2D) SDS-PAGE. Our results showed two slowly migrating green bands that corresponded to PSII supercomplexes, which consisted of reaction centers and LHCs. These green bands were also characterized as PSII complexes by their low temperature fluorescence emission spectra. The protein subunits of the PSII-LHC resolved by 2D CN/SDS-PAGE were analyzed by mass spectrometry, and four different LHC proteins were identified. Phylogenetic analysis of the identified LHC protein sequences revealed that they belonged to four different Lhc groups; (1) stress-related Lhcx proteins, (2) fucoxanthin chlorophyll a/c-binding Lhcf proteins, (3) red-shifted Chromera light-harvesting proteins (Red-CLH), and (4) Lhcr proteins, which are commonly found in organisms possessing red algal plastids. This is the first report showing evidence of a pigment-protein supercomplex consisting of PSII and LHCs, and to identify PSII-associated LHC proteins in Nannochloropsis.


Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Estramenópilas/metabolismo , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Filogenia , Pigmentos Biológicos/metabolismo , Espectrometria de Fluorescência , Temperatura
11.
Plant Cell Physiol ; 58(11): 2026-2039, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29136458

RESUMO

Light-harvesting-like (LIL) proteins are a group of proteins that share a consensus amino acid sequence with light-harvesting Chl-binding (LHC) proteins. We hypothesized that they might be involved in photosynthesis-related processes. In order to gain a better understanding of a potential role in photosynthesis-related processes, we examined the most recently identified LIL protein, LIL8/PSB33. Recently, it was suggested that this protein is an auxiliary PSII core protein which is involved in organization of the PSII supercomplex. However, we found that the majority of LIL8/PSB33 was localized in stroma lamellae, where PSI is predominant. Moreover, the PSI antenna sizes measured under visible light were slightly increased in the lil8 mutants which lack LIL8/PSB33 protein. Analysis of fluorescence decay kinetics and fluorescence decay-associated spectra indicated that energy transfer to quenching sites within PSI was partially hampered in these mutants. On the other hand, analysis of the steady-state fluorescence spectra in these mutants indicates that a population of LHCII is energetically disconnected from PSII. Taken together, we suggest that LIL8/PSB33 is involved in the fine-tuning of light harvesting and/or energy transfer around both photosystems.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clorofila , Proteínas de Ligação à Clorofila/genética , Metabolismo Energético , Fluorescência , Pleiotropia Genética , Mutação , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema II/genética , Tilacoides/metabolismo
12.
Plant Cell Physiol ; 58(1): e10, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011869

RESUMO

The identification of protein complexes is important for the understanding of protein structure and function and the regulation of cellular processes. We used blue-native PAGE and tandem mass spectrometry to identify protein complexes systematically, and built a web database, the protein co-migration database (PCoM-DB, http://pcomdb.lowtem.hokudai.ac.jp/proteins/top), to provide prediction tools for protein complexes. PCoM-DB provides migration profiles for any given protein of interest, and allows users to compare them with migration profiles of other proteins, showing the oligomeric states of proteins and thus identifying potential interaction partners. The initial version of PCoM-DB (launched in January 2013) included protein complex data for Synechocystis whole cells and Arabidopsis thaliana thylakoid membranes. Here we report PCoM-DB version 2.0, which includes new data sets and analytical tools. Additional data are included from whole cells of the pelagic marine picocyanobacterium Prochlorococcus marinus, the thermophilic cyanobacterium Thermosynechococcus elongatus, the unicellular green alga Chlamydomonas reinhardtii and the bryophyte Physcomitrella patens. The Arabidopsis protein data now include data for intact mitochondria, intact chloroplasts, chloroplast stroma and chloroplast envelopes. The new tools comprise a multiple-protein search form and a heat map viewer for protein migration profiles. Users can compare migration profiles of a protein of interest among different organelles or compare migration profiles among different proteins within the same sample. For Arabidopsis proteins, users can compare migration profiles of a protein of interest with putative homologous proteins from non-Arabidopsis organisms. The updated PCoM-DB will help researchers find novel protein complexes and estimate their evolutionary changes in the green lineage.


