Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Water Sci Technol ; 89(8): 2073-2089, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38678410

RESUMO

We investigated the potential of waste materials from wastewater treatment plants (WWTPs) to serve as an alternative lipid feedstock for biodiesel production. The average lipid recoveries from fat balls (46.4%) and primary scum (49.5-54.5%) were higher than the lipid recovery of primary sludge (15.8-16.4%). The yield of biodiesel produced from the extracted lipids ranged from 5.7 to 20.1%. There were considerable site- and season-dependent variations in the characteristics of the lipid waste materials. Radiocarbon analysis indicated the presence of fossil-derived carbon (26.0-42.0%) in the biodiesel obtained from wastewater lipids. Finally, we estimated the potential for biodiesel production from WWTP-derived lipids; about 333.0 metric tons of biodiesel per year could be produced from fat balls and primary scum in Japan. The results indicate that lipid-rich materials from WWTPs represent a valuable alternative feedstock for biodiesel production.


Assuntos
Biocombustíveis , Lipídeos , Eliminação de Resíduos Líquidos , Lipídeos/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química
2.
Waste Manag Res ; : 734242X241265062, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39068524

RESUMO

Elucidating the properties of landfill leachate and the relationships among leachate parameters is crucial for efforts to determine appropriate landfill leachate monitoring activity and management strategies. This study investigated the physical, chemical and optical parameters of leachate in an old Japanese landfill over a 13-month period. The parameters were explored based on their relationships with the maximum fluorescence (Fmax) of three components (microbial humic-like C1, terrestrial humic-like C2 and protein-like C3) deconvoluted from excitation-emission matrix fluorescence spectroscopy coupled with parallel factor analysis. Dissolved organic carbon (DOC), chemical oxygen demand (COD), Cl- and SO42- concentrations and pH ranged from 2.6 to 38.2 mg C L-1, 9 to 324 mg L-1, 14 to 972 mg L-1, 26 to 1554 mg L-1 and 6.9 to 11.6, respectively. Linear regression analysis suggested that the Fmax values of C2 and C3 represented DOC, whereas the Fmax value of C2 alone could serve as a COD indicator. Hierarchical cluster analysis and principal component analysis were employed to successfully categorise leachate samples based on their locations. Higher dissolved organic matter levels were observed in leachate within the old disposal area, whereas elevated levels of inorganic components such as SO42- and Cl- were found in leachate collected from the extended disposal area and at a treatment facility. Statistical analysis provides crucial tools for assessing and managing various areas of a landfill, supporting targeted and effective waste management strategies.

3.
J Environ Manage ; 277: 111449, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33035942

RESUMO

A response surface methodology was used to investigate the flocculation performance of an amphoteric flocculant (acrylamide-methacrylic acid ester-acrylic acid copolymer [ACPAM]) for harvesting microalgae. After three potential influencing factors (pH, dosage, and the stirring speed of an intensive mixing step ω1) passed screening in experiments using a Plackett-Burman design, steepest ascent experiments were conducted to identify the parameters for Box-Behnken assessments. In those assessments, ω1, dosage, ω12, dosage2, and ω1 ∙ dosage were identified as significant factors. This model was optimized by removing nonsignificant factors and applying Box-Cox transformation, both of which significantly improved the adequacy of the model. An optimized set of conditions (pH = 9.0, ω1 = 339.3 rpm, and dosage = 28.54 mg/L) was obtained under which flocculation efficiency (FE) was predicted to be 95.85% and 98.00% for the nonsignificant factors removed and Box-Cox transformed models, respectively, compared to an experimentally determined value of 98.06%. Thermal stability analyses showed that the ACPAM was generally stable below 100 °C with some weight loss caused by moisture evaporation. However, crosslinking of its molecules by imidization and condensation started to occur at 120 °C, resulting in a lower flocculation performance. Finally, the applicability of the ACPAM was studied by comparing its FE to those of two other flocculants (AlCl3 and chitosan) when harvesting three microalgal species. The results showed flocculation performance of ACPAM varied with microalgae species, for one species the ACPAM dosage needed was highest while for another species, the dosage was lowest.


