Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Metastasis Rev ; 42(1): 113-142, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36640224

RESUMO

The establishment of primary tumor cells in distant organs, termed metastasis, is the principal cause of cancer mortality and is a crucial therapeutic target in oncology. Thus, it is critical to establish a better understanding of metastatic progression for the future development of improved therapeutic approaches. Indeed, such development requires insight into the timing of tumor cell dissemination and seeding of distant organs resulting in occult lesions. Following dissemination of tumor cells from the primary tumor, they can reside in niches in distant organs for years or decades, following which they can emerge as an overt metastasis. This timeline of metastatic dormancy is regulated by interactions between the tumor, its microenvironment, angiogenesis, and tumor antigen-specific T-cell responses. An improved understanding of the mechanisms and interactions responsible for immune evasion and tumor cell release from dormancy would help identify and aid in the development of novel targeted therapeutics. One such mediator of dormancy is myeloid derived suppressor cells (MDSC), whose number in the peripheral blood (PB) or infiltrating tumors has been associated with cancer stage, grade, patient survival, and metastasis in a broad range of tumor pathologies. Thus, extensive studies have revealed a role for MDSCs in tumor escape from adoptive and innate immune responses, facilitating tumor progression and metastasis; however, few studies have considered their role in dormancy. We have posited that MDSCs may regulate disseminated tumor cells resulting in resurgence of senescent tumor cells. In this review, we discuss clinical studies that address mechanisms of tumor recurrence including from dormancy, the role of MDSCs in their escape from dormancy during recurrence, the development of occult metastases, and the potential for MDSC inhibition as an approach to prolong the survival of patients with advanced malignancies. We stress that assessing the impact of therapies on MDSCs versus other cellular targets is challenging within the multimodality interventions required clinically.


Assuntos
Células Supressoras Mieloides , Humanos , Recidiva Local de Neoplasia/patologia , Estadiamento de Neoplasias , Microambiente Tumoral
2.
Cancer Metastasis Rev ; 40(2): 391-411, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33411082

RESUMO

The spread of primary tumor cells to distant organs, termed metastasis, is the principal cause of cancer mortality and is a critical therapeutic target in oncology. Thus, a better understanding of metastatic progression is critical for improved therapeutic approaches requiring insight into the timing of tumor cell dissemination and seeding of distant organs, which can lead to the formation of occult lesions. However, due to limitations in imaging techniques, primary tumors can only be detected when they reach a relatively large size (e.g., > 1 cm3), which, based on our understanding of tumor evolution, is 10 to 20 years (30 doubling times) following tumor initiation. Recent insights into the timing of metastasis are based on the genomic profiling of paired primary tumors and metastases, suggesting that tumor cell seeding of secondary sites occurs early during tumor progression and years prior to diagnosis. Following seeding, tumor cells may remain in a dormant state as single cells or micrometastases before emerging as overt lesions. This timeline and the role of metastatic dormancy are regulated by interactions between the tumor, its microenvironment, and tumor-specific T cell responses. An improved understanding of the mechanisms and interactions responsible for immune evasion and tumor cell release from dormancy would support the development of novel targeted therapeutics. We posit herein that the immunosuppressive mechanisms mediated by myeloid-derived suppressor cells (MDSCs) are a major contributor to tumor progression, and that these mechanisms promote tumor cell escape from dormancy. Thus, while extensive studies have demonstrated a role for MDSCs in the escape from adoptive and innate immune responses (T-, natural killer (NK)-, and B cell responses), facilitating tumor progression and metastasis, few studies have considered their role in dormancy. In this review, we discuss the role of MDSC expansion, driven by tumor burden, and its role in escape from dormancy, resulting in occult metastases, and the potential for MDSC inhibition as an approach to prolong the survival of patients with advanced malignancies.


Assuntos
Células Supressoras Mieloides/patologia , Neoplasias/patologia , Animais , Humanos , Células Supressoras Mieloides/imunologia , Metástase Neoplásica , Neoplasias/imunologia , Neoplasias/terapia , Pesquisa Translacional Biomédica
3.
Cell Immunol ; 363: 104317, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33714729

RESUMO

Myeloid derived suppressor cells (MDSCs) can be subset into monocytic (M-), granulocytic (G-) or polymorphonuclear (PMN-), and immature (i-) or early MDSCs and have a role in many disease states. In cancer patients, the frequencies of MDSCs can positively correlate with stage, grade, and survival. Most clinical studies into MDSCs have been undertaken with peripheral blood (PB); however, in the present studies, we uniquely examined MDSCs in the spleens and PB from patients with gastrointestinal cancers. In our studies, MDSCs were rigorously subset using the following markers: Lineage (LIN) (CD3, CD19 and CD56), human leukocyte antigen (HLA)-DR, CD11b, CD14, CD15, CD33, CD34, CD45, and CD16. We observed a significantly higher frequency of PMN- and M-MDSCs in the PB of cancer patients as compared to their spleens. Expression of the T-cell suppressive enzymes arginase (ARG1) and inducible nitric oxide synthase (i-NOS) were higher on all MDSC subsets for both cancer patients PB and spleen cells as compared to MDSCs from the PB of normal donors. Similar findings for the activation markers lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), program death ligand 1 (PD-L1) and program cell death protein 1 (PD-1) were observed. Interestingly, the total MDSC cell number exported to clustering analyses was similar between all sample types; however, clustering analyses of these MDSCs, using these markers, uniquely documented novel subsets of PMN-, M- and i-MDSCs. In summary, we report a comparison of splenic MDSC frequency, subtypes, and functionality in cancer patients to their PB by clustering and cytometric analyses.


Assuntos
Células Supressoras Mieloides/metabolismo , Baço/imunologia , Adulto , Idoso , Arginase/metabolismo , Antígeno B7-H1/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Análise por Conglomerados , Feminino , Citometria de Fluxo/métodos , Neoplasias Gastrointestinais/imunologia , Antígenos HLA-DR/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Células Supressoras Mieloides/citologia , Células Supressoras Mieloides/imunologia , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Receptores Depuradores Classe E/metabolismo , Baço/patologia
4.
J Immunol ; 200(2): 483-499, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29212907

RESUMO

T cells use the endocytic pathway for key cell biological functions, including receptor turnover and maintenance of the immunological synapse. Some of the established players include the Rab GTPases, the SNARE complex proteins, and others, which function together with EPS-15 homology domain-containing (EHD) proteins in non-T cell systems. To date, the role of the EHD protein family in T cell function remains unexplored. We generated conditional EHD1/3/4 knockout mice using CD4-Cre and crossed these with mice bearing a myelin oligodendrocyte glycoprotein-specific TCR transgene. We found that CD4+ T cells from these mice exhibited reduced Ag-driven proliferation and IL-2 secretion in vitro. In vivo, these mice exhibited reduced severity of experimental autoimmune encephalomyelitis. Further analyses showed that recycling of the TCR-CD