Assuntos
Arabidopsis/metabolismo , Briófitas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Bases de Dados de Proteínas , Fotossíntese , Proteínas de Algas/metabolismo , Proteínas de Bactérias/metabolismo , Biologia Computacional/métodos , Cianobactérias/classificação , Cianobactérias/metabolismo , Eletroforese/métodos , Internet , Proteínas de Plantas/metabolismo , Espectrometria de Massas em Tandem/métodos , Interface Usuário-Computador
13.
Faraday Discuss ; 198: 37-58, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28294213

RESUMO

The greenhouse gas and energy carrier methane is produced on Earth mainly by methanogenic archaea. In the hydrogenotrophic methanogenic pathway the reduction of one CO2 to one methane molecule requires four molecules of H2 containing eight electrons. Four of the electrons from two H2 are supplied for reduction of an electron carrier F420, which is catalyzed by F420-reducing [NiFe]-hydrogenase under nickel-sufficient conditions. The same reaction is catalysed under nickel-limiting conditions by [Fe]-hydrogenase coupled with a reaction catalyzed by F420-dependent methylene tetrahydromethanopterin dehydrogenase. [Fe]-hydrogenase contains an iron-guanylylpyridinol (FeGP) cofactor for H2 activation at the active site. FeII of FeGP is coordinated to a pyridinol-nitrogen, an acyl-carbon, two CO and a cysteine-thiolate. We report here on comparative genomic analyses of biosynthetic genes of the FeGP cofactor, which are primarily located in a hmd-co-occurring (hcg) gene cluster. One of the gene products is HcgB which transfers the guanosine monophosphate (GMP) moiety from guanosine triphosphate (GTP) to a pyridinol precursor. Crystal structure analysis of HcgB from Methanococcus maripaludis and its complex with 6-carboxymethyl-3,5-dimethyl-4-hydroxy-2-pyridinol confirmed the physiological guanylyltransferase reaction. Furthermore, we tested the properties of semi-synthetic [Fe]-hydrogenases using the [Fe]-hydrogenase apoenzyme from several methanogenic archaea and a mimic of the FeGP cofactor. On the basis of the enzymatic reactions involved in the methanogenic pathway, we came up with an idea how the methanogenic pathway could be simplified to develop an artificial methanogenesis system.

15.
Plant Cell Physiol ; 57(6): 1231-43, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27057002

RESUMO

Photosynthetic organisms have various pigments enabling them to adapt to various light environments. Green plants are divided into two groups: streptophytes and chlorophytes. Streptophytes include some freshwater green algae and land plants, while chlorophytes comprise the other freshwater green algae and seawater green algae. The environmental conditions driving the divergence of green plants into these two groups and the changes in photosynthetic properties accompanying their evolution remain unknown. Here, we separated the core antennae of PSI and the peripheral antennae [light-harvesting complexes (LHCs)] in green plants by green-native gel electrophoresis and determined their pigment compositions. Freshwater green algae and land plants have high Chl a/b ratios, with most Chl b existing in LHCs. In contrast, seawater green algae have low Chl a/b ratios. In addition, Chl b exists not only in LHCs but also in PSI core antennae in these organisms, a situation beneficial for survival in deep seawater, where blue-green light is the dominant light source. Finally, low-energy Chl (red Chl) of PSI was detected in freshwater green algae and land plants, but not in seawater green algae. We thus conclude that the different level of Chl b accumulation in core antennae and differences in PSI red Chl between freshwater and seawater green algae are evolutionary adaptations of these algae to their habitats, especially to high- or low-light environments.


Assuntos
Evolução Biológica , Complexos de Proteínas Captadores de Luz/metabolismo , Viridiplantae/metabolismo , Sequência de Aminoácidos , Clorofila/metabolismo , Clorófitas/metabolismo , Eletroforese em Gel de Poliacrilamida , Metabolismo Energético/efeitos da radiação , Luz , Complexo de Proteína do Fotossistema I/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Domínios Proteicos , Água do Mar , Espectrometria de Fluorescência , Análise Espectral , Viridiplantae/efeitos da radiação
16.
Plant Cell Physiol ; 57(10): 2020-2028, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27497446