Assuntos
Chlorella vulgaris , Clorófitas , Microalgas , Biomassa , Floculação
4.
Water Sci Technol ; 83(7): 1511-1521, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33843739

RESUMO

Acidic biotrickling filters (BTF) can be used for simultaneous removal of hydrogen sulfide (H2S) and siloxane from biogas. In this study, the performance of a BTF under different acidic pH conditions was investigated. The removal profile of H2S showed that 90% of H2S removal was achieved during the first 0.4 m of BTF height with down-flow biogas. Decamethylcyclopentasiloxane (D5) removal decreased from 34.5% to 15.6% when the pH increased from 0.88 to 3.98. Furthermore, the high partition coefficient of D5 obtained in under higher pH condition was attributed to the higher total ionic strength resulting from the addition of sodium hydroxide solution and mineral medium. The linear increase in D5 removal with the mass transfer coefficient (kL) indicated that the acidic recycling liquid accelerated the mass transfer of D5 in the BTF. Therefore, the lower partition coefficient and higher kL under acidic pH conditions lead to the efficient removal of D5. However, the highly acidic pH 0.9 blocked mass transfer of H2S and O2 gases to the recycling liquid. Low sulfur oxidation activity and low Acidithiobacillus sp. content also deteriorated the biodegradation of H2S. Operating the BTF at pH 1.2 was optimal for simultaneously removing H2S and siloxane.


Assuntos
Biocombustíveis , Sulfeto de Hidrogênio , Biodegradação Ambiental , Reatores Biológicos , Filtração , Concentração de Íons de Hidrogênio , Siloxanas
5.
Water Sci Technol ; 2017(3): 782-790, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30016296

RESUMO

Thermal conversion of sewage sludge can be a clean source of renewable energy if the emission of air pollutants from the source is controlled. In 2013, the Minamata Convention on Mercury was adopted, placing greater emphasis on the control of mercury emissions, including mercury emissions from sewage sludge incinerators. To characterise the behaviour of mercury in flue gas, particulate and gaseous mercury concentrations in two incinerators and a melting furnace were measured by manual sampling. In a third facility, continuous emission monitoring was used to characterise temporal trends in gaseous mercury concentrations. Wet scrubbers were determined to be effective air pollution control devices suitable for mercury removal. Stack mercury concentrations were found to be <10 µg/Nm3, which meets the mercury emission standard for existing plants (50 µg/Nm3).


Assuntos
Poluentes Atmosféricos/química , Incineração , Mercúrio/química , Esgotos/química , Poluição do Ar , Carvão Mineral , Monitoramento Ambiental , Gases
6.
J Environ Manage ; 201: 327-334, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28688320

RESUMO

This work focuses on the stabilization and speciation of lead (Pb) in a composite solid produced from an alkali-activated municipal solid waste incineration fly ash (MSWIFA)-pyophyllite-based system. The solid product was synthesized after mixtures of raw materials (dehydrated pyrophyllite, MSWIFA, 14 mol/L aqueous sodium hydroxide, and sodium silicate solution) were cured at 105 °C for 24 h. The product could reduce the leaching of Pb and the Pb concentration in the leachate was 7.0 × 10-3 using the Japanese leaching test and 9.7 × 10-4 mg/L using toxicity characteristics leaching procedure method, which satisfied the respective test criteria and successfully stabilized Pb in this system. The solid product had a compressive strength of 2 MPa and consisted mainly of crystalline phases. Scanning electron microscopy with X-ray analysis and X-ray absorption fine structure suggested that Pb was present along with Al, Si, and O, and that the atomic environment around the Pb was similar to that of PbSiO3. These results suggest that the alkali-activated MSWIFA-pyrophyllite-based system could be used to stabilize Pb in MSWIFA.


Assuntos
Cinza de Carvão , Incineração , Chumbo , Eliminação de Resíduos , Álcalis , Silicatos de Alumínio , Carbono , Metais Pesados , Material Particulado , Resíduos Sólidos
7.
Anal Chem ; 87(22): 11249-54, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26477930

RESUMO

The chemical behavior of Cs in waste incineration processes is important to consider when disposing of radionuclide-contaminated waste from the Fukushima Daiichi nuclear power plant accident in Japan. To determine the speciation of Cs, we attempted the direct speciation of trace amounts of stable Cs in the dust from municipal solid waste incineration (MSWI) and sewage sludge incineration (SSI) by micro-X-ray fluorescence (µ-XRF) and micro-X-ray absorption fine structure (µ-XAFS) at the SPring-8 facility. The µ-XRF results revealed that locally produced Cs was present in MSWI and SSI dust within the cluster size range of 2-10 µm. The µ-XAFS analysis confirmed that the speciation of Cs in MSWI dust was similar to that of CsCl, while in SSI dusts it was similar to pollucite. The solubility of Cs was considered to be influenced by the exact Cs species present in incineration residue.


Assuntos
Césio/análise , Césio/química , Poeira/análise , Esgotos/química , Resíduos Sólidos/análise , Síncrotrons , Raios X
8.
Environ Sci Technol ; 48(1): 85-92, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24308371

RESUMO

We investigated chemical determinants of the generation of chlorinated aromatic compounds (aromatic-Cls), such as polychlorinated biphenyls (PCBs) and chlorobenzenes (CBzs), in fly ash from municipal solid waste incineration. The influences of the following on aromatic-Cls formation in model fly ash (MFA) were systematically examined quantitatively and statistically: (i) inorganic chlorides (KCl, NaCl, CaCl2), (ii) base materials (SiO2, Al2O3, CaCO3), (iii) metal oxides (CuO, Fe2O3, PbO, ZnO), (iv) metal chlorides (CuCl2, FeCl3, PbCl2, ZnCl2), and (v) "coexisting multi-models." On the basis of aromatic-Cls concentrations, the ∑CBzs/∑PCBs ratio, and the similarity between distribution patterns, MFAs were categorized into six groups. The results and analysis indicated that the formation of aromatic-Cls depended strongly on the "coexistence condition", namely multimodels composed of not only metal chlorides, but also of metal oxides. The precise replication of metal chloride to oxide ratios, such as the precise ratios of Cu-, Fe-, Pb-, and Zn-chlorides and oxides, may be an essential factor in changing the thermochemical formation patterns of aromatic-Cls. Although CuCl2 acted as a promoter of aromatic-Cls generation, statistical analyses implied that FeCl3 also largely influenced the generation of aromatic-Cls under mixture conditions. Various additional components of fly ash were also comprehensively analyzed.


Assuntos
Cloretos/análise , Hidrocarbonetos Clorados/análise , Incineração , Resíduos Industriais/análise , Óxidos/análise , Cobre/análise , Compostos de Ferro/análise , Chumbo/análise , Resíduos Sólidos , Compostos de Zinco/análise
9.
Environ Sci Technol ; 48(23): 13644-51, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25377729

RESUMO

Sulfur dioxide (SO2) gas has been reported to be an inhibitor of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) formation in fly ash. However, other research has suggested little or no inhibitory effect of SO2 gas. Although these studies focused on reactions between SO2 gas and gas-phase chlorine (Cl) species, no attention was paid to thermochemical gas-solid reactions. In this study, we found contrasting effects of SO2 gas depending on the chemical form of copper (CuO vs CuCl2) with a solid-phase inorganic Cl source (KCl). Chlorinated aromatics (PCDD/Fs, polychlorinated biphenyls, and chlorobenzenes) increased and decreased in model fly ash containing CuO + KCl and CuCl2 + KCl, respectively, with increased SO2 injection. According to in situ Cu K-edge and S K-edge X-ray absorption spectroscopy, Cl gas and CuCl2 were generated and then promoted the formation of highly chlorinated aromatics after thermochemical reactions of SO2 gas with the solid-phase CuO + KCl system. In contrast, the decrease in aromatic-Cls in a CuCl2 + KCl system with SO2 gas was caused mainly by the partial sulfation of the Cu. The chemical form of Cu (especially the oxide/chloride ratio) may be a critical factor in controlling the formation of chlorinated aromatics using SO2 gas.


Assuntos
Cinza de Carvão/química , Cobre/química , Hidrocarbonetos Clorados/química , Dióxido de Enxofre/química , Benzofuranos/química , Cloretos/química , Clorobenzenos/química , Dibenzofuranos Policlorados , Dioxinas/química , Hidrocarbonetos Clorados/análise , Incineração , Modelos Químicos , Bifenilos Policlorados/química , Cloreto de Potássio/química , Espectroscopia por Absorção de Raios X/métodos
10.
Water Sci Technol ; 69(6): 1159-66, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24647179

RESUMO

A model was developed to calculate the mass and heat balances of wastewater and municipal solid waste treatment plants when these plants operate either separately or together with a mutual dependence on mass and energy. Then the energy consumption, life cycle costs (LCCs), greenhouse gas (GHG) emissions and effluent quality were evaluated under various scenarios to identify the most effective co-management and treatment system. The results indicated that co-digestion of kitchen waste and sewage sludge, and their co-combustion reduced LCCs by 30%, energy consumption by 54% and GHG emissions by 41% compared to the base case. However, co-digestion increased the total nitrogen load in the wastewater treatment plant effluent. Even if an advanced wastewater treatment system was applied to improve total nitrogen concentration, the above indicators were affected but still reduced compared to the base case. Therefore, it was confirmed that the integrated system was beneficial for megacities.


Assuntos
Modelos Teóricos , Gerenciamento de Resíduos , Cidades , Simulação por Computador , Gases , Gerenciamento de Resíduos/economia , Resíduos
11.
Bioresour Technol ; 413: 131434, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39236905

RESUMO

This study assessed the characteristics and toxicity of aqueous pyrolytic liquid (APL) derived from digested sewage sludge on anaerobic digestion (AD) and determined its rate-limiting step. Digested sewage sludge was pyrolyzed at multiple temperatures (350-650 °C) and moisture levels (0-40.4 %), resulting in APLs with varying AD toxicities. APL 350 °C-0 % showed the least toxicity, whereas APL 650 °C-40.4 % exhibited the greatest toxicity. Glucose (GL) and sodium acetate (SA) were introduced to elucidate the rate-limiting steps. SA, but not GL, enhanced APL conversion to CH4. And volatile fatty acid lack was observed in treatments without SA addition. This suggested that acidification was the primary rate-limiting step. This finding was confirmed using the modified Gompertz model: SA considerably improved the maximum methane production rate, whereas GL did not. Insights gained from this research clarified the feasibility and potential of AD for APL utilization and conversion.

12.
Environ Sci Pollut Res Int ; 31(39): 52253-52266, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39145910

RESUMO

Dissolved organic matter (DOM) in landfill leachate impacts the toxicity, bioavailability, and migration of heavy metals. The present study investigated the complexation of heavy metals (Cu2+ and Pb2+) with DOM from two landfill leachate samples, representing an old landfill site containing incineration residues and incombustible waste. The logarithms of the stability constant (log KM) and percentage of complexed fluorophores were calculated using both the Ryan-Weber non-linear model and the modified Stern-Volmer model, yielding good agreement. The log KM values (at pH = 6.0 ± 0.1) calculated using both methods for the two sampling points were 5.02-5.13 and 4.85-5.11 for Cu2+-DOM complexation, and 5.01-5.13 and 4.46-4.87 for Pb2+-DOM complexation, respectively. Log KM was slightly higher for binding of DOM with Cu2+ than Pb2+, and the quenching degree was stronger for complexation with Cu2+ (28.5-30.6% and 38.0-45.9%) than Pb2+ (6.5-7.1% and 10.0-15.4%) in both leachate samples. While log KM values were similar, differences in the contributions of functional groups and molecular composition led to varying degrees of quenching. This study reveals the potential for heavy metal binding by DOM in landfill leachate with a unique solid waste composition and emphasizes variations in fluorescence quenching between Cu2+ and Pb2+ despite similar log KM levels. These findings may be useful for assessing heavy metal behavior in landfill leachate and its impacts on the surrounding environment.


Assuntos
Metais Pesados , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água , Cobre/química , Monitoramento Ambiental/métodos , Fluorescência , Japão , Chumbo/química , Metais Pesados/química , Poluentes Químicos da Água/química
13.
ACS Omega ; 9(32): 34859-34868, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39157132

RESUMO

In recent years, lipids reused from urban wastewater materials have come to prominence as possible raw materials for biodiesel production. The present work investigated liquefied dimethyl ether (DME) for the lipid extraction of fat balls from sewage pumping stations. A response surface methodology (RSM) based on a Box-Behnken design (BBD) was utilized to optimize DME extraction parameters (sample size, velocity of liquefied DME, and DME/sample ratio). The maximum lipid yield was 65.2% under optimal DME extraction conditions (sample size 1 mm, velocity of liquefied DME 3.3 m/h, and DME/sample ratio 80 mL/g). Under the optimum conditions, the DME technique exhibited higher lipid recovery than that of mechanical shaking extraction (49.0%) or Soxhlet extraction (62.0%). The extracted lipids were converted into biodiesel, resulting in an approximately 35.2-46.2% biodiesel yield. Furthermore, the fatty acid methyl ester composition of the extracted lipids was characterized. These significant findings highlight the promising potential of fat balls as sustainable biodiesel feedstocks and provide valuable insight that will aid the development of better technology for lipid extraction.

14.
PLoS One ; 19(6): e0304188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38924014

RESUMO

Dissolved organic matter (DOM) influences the bioavailability and behavior of trace metals and other pollutants in landfill leachate. This research characterized fluorescent dissolved organic matter (FDOM) in leachate from an old landfill in Japan during a 13-month investigation. We employed excitation-emission matrix (EEM) fluorescence spectroscopy with parallel factor analysis (PARAFAC) to deconvolute the FDOM complex mixture into three fluorophores: microbial humic-like (C1), terrestrial humic-like (C2), and tryptophan-like fluorophores (C3). These FDOM components were compared with findings from other studies of leachate in landfills with different waste compositions. The correlations among EEM-PARAFAC components, dissolved organic carbon (DOC) concentration, and ultraviolet-visible and fluorescence indices were evaluated. The FDOM in leachate varied spatially among old and extended leachate collected in the landfill and leachate treatment facility. The FDOM changed temporally and decreased markedly in August 2019, November 2019, and April 2020. The strong positive correlation between HIX and %C2 (r = 0.87, ρ = 0.91, p < 0.001)) implies that HIX may indicate the relative contribution of terrestrial humic-like components in landfill leachate. The Fmax of C1, C2, and C3 and the DOC concentration showed strong correlations among each other (r > 0.72, ρ > 0.78, p < 0.001) and positive correlations with leachate level (r > 0.41, p < 0.001), suggesting the importance of hydrological effects and leachate pump operation on FDOM.


Assuntos
Instalações de Eliminação de Resíduos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Espectrometria de Fluorescência/métodos , Incineração , Japão , Substâncias Húmicas/análise , Fluorescência , Monitoramento Ambiental/métodos
15.
J Hazard Mater ; 474: 134830, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38850930

RESUMO

Biogas slurry, an inevitable outcome of anaerobic digestion (AD), is a treatment burden for urban environmental management. In this study, two kinds of biogas slurry (slurry J and slurry C), collected from the AD plants in Japan and China, were treated using novel TiZrO4 @Cu and TiZrO4 @Cu@SiO2 multilayered hollow spheres containing Cu sub-nanoclusters as the catalyst. The results showed that the chemical oxygen demand (COD) was removed by 63 % for slurry J and 44 % for slurry C after 5 h. The Cu sub-nanoclusters acted as co-catalysts and active centers, facilitating rapid electron transfer to oxygen molecules and forming highly reactive •O2- and •OH species (Use slurry J as the based solution). These free radicals cleaved the interconnecting bonds between benzene rings, disintegrated the ring structure, formed intermediate compounds such as n-hexylic acid, and ultimately mineralized organic pollutants in biogas slurry into CO2 and H2O. At the same time, TiZrO4 @Cu@SiO2 had excellent stability due to the protection of the SiO2 shell and reduced threefold Cu leaching than TiZrO4 @Cu. The COD removal rate was always 60 % in six cycles in the slurry J. The new catalyst ensured the high performance of catalytic air oxidation at low temperatures, which has significant potential as an environmentally friendly and energy-saving method for organic wastewater treatment.

16.
Environ Sci Technol ; 47(5): 2169-76, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23363298

RESUMO

In this study, we examined the thermochemical role of Pb in the formation of chlorinated aromatics (aromatic-Cls) in MSW fly ash at 300-400 °C, a key temperature window for maximum yield. In the presence of lead oxide alone, aromatic-Cls formation was suppressed. One of the mechanisms of suppression was partial chlorination of PbO by an inorganic chlorine source in the solid phase, based on in situ Pb L3-edge X-ray absorption near-edge structure (XANES) data. In contrast, quantitative GC/MS measurements revealed that PbCl2 promoted aromatic-Cls formation to an extent that depends on the Pb concentration, the heating temperature, and the presence of other metal catalysts. We identified two mechanisms of aromatic-Cls formation triggered by PbCl2 in MSW fly ash. First, promotion can occur by the thermochemical partial oxidation of PbCl2. More specifically, real complex solid phase increases the thermochemical oxidation reactivity of PbCl2, based on in situ Pb L3-edge XANES data. Second, Cl K-edge X-ray absorption spectroscopy revealed a coexistent effect of PbCl2 with other metal catalysts such as CuCl2 and FeCl3. The presence of PbCl2 influences the balance of the bonding state of chlorine with Cu and Fe atoms at various temperatures. Thus, Pb in real MSW fly ash functions as an "adjuster" in the generation of aromatic-Cls, the nature of which depends on the lead oxide/chloride ratio and the presence of other metal catalysts.


Assuntos
Cloretos/química , Cinza de Carvão/química , Hidrocarbonetos Aromáticos/química , Chumbo/química , Carbono/análise , Cloretos/análise , Chumbo/análise , Óxidos/química , Espectroscopia por Absorção de Raios X
17.
Water Sci Technol ; 67(7): 1465-73, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23552233

RESUMO

A case study was conducted in Beijing to identify municipal sewage sludge (SS) management systems appropriate for a sound material-cycle society. The environmental and economic impacts of four realistic SS-handling scenarios were investigated: stabilization by thermal drying, increased inclusion of SS in cement manufacture, and using either dried or carbonized SS as substitute fuel for coal-fired power generation plants. The results showed that the current sludge management system had the lowest operating cost but higher greenhouse gas (GHG) emissions and a low recycling rate. The case with the use of carbonized SS reused in coal-fired power plants had higher energy consumption and almost the same GHG emissions as the current system. On the other hand, the case including more SS in cement manufacture had the same level of energy consumption with much lower GHG emissions. The case with the use of dried SS in coal-fired power plants also resulted in lower energy consumption and lower GHG emissions than at present. Furthermore, sensitivity analysis showed that drying SS with surplus heat from cement plants used less energy and emitted less GHG compared to the other two drying methods.


Assuntos
Meio Ambiente , Esgotos , Gerenciamento de Resíduos/economia , China , Gases/análise
18.
Environ Sci Pollut Res Int ; 30(49): 107350-107364, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36622596

RESUMO

Water-coal interactions are dominant factors that affect water quality in coal mines. Using lixiviation, the effects of water-coal interactions on pH, salinity, and hazardous elemental enrichment in coal mine water and associated trends were simulated and analyzed. The salinity and hazardous element contents were low in the alkaline solution filtrate. However, the salinity and contents of hazardous elements (As, Cr, Zn, Cu, Mn, Co, Ni, Cd, Pb, U, and Be) in acid solution filtrate increased significantly with a decrease in pH. The pH of the solution filtrate was affected by the mineral composition of the coal, wherein the pyrite content could generally determine the pH. In addition, the spatial distribution and utilization potential of coal mine water quality in China was determined based on water quality data surveys. For water-deficient regions in northern China, particularly in the northwest, the local mine water had high salinity, a high pH, and a low content of hazardous elements; therefore, the reuse of mine water for water consumption is feasible. Conversely, the mine water in the southwest region had high salinity and a low pH and was enriched in harmful elements with potential ecological and health risks. The actual water quality characteristics of the coal mine water matched the results of the laboratory simulation analysis, confirming the effect from water-coal interactions. This work provides a reference for understanding the determinants of coal mine water quality and the potential for water environment protection.


Assuntos
Minas de Carvão , Metais Pesados , Metais Pesados/análise , Qualidade da Água , Monitoramento Ambiental/métodos , Carvão Mineral/análise , China
19.
J Hazard Mater ; 457: 131773, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37295333

RESUMO

Landfill leachate is a refractory wastewater. Low-temperature catalytic air oxidation (LTCAO) has shown considerable potential for leachate treatment owing to its green and simple operation, but the simultaneous removal of chemical oxygen demand (COD) and ammonia from leachate remains challenging. Herein, TiZrO4 @CuSA hollow spheres with high-loading single-atom Cu were synthesized using isovolumic vacuum impregnation and co-calcination methods, and the catalyst was applied to the LTCAO treatment of real leachate. Consequently, the removal rate of UV254 reached 66% at 90 °C within 5 h, while that for COD was 88%. Simultaneously, the NH3/NH4+ (33.5 mg/L, 100 wt%) in the leachate was oxidized to N2 (88.2 wt%), NO2--N (11.0 wt%), and NO3--N (0.3 wt%) owing to the effect of free radicals. The single-atom Cu co-catalyst in TiZrO4 @CuSA exhibited a localized surface plasmon resonance effect at the active center, which could quickly transfer electrons to O2 in water to form O2.- with a high activation efficiency. The degradation products were determined and the deduced pathway was as follows: the bonds joining benzene rings were first broken, and then the ring structure was further opened to produce acetic acid and other simple organic macromolecules, which were finally mineralized to CO2 and H2O.

20.
Water Environ Res ; 84(2): 120-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22515061

RESUMO

In this study, a method for removing water from biosolids that uses dimethyl ether (DME) as an extractant was considered. This study evaluates the applicability of the DME dewatering method to biosolid cakes by using a DME flow-type experimental apparatus. It was found that a high dewatering ratio is clearly achieved by increasing the liquefied DME/biosolid ratio and lowering the liquefied DME linear velocity. As the liquefied DME/biosolid ratio was increased, the carbon content in dewatered biosolid showed a slight decrease and the TOC concentration in separated liquid increased significantly. Finally, the input energy Es to remove 1 kg of water from the biosolid cake, using both the DME dewatering method and the conventional drying method was estimated. The calculation shows that Es for the DME dewatering process is approximately a third of Es for the conventional thermal drying process.


Assuntos
Éteres Metílicos/química , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Água/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa