RESUMO
After the global spread of the SARS-CoV-2 Omicron BA.2, some BA.2 subvariants, including BA.2.9.1, BA.2.11, BA.2.12.1, BA.4, and BA.5, emerged in multiple countries. Our statistical analysis showed that the effective reproduction numbers of these BA.2 subvariants are greater than that of the original BA.2. Neutralization experiments revealed that the immunity induced by BA.1/2 infections is less effective against BA.4/5. Cell culture experiments showed that BA.2.12.1 and BA.4/5 replicate more efficiently in human alveolar epithelial cells than BA.2, and particularly, BA.4/5 is more fusogenic than BA.2. We further provided the structure of the BA.4/5 spike receptor-binding domain that binds to human ACE2 and considered how the substitutions in the BA.4/5 spike play roles in ACE2 binding and immune evasion. Moreover, experiments using hamsters suggested that BA.4/5 is more pathogenic than BA.2. Our multiscale investigations suggest that the risk of BA.2 subvariants, particularly BA.4/5, to global health is greater than that of original BA.2.
Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Anticorpos Antivirais , Humanos , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismoRESUMO
Soon after the emergence and global spread of the SARS-CoV-2 Omicron lineage BA.1, another Omicron lineage, BA.2, began outcompeting BA.1. The results of statistical analysis showed that the effective reproduction number of BA.2 is 1.4-fold higher than that of BA.1. Neutralization experiments revealed that immunity induced by COVID vaccines widely administered to human populations is not effective against BA.2, similar to BA.1, and that the antigenicity of BA.2 is notably different from that of BA.1. Cell culture experiments showed that the BA.2 spike confers higher replication efficacy in human nasal epithelial cells and is more efficient in mediating syncytia formation than the BA.1 spike. Furthermore, infection experiments using hamsters indicated that the BA.2 spike-bearing virus is more pathogenic than the BA.1 spike-bearing virus. Altogether, the results of our multiscale investigations suggest that the risk of BA.2 to global health is potentially higher than that of BA.1.
Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , COVID-19/virologia , Cricetinae , Células Epiteliais , Humanos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genéticaRESUMO
During the current coronavirus disease 2019 (COVID-19) pandemic, a variety of mutations have accumulated in the viral genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and, at the time of writing, four variants of concern are considered to be potentially hazardous to human society1. The recently emerged B.1.617.2/Delta variant of concern is closely associated with the COVID-19 surge that occurred in India in the spring of 2021 (ref. 2). However, the virological properties of B.1.617.2/Delta remain unclear. Here we show that the B.1.617.2/Delta variant is highly fusogenic and notably more pathogenic than prototypic SARS-CoV-2 in infected hamsters. The P681R mutation in the spike protein, which is highly conserved in this lineage, facilitates cleavage of the spike protein and enhances viral fusogenicity. Moreover, we demonstrate that the P681R-bearing virus exhibits higher pathogenicity compared with its parental virus. Our data suggest that the P681R mutation is a hallmark of the virological phenotype of the B.1.617.2/Delta variant and is associated with enhanced pathogenicity.
Assuntos
COVID-19/virologia , Fusão de Membrana , Mutação , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Substituição de Aminoácidos , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/epidemiologia , Cricetinae , Células Gigantes/metabolismo , Células Gigantes/virologia , Masculino , Mesocricetus , Filogenia , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Virulência/genética , Replicação ViralRESUMO
The SARS-CoV-2 Omicron BA.1 variant emerged in 20211 and has multiple mutations in its spike protein2. Here we show that the spike protein of Omicron has a higher affinity for ACE2 compared with Delta, and a marked change in its antigenicity increases Omicron's evasion of therapeutic monoclonal and vaccine-elicited polyclonal neutralizing antibodies after two doses. mRNA vaccination as a third vaccine dose rescues and broadens neutralization. Importantly, the antiviral drugs remdesivir and molnupiravir retain efficacy against Omicron BA.1. Replication was similar for Omicron and Delta virus isolates in human nasal epithelial cultures. However, in lung cells and gut cells, Omicron demonstrated lower replication. Omicron spike protein was less efficiently cleaved compared with Delta. The differences in replication were mapped to the entry efficiency of the virus on the basis of spike-pseudotyped virus assays. The defect in entry of Omicron pseudotyped virus to specific cell types effectively correlated with higher cellular RNA expression of TMPRSS2, and deletion of TMPRSS2 affected Delta entry to a greater extent than Omicron. Furthermore, drug inhibitors targeting specific entry pathways3 demonstrated that the Omicron spike inefficiently uses the cellular protease TMPRSS2, which promotes cell entry through plasma membrane fusion, with greater dependency on cell entry through the endocytic pathway. Consistent with suboptimal S1/S2 cleavage and inability to use TMPRSS2, syncytium formation by the Omicron spike was substantially impaired compared with the Delta spike. The less efficient spike cleavage of Omicron at S1/S2 is associated with a shift in cellular tropism away from TMPRSS2-expressing cells, with implications for altered pathogenesis.
Assuntos
COVID-19/patologia , COVID-19/virologia , Fusão de Membrana , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Serina Endopeptidases/metabolismo , Internalização do Vírus , Adulto , Idoso , Idoso de 80 Anos ou mais , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/virologia , Chlorocebus aethiops , Convalescença , Feminino , Humanos , Soros Imunes/imunologia , Intestinos/patologia , Intestinos/virologia , Pulmão/patologia , Pulmão/virologia , Masculino , Pessoa de Meia-Idade , Mutação , Mucosa Nasal/patologia , Mucosa Nasal/virologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Técnicas de Cultura de Tecidos , Virulência , Replicação ViralRESUMO
ABSTRACT: Acute leukemia cells require bone marrow microenvironments, known as niches, which provide leukemic cells with niche factors that are essential for leukemic cell survival and/or proliferation. However, it remains unclear how the dynamics of the leukemic cell-niche interaction are regulated. Using a genome-wide CRISPR screen, we discovered that canonical BRG1/BRM-associated factor (cBAF), a variant of the switch/sucrose nonfermenting chromatin remodeling complex, regulates the migratory response of human T-cell acute lymphoblastic leukemia (T-ALL) cells to a niche factor CXCL12. Mechanistically, cBAF maintains chromatin accessibility and allows RUNX1 to bind to CXCR4 enhancer regions. cBAF inhibition evicts RUNX1 from the genome, resulting in CXCR4 downregulation and impaired migration activity. In addition, cBAF maintains chromatin accessibility preferentially at RUNX1 binding sites, ensuring RUNX1 binding at these sites, and is required for expression of RUNX1-regulated genes, such as CDK6; therefore, cBAF inhibition negatively impacts cell proliferation and profoundly induces apoptosis. This anticancer effect was also confirmed using T-ALL xenograft models, suggesting cBAF as a promising therapeutic target. Thus, we provide novel evidence that cBAF regulates the RUNX1-driven leukemic program and governs migration activity toward CXCL12 and cell-autonomous growth in human T-ALL.
Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Medula Óssea/metabolismo , Cromatina , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Microambiente TumoralRESUMO
Germ line DDX41 variants have been implicated in late-onset myeloid neoplasms (MNs). Despite an increasing number of publications, many important features of DDX41-mutated MNs remain to be elucidated. Here we performed a comprehensive characterization of DDX41-mutated MNs, enrolling a total of 346 patients with DDX41 pathogenic/likely-pathogenic (P/LP) germ line variants and/or somatic mutations from 9082 MN patients, together with 525 first-degree relatives of DDX41-mutated and wild-type (WT) patients. P/LP DDX41 germ line variants explained â¼80% of known germ line predisposition to MNs in adults. These risk variants were 10-fold more enriched in Japanese MN cases (n = 4461) compared with the general population of Japan (n = 20 238). This enrichment of DDX41 risk alleles was much more prominent in male than female (20.7 vs 5.0). P/LP DDX41 variants conferred a large risk of developing MNs, which was negligible until 40 years of age but rapidly increased to 49% by 90 years of age. Patients with myelodysplastic syndromes (MDS) along with a DDX41-mutation rapidly progressed to acute myeloid leukemia (AML), which was however, confined to those having truncating variants. Comutation patterns at diagnosis and at progression to AML were substantially different between DDX41-mutated and WT cases, in which none of the comutations affected clinical outcomes. Even TP53 mutations made no exceptions and their dismal effect, including multihit allelic status, on survival was almost completely mitigated by the presence of DDX41 mutations. Finally, outcomes were not affected by the conventional risk stratifications including the revised/molecular International Prognostic Scoring System. Our findings establish that MDS with DDX41-mutation defines a unique subtype of MNs that is distinct from other MNs.
Assuntos
RNA Helicases DEAD-box , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Transtornos Mieloproliferativos , Adulto , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , RNA Helicases DEAD-box/genética , Células Germinativas , Leucemia Mieloide Aguda/genética , Mutação , Síndromes Mielodisplásicas/genética , Transtornos Mieloproliferativos/genéticaRESUMO
RFWD3 is a recently identified Fanconi anemia protein FANCW whose E3 ligase activity toward RPA is essential in homologous recombination (HR) repair. However, how RPA ubiquitination promotes HR remained unknown. Here, we identified RAD51, the central HR protein, as another target of RFWD3. We show that RFWD3 polyubiquitinates both RPA and RAD51 in vitro and in vivo. Phosphorylation by ATR and ATM kinases is required for this activity in vivo. RFWD3 inhibits persistent mitomycin C (MMC)-induced RAD51 and RPA foci by promoting VCP/p97-mediated protein dynamics and subsequent degradation. Furthermore, MMC-induced chromatin loading of MCM8 and RAD54 is defective in cells with inactivated RFWD3 or expressing a ubiquitination-deficient mutant RAD51. Collectively, our data reveal a mechanism that facilitates timely removal of RPA and RAD51 from DNA damage sites, which is crucial for progression to the late-phase HR and suppression of the FA phenotype.
Assuntos
Cromatina/enzimologia , Dano ao DNA , DNA/metabolismo , Anemia de Fanconi/enzimologia , Rad51 Recombinase/metabolismo , Reparo de DNA por Recombinação , Proteína de Replicação A/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Cromatina/efeitos dos fármacos , Cromatina/genética , Cromatina/efeitos da radiação , DNA/genética , Anemia de Fanconi/genética , Humanos , Proteínas de Manutenção de Minicromossomo/metabolismo , Mitomicina/farmacologia , Mutação , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , Interferência de RNA , Rad51 Recombinase/genética , Reparo de DNA por Recombinação/efeitos dos fármacos , Reparo de DNA por Recombinação/efeitos da radiação , Proteína de Replicação A/genética , Transfecção , Ubiquitina-Proteína Ligases/genética , Proteína com ValosinaRESUMO
HIV-1 Vif is known to counteract the antiviral activity of human apolipoprotein B mRNA-editing catalytic polypeptide-like (A3), a cytidine deaminase, in various ways. However, the precise mechanism behind this interaction has remained elusive. Within infected cells, Vif forms a complex called VßBCC, comprising CBFß and the components of E3 ubiquitin ligase, Elongin B, Elongin C, and Cullin5. Together with the ubiquitin-conjugating enzyme, VßBCC induces ubiquitination-mediated proteasomal degradation of A3. However, Vif exhibits additional counteractive effects. In this study, we elucidate that VßBCC inhibits deamination by A3G, A3F, and A3B independently of proteasomal degradation. Surprisingly, we discovered that this inhibition for A3G is directly attributed to the interaction between VßBCC and the C-terminal domain of A3G. Previously, it was believed that Vif did not interact with the C-terminal domain. Our findings suggest that inhibiting the interaction between VßBCC and the C-terminal domain, as well as the N-terminal domain known to be targeted for ubiquitination, of A3G may be needed to prevent counteraction by Vif.
Assuntos
HIV-1 , Produtos do Gene vif do Vírus da Imunodeficiência Humana , Humanos , Citosina Desaminase/metabolismo , HIV-1/metabolismo , Ligação Proteica , ProteóliseRESUMO
Structural variations involving enhancer hijacking induce aberrant oncogene expression and cause tumorigenesis. A rare translocation, t(3;8)(q26.2;q24), is associated with MECOM and MYC rearrangement, causing myeloid neoplasms with a dismal prognosis. The most recent World Health Organization classification recognises myeloid neoplasms with MECOM rearrangement as acute myeloid leukaemia (AML) with defining genetic abnormalities. Recently, the increasing use of induced pluripotent stem cell (iPSC) technology has helped elucidate the pathogenic processes of haematological malignancies. However, its utility for investigating enhancer hijacking in myeloid neoplasms remains unclear. In this study, we generated iPSC lines from patients with myelodysplastic syndromes (MDS) harbouring t(3;8)(q26.2;q24) and differentiated them into haematopoietic progenitor cells to model the pathophysiology of MDS with t(3;8)(q26.2;q24). Our iPSC model reproduced the primary patient's MECOM expression changes and histone H3 lysine 27 acetylation (H3K27ac) patterns in the MECOM promoter and MYC blood enhancer cluster (BENC). Furthermore, we revealed the apoptotic effects of the bromodomain and extra-terminal motif (BET) inhibitor on iPSC-derived MDS cells by suppressing activated MECOM. Our study demonstrates the usefulness of iPSC models for uncovering the precise mechanism of enhancer hijacking due to chromosomal structural changes and discovering potential therapeutic drug candidates for cancer treatment.
Assuntos
Cromossomos Humanos Par 3 , Células-Tronco Pluripotentes Induzidas , Síndromes Mielodisplásicas , Translocação Genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/metabolismo , Cromossomos Humanos Par 3/genética , Cromossomos Humanos Par 8/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Rearranjo Gênico , Masculino , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Azepinas/farmacologia , FemininoRESUMO
Morphological dysplasia in haematopoietic cells, defined by a 10% threshold in each lineage, is one of the diagnostic criteria for myelodysplastic neoplasms. Dysplasia limited to the erythroid lineage has also been reported in some cases of aplastic anaemia (AA); however, its significance remains unclear. We herein examined the impact of erythroid dysplasia on immunosuppressive therapy responses and survival in AA patients. The present study included 100 eligible AA patients without ring sideroblasts. Among them, 32 had dysplasia in the erythroid lineage (AA with minimal dysplasia [mini-D]). No significant sex or age differences were observed between AA groups with and without erythroid dysplasia. In severe/very severe AA and non-severe AA patients, a response to anti-thymocyte globulin + ciclosporin within 12 months was observed in 80.0% and 60.0% of AA with mini-D and 42.9% and 90.0% of those without dysplasia, with no significant difference (p = 0.29 and p = 0.24 respectively). Overall survival and leukaemia-free survival did not significantly differ between the groups. Collectively, the present results indicate that the presence of erythroid dysplasia did not significantly affect clinical characteristics or outcomes in AA patients, suggesting that its presence in AA is acceptable. Therefore, erythroid dysplasia should not exclude an AA diagnosis.
Assuntos
Anemia Aplástica , Sistema de Registros , Humanos , Anemia Aplástica/mortalidade , Anemia Aplástica/patologia , Anemia Aplástica/tratamento farmacológico , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Idoso , Adulto Jovem , Células Eritroides/patologia , Adolescente , Idoso de 80 Anos ou maisRESUMO
Nardilysin (NRDC) is a multifunctional protein required for maintaining homeostasis in various cellular and tissue contexts. However, its role in hematopoietic stem cells (HSCs) remains unclear. Here, through the conditional deletion of NRDC in hematopoietic cells, we demonstrate that NRDC is required for HSCs expansion in vitro and the reconstitution of hematopoiesis in vivo after transplantation. We found NRDC-deficient HSCs lose their self-renewal ability and display a preferential bias to myeloid differentiation in response to replication stress. Transcriptome data analysis revealed the upregulation of heat shock response-related genes in NRDC-deficient HSCs. Additionally, we observed increased protein synthesis in cultured NRDC-deficient HSCs. Thus, loss of NRDC may cause the inability to control protein synthesis in response to replication induced protein stress, leading to the impaired HSC self-renewal ability. This highlights a novel model of action of NRDC specifically in HSCs.
Assuntos
Células-Tronco Hematopoéticas , Metaloendopeptidases , Células-Tronco Hematopoéticas/metabolismo , Metaloendopeptidases/metabolismo , Hematopoese/fisiologia , Regulação para Cima , Diferenciação Celular/genéticaRESUMO
BACKGROUND: Isatuximab, an anti-CD38 antibody, has been widely used in treatments for patients with relapsed/refractory multiple myeloma (MM). Despite its high efficacy, not all patients achieve a lasting therapeutic response with isatuximab. OBJECTIVE: We tried to identify biomarkers to predict the effectiveness of isatuximab by focusing on the host's immune status before treatment. METHODS: We retrospectively analyzed the cases of 134 relapsed/refractory MM patients in the Kansai Myeloma Forum database who had received only a first isatuximab treatment. RESULTS: Among the 134 patients, an isatuximab, pomalidomide and dexamethasone (Isa-PD) regimen, isatuximab, carfilzomib and dexamethasone (Isa-KD) regimen and isatuximab and/or dexamethasone (Isa-D) regimen were used in 112, 15 and 7 patients, respectively. The median age at treatment, number of prior treatment regimens, and progression-free survival (PFS) were 71, 6, and 6.54 months, respectively. Multivariate analysis showed that the PFS under the Isa-PD regimen was longer in patients with higher lymphocyte/monocyte ratio (LMR ≥ 4), fewer prior treatment regimens (< 6), and no use of prior daratumumab treatment. The OS under the Isa-PD regimen was longer in patients with higher white blood cell counts (WBC counts ≥ 3000/µL) and higher LMR. The PFS under the Isa-D regimen was longer in patients with fewer prior treatment regimens in univariate analysis, but no parameters were correlated with PFS/OS under the Isa-KD regimen. CONCLUSION: We found that the patients with higher LMR (≥ 4) could obtain longer PFS and OS under the Isa-PD regimen. Other cohort studies of isatuximab treatment might be necessary to substantiate our results.
Assuntos
Anticorpos Monoclonais Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , Linfócitos , Monócitos , Mieloma Múltiplo , Talidomida , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/mortalidade , Feminino , Masculino , Talidomida/análogos & derivados , Talidomida/uso terapêutico , Talidomida/administração & dosagem , Idoso , Pessoa de Meia-Idade , Estudos Retrospectivos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Monócitos/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Adulto , Idoso de 80 Anos ou mais , PrognósticoRESUMO
IMPORTANCE: Most studies investigating the characteristics of emerging SARS-CoV-2 variants have been focusing on mutations in the spike proteins that affect viral infectivity, fusogenicity, and pathogenicity. However, few studies have addressed how naturally occurring mutations in the non-spike regions of the SARS-CoV-2 genome impact virological properties. In this study, we proved that multiple SARS-CoV-2 Omicron BA.2 mutations, one in the spike protein and another downstream of the spike gene, orchestrally characterize this variant, shedding light on the importance of Omicron BA.2 mutations out of the spike protein.
Assuntos
Genoma Viral , Mutação , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , COVID-19/virologia , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/genética , Genoma Viral/genéticaRESUMO
Blood cells are thought to have emerged as phagocytes in the common ancestor of animals followed by the appearance of novel blood cell lineages such as thrombocytes, erythrocytes, and lymphocytes, during evolution. However, this speculation is not based on genetic evidence and it is still possible to argue that phagocytes in different species have different origins. It also remains to be clarified how the initial blood cells evolved; whether ancient animals have solely developed de novo programs for phagocytes or they have inherited a key program from ancestral unicellular organisms. Here, we traced the evolutionary history of blood cells, and cross-species comparison of gene expression profiles revealed that phagocytes in various animal species and Capsaspora (C.) owczarzaki, a unicellular organism, are transcriptionally similar to each other. We also found that both phagocytes and C. owczarzaki share a common phagocytic program, and that CEBPα is the sole transcription factor highly expressed in both phagocytes and C. owczarzaki. We further showed that the function of CEBPα to drive phagocyte program in nonphagocytic blood cells has been conserved in tunicate, sponge, and C. owczarzaki. We finally showed that, in murine hematopoiesis, repression of CEBPα to maintain nonphagocytic lineages is commonly achieved by polycomb complexes. These findings indicate that the initial blood cells emerged inheriting a unicellular organism program driven by CEBPα and that the program has also been seamlessly inherited in phagocytes of various animal species throughout evolution.
Assuntos
Eucariotos , Evolução Molecular , Animais , Camundongos , Filogenia , Eucariotos/genética , Regulação da Expressão Gênica , Células SanguíneasRESUMO
Adult T-cell leukemia/lymphoma (ATL) is an aggressive neoplasm immunophenotypically resembling regulatory T cells, associated with human T-cell leukemia virus type-1. Here, we performed whole-genome sequencing (WGS) of 150 ATL cases to reveal the overarching landscape of genetic alterations in ATL. We discovered frequent (33%) loss-of-function alterations preferentially targeting the CIC long isoform, which were overlooked by previous exome-centric studies of various cancer types. Long but not short isoform-specific inactivation of Cic selectively increased CD4+CD25+Foxp3+ T cells in vivo. We also found recurrent (13%) 3'-truncations of REL, which induce transcriptional upregulation and generate gain-of-function proteins. More importantly, REL truncations are also common in diffuse large B-cell lymphoma, especially in germinal center B-cell-like subtype (12%). In the non-coding genome, we identified recurrent mutations in regulatory elements, particularly splice sites, of several driver genes. In addition, we characterized the different mutational processes operative in clustered hypermutation sites within and outside immunoglobulin/T-cell receptor genes and identified the mutational enrichment at the binding sites of host and viral transcription factors, suggesting their activities in ATL. By combining the analyses for coding and noncoding mutations, structural variations, and copy number alterations, we discovered 56 recurrently altered driver genes, including 11 novel ones. Finally, ATL cases were classified into 2 molecular groups with distinct clinical and genetic characteristics based on the driver alteration profile. Our findings not only help to improve diagnostic and therapeutic strategies in ATL, but also provide insights into T-cell biology and have implications for genome-wide cancer driver discovery.
Assuntos
Ataxina-1/genética , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Leucemia-Linfoma de Células T do Adulto/patologia , Mutação , Proteínas Proto-Oncogênicas c-rel/genética , Proteínas Repressoras/genética , Animais , Variações do Número de Cópias de DNA , Feminino , Genoma Humano , Humanos , Leucemia-Linfoma de Células T do Adulto/genética , Camundongos , Camundongos Endogâmicos C57BL , Prognóstico , Taxa de Sobrevida , Sequenciamento do ExomaRESUMO
Elotuzumab-based regimens are sometimes selected for multiple myeloma treatment after daratumumab-based regimens. However, there has been insufficient discussion on the efficacy of elotuzumab after daratumumab. We used Kansai Myeloma Forum registration data in a multicenter retrospective evaluation of the efficacy of elotuzumab after daratumumab. Overall survival (OS) rate and time to next treatment (TTNT) were significantly worse in the cohort given elotuzumab after daratumumab (Dara cohort, n = 47) than in the cohort with no history of daratumumab administration before elotuzumab (No-Dara cohort, n = 80, OS: P = 0.03; TTNT: P = 0.02; best response: P < 0.01). In the Dara cohort, OS and TTNT rates were worse with sequential elotuzumab use after daratumumab than with non-sequential (OS: P = 0.02; TTNT: P = 0.03). In patients given elotuzumab < 180 days after daratumumab, OS (P = 0.08) and best response (P = 0.21) tended to be worse, and TTNT was significantly worse (P = 0.01), than in those given elotuzumab after ≥ 180 days. These findings were confirmed by subgroup analyses and multivariate analyses. Monoclonal-antibody-free treatment might be preferable after daratumumab-based regimens. If possible, elotuzumab-based regimens should be considered only ≥ 180 days after daratumumab use.
RESUMO
The prognosis for multiple myeloma (MM) patients has improved with the advent of new drugs, but the prognosis with renal impairment (RI) is poor. The choice of treatment in such cases is critical, but there are no set criteria. We examined the impact of RI on initial therapy in transplant-ineligible MM patients. We selected symptomatic MM patients who met the following criteria: age ≥ 65 years, fit, and ineligible for transplantation from the database. We analyzed the impact of age, treatment, International Staging System (ISS) stage, karyotype abnormalities, performance status, and estimated glomerular filtration rate (GFR < 50 or ≥ 50 ml/min/1.73m2) on overall survival (OS). We also analyzed the OS by eGFR for each treatment. We selected 349 symptomatic MM patients. The regimens used were lenalidomide, bortezomib and dexamethasone (RVd), daratumumab, bortezomib, melphalan, and prednisolone (D-VMP), daratumumab, lenalidomide and dexamethasone (D-Rd) and daratumumab, bortezomib, and dexamethasone (D-Vd) in 184, 41, 74 and 50 patients, respectively. The median age was 74 years old; ISS stage was I/II/III in 85/112/131 patients; and 161 patients showed eGFR < 50. The OS was shorter with ISS stage III (p = 0.029) and eGFR < 50 (p < 0.001) by multivariate analysis. The OS under the RVd/D-Rd regimens were significantly shorter for patients with eGFR < 50, but OS under the D-VMP/D-Vd regimens were not significantly different between patients with eGFR < 50 and eGFR ≥ 50. The OS of the transplant-ineligible MM patients with higher ISS stage and RI was poor. Initial treatment with a D-VMP/D-Vd regimen might be less affected by RI.
RESUMO
BACKGROUND: Posaconazole is a vital drug to treat and prevent invasive fungal infections. Several factors, such as sex, body weight, total serum proteins, dietary intake, and severe mucositis, affect posaconazole pharmacokinetics (PKs). However, the relevance of other factors that affect the PKs of posaconazole in hematopoietic stem cell transplantation (HSCT) is unknown. This study explored factors influencing the PKs of posaconazole in HSCT recipients and nontransplant patients with hematological diseases. METHODS: The authors conducted a single-institution, retrospective study. Forty-two Japanese inpatients receiving oral posaconazole tablets as prophylaxis for fungal infections were enrolled in this study. A one-compartment model with first-order absorption was used as the structural pharmacokinetic model. A population PK (PopPK) analysis was performed using a nonlinear mixed-effects modeling program, using a first-order conditional estimation method with interactions. Perl-speaks-NONMEM and R were used to evaluate the goodness of fit and visualize the output. RESULTS: In 29% of the enrolled patients, the serum concentration of posaconazole was <0.5 mcg/mL, considered the effective range. PopPK analysis revealed that the patient had undergone HSCT within 1 year, diarrhea occurred more than 5 times a day, and aspartate aminotransferase were covariates that influenced apparent clearance (CL/F). The CL/F of posaconazole was 1.43-fold higher after HSCT and 1.26-fold higher during diarrhea. CONCLUSIONS: PopPK analysis revealed that HSCT, diarrhea, and aspartate aminotransferase were factors associated with the CL/F of posaconazole. The trough concentration of posaconazole may be below the therapeutic range in a few patients with diarrhea and/or after HSCT. As invasive fungal infections in patients with hematologic diseases can be life-threatening, therapeutic drug monitoring of posaconazole is strongly recommended, and patients should be carefully monitored.
Assuntos
Antifúngicos , Transplante de Células-Tronco Hematopoéticas , Modelos Biológicos , Micoses , Triazóis , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Administração Oral , Antifúngicos/farmacocinética , Antifúngicos/uso terapêutico , População do Leste Asiático , Japão , Micoses/prevenção & controle , Estudos Retrospectivos , Triazóis/farmacocinética , Triazóis/uso terapêuticoRESUMO
T-lymphoblastic leukemia/lymphoma (T-ALL/LBL) has a poor prognosis. Nelarabine has recently shown relatively good results in patients with relapsed or refractory T-ALL/LBL, but requires careful monitoring for neurological complications. A 50-year-old man with early recurrence of T-LBL after allogenic peripheral blood stem cell transplantation received nelarabine monotherapy and achieved complete remission after 1 cycle. He then received umbilical cord blood transplantation, and experienced sustained disturbance of consciousness. He later died of multiple organ failure, and autopsy suggested that nelarabine-induced leukoencephalopathy had caused the disturbance of consciousness. This case suggests that physicians should carefully monitor patients for neurological complications and consider imaging follow-up and consultation with a neurologist.
Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical , Transplante de Células-Tronco Hematopoéticas , Linfoma não Hodgkin , Linfoma de Células T , Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Masculino , Humanos , Pessoa de Meia-Idade , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Estado de Consciência , Transplante de Células-Tronco de Sangue do Cordão Umbilical/efeitos adversos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapiaRESUMO
A 72-year-old woman with relapsed FLT3-ITD-positive acute myeloid leukemia was treated with gilteritinib and achieved complete remission with incomplete hematological recovery. However, two months later, she developed optic nerve infiltration and lost vision in her right eye while maintaining hematological remission on gilteritinib. Intrathecal injection of cytotoxic drugs reduced the number of blasts in the cerebrospinal fluid (CSF), but her vision did not recover. At the onset of optic nerve infiltration, at a dose of 80 mg/day gilteritinib, the plasma trough and CSF levels of gilteritinib were 151.9 ng/ml and 1.9 ng/ml, respectively, with a central nervous system (CNS) penetration rate of 1.3%. Hematologic progressive disease (PD) was detected after 40 days, and the patient died one month later. Target sequencing at the time of hematologic PD revealed the FLT3 F691L mutation, which is known to confer resistance to gilteritinib. In this patient, pharmacokinetic (low CNS penetration of gilteritinib) and pharmacodynamic (acquisition of a drug resistance mutation) mechanisms were thought to be responsible for the CNS relapse and hematologic PD, respectively. We believe this is a valuable case to report considering the scarcity of data on CNS penetration of FLT3 inhibitors and their effects on CNS disease in the literature.