RESUMO

C4 photosynthesis exhibits efficient CO2 assimilation in ambient air by concentrating CO2 around ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) through a metabolic pathway called the C4 cycle. It has been suggested that cyclic electron flow (CEF) around PSI mediated by chloroplast NADH dehydrogenase-like complex (NDH), an alternative pathway of photosynthetic electron transport (PET), plays a crucial role in C4 photosynthesis, although the contribution of NDH-mediated CEF is small in C3 photosynthesis. Here, we generated NDH-suppressed transformants of a C4 plant, Flaveria bidentis, and showed that the NDH-suppressed plants grow poorly, especially under low-light conditions. CO2 assimilation rates were consistently decreased in the NDH-suppressed plants under low and medium light intensities. Measurements of non-photochemical quenching (NPQ) of Chl fluorescence, the oxidation state of the reaction center of PSI (P700) and the electrochromic shift (ECS) of pigment absorbance indicated that proton translocation across the thylakoid membrane is impaired in the NDH-suppressed plants. Since proton translocation across the thylakoid membrane induces ATP production, these results suggest that NDH-mediated CEF plays a role in the supply of ATP which is required for C4 photosynthesis. Such a role is more crucial when the light that is available for photosynthesis is limited and the energy production by PET becomes rate-determining for C4 photosynthesis. Our results demonstrate that the physiological contribution of NDH-mediated CEF is greater in C4 photosynthesis than in C3 photosynthesis, suggesting that the mechanism of PET in C4 photosynthesis has changed from that in C3 photosynthesis accompanying the changes in the mechanism of CO2 assimilation.


Assuntos
Carbono/metabolismo , Flaveria/enzimologia , NADH Desidrogenase/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Plantas/metabolismo , Dióxido de Carbono/metabolismo , Transporte de Elétrons/efeitos da radiação , Flaveria/crescimento & desenvolvimento , Flaveria/efeitos da radiação , Luz , Fotossíntese/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Interferência de RNA , Análise Espectral , Supressão Genética/efeitos da radiação , Transformação Genética/efeitos da radiação
17.
Photosynth Res ; 129(3): 261-77, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27017612

RESUMO

By concentrating CO2, C4 photosynthesis can suppress photorespiration and achieve high photosynthetic efficiency, especially under conditions of high light, high temperature, and drought. To concentrate CO2, extra ATP is required, which would also require a change in photosynthetic electron transport in C4 photosynthesis from that in C3 photosynthesis. Several analyses have shown that the accumulation of the components of cyclic electron flow (CEF) around photosystem I, which generates the proton gradient across thylakoid membranes (ΔpH) and functions in ATP production without producing NADPH, is increased in various NAD-malic enzyme and NADP-malic enzyme C4 plants, suggesting that CEF may be enhanced to satisfy the increased need for ATP in C4 photosynthesis. However, in C4 plants, the accumulation patterns of the components of two partially redundant pathways of CEF, NAD(P)H dehydrogenase-like complex and PROTON GRADIENT REGULATION5-PGR5-like1 complex, are not identical, suggesting that these pathways may play different roles in C4 photosynthesis. Accompanying the increase in the amount of NDH, the expression of some genes which encode proteins involved in the assembly of NDH is also increased at the mRNA level in various C4 plants, suggesting that this increase is needed to increase the accumulation of NDH. To better understand the relation between CEF and C4 photosynthesis, a reverse genetic approach to generate C4 transformants with respect to CEF will be necessary.


Assuntos
Trifosfato de Adenosina/metabolismo , Arabidopsis/metabolismo , Malato Desidrogenase/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Transporte de Elétrons , Elétrons , Fotossíntese , Tilacoides/metabolismo
18.
J Biol Chem ; 289(2): 987-99, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24275650

RESUMO

The light-harvesting complex (LHC) constitutes the major light-harvesting antenna of photosynthetic eukaryotes. LHC contains a characteristic sequence motif, termed LHC motif, consisting of 25-30 mostly hydrophobic amino acids. This motif is shared by a number of transmembrane proteins from oxygenic photoautotrophs that are termed light-harvesting-like (LIL) proteins. To gain insights into the functions of LIL proteins and their LHC motifs, we functionally characterized a plant LIL protein, LIL3. This protein has been shown previously to stabilize geranylgeranyl reductase (GGR), a key enzyme in phytol biosynthesis. It is hypothesized that LIL3 functions to anchor GGR to membranes. First, we conjugated the transmembrane domain of LIL3 or that of ascorbate peroxidase to GGR and expressed these chimeric proteins in an Arabidopsis mutant lacking LIL3 protein. As a result, the transgenic plants restored phytol-synthesizing activity. These results indicate that GGR is active as long as it is anchored to membranes, even in the absence of LIL3. Subsequently, we addressed the question why the LHC motif is conserved in the LIL3 sequences. We modified the transmembrane domain of LIL3, which contains the LHC motif, by substituting its conserved amino acids (Glu-171, Asn-174, and Asp-189) with alanine. As a result, the Arabidopsis transgenic plants partly recovered the phytol-biosynthesizing activity. However, in these transgenic plants, the LIL3-GGR complexes were partially dissociated. Collectively, these results indicate that the LHC motif of LIL3 is involved in the complex formation of LIL3 and GGR, which might contribute to the GGR reaction.


Assuntos
Motivos de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Clorofila/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sítios de Ligação/genética , Proteínas de Cloroplastos/química , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Eletroforese em Gel Bidimensional , Immunoblotting , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Oxirredutases/química , Oxirredutases/metabolismo , Fitol/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos , Tilacoides/metabolismo
19.
J Biol Chem ; 288(27): 19330-41, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23677999

RESUMO

Chlorophyll b is found in photosynthetic prokaryotes and primary and secondary endosymbionts, although their light-harvesting systems are quite different. Chlorophyll b is synthesized from chlorophyll a by chlorophyllide a oxygenase (CAO), which is a Rieske-mononuclear iron oxygenase. Comparison of the amino acid sequences of CAO among photosynthetic organisms elucidated changes in the domain structures of CAO during evolution. However, the evolutionary relationship between the light-harvesting system and the domain structure of CAO remains unclear. To elucidate this relationship, we investigated the CAO structure and the pigment composition of chlorophyll-protein complexes in the prasinophyte Micromonas. The Micromonas CAO is composed of two genes, MpCAO1 and MpCAO2, that possess Rieske and mononuclear iron-binding motifs, respectively. Only when both genes were introduced into the chlorophyll b-less Arabidopsis mutant (ch1-1) was chlorophyll b accumulated, indicating that cooperation between the two subunits is required to synthesize chlorophyll b. Although Micromonas has a characteristic light-harvesting system in which chlorophyll b is incorporated into the core antennas of reaction centers, chlorophyll b was also incorporated into the core antennas of reaction centers of the Arabidopsis transformants that contained the two Micromonas CAO proteins. Based on these results, we discuss the evolutionary relationship between the structures of CAO and light-harvesting systems.


Assuntos
Clorófitas/enzimologia , Evolução Molecular , Complexos de Proteínas Captadores de Luz , Oxigenases , Motivos de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Clorófitas/genética , Genes de Plantas , Teste de Complementação Genética , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Mutação , Oxigenases/química , Oxigenases/genética , Oxigenases/metabolismo , Estrutura Terciária de Proteína
20.
Plant Cell ; 23(9): 3442-53, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21934147

RESUMO

The interconversion of chlorophyll a and chlorophyll b, referred to as the chlorophyll cycle, plays a crucial role in the processes of greening, acclimation to light intensity, and senescence. The chlorophyll cycle consists of three reactions: the conversions of chlorophyll a to chlorophyll b by chlorophyllide a oxygenase, chlorophyll b to 7-hydroxymethyl chlorophyll a by chlorophyll b reductase, and 7-hydroxymethyl chlorophyll a to chlorophyll a by 7-hydroxymethyl chlorophyll a reductase. We identified 7-hydroxymethyl chlorophyll a reductase, which is the last remaining unidentified enzyme of the chlorophyll cycle, from Arabidopsis thaliana by genetic and biochemical methods. Recombinant 7-hydroxymethyl chlorophyll a reductase converted 7-hydroxymethyl chlorophyll a to chlorophyll a using ferredoxin. Both sequence and biochemical analyses showed that 7-hydroxymethyl chlorophyll a reductase contains flavin adenine dinucleotide and an iron-sulfur center. In addition, a phylogenetic analysis elucidated the evolution of 7-hydroxymethyl chlorophyll a reductase from divinyl chlorophyllide vinyl reductase. A mutant lacking 7-hydroxymethyl chlorophyll a reductase was found to accumulate 7-hydroxymethyl chlorophyll a and pheophorbide a. Furthermore, this accumulation of pheophorbide a in the mutant was rescued by the inactivation of the chlorophyll b reductase gene. The downregulation of pheophorbide a oxygenase activity is discussed in relation to 7-hydroxymethyl chlorophyll a accumulation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Clorofila/análogos & derivados , Proteínas Ferro-Enxofre/metabolismo , Oxirredutases/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Clorofila A , Ferredoxinas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Ferro-Enxofre/genética , Dados de Sequência Molecular , Mutação , Oxirredutases/genética , Filogenia , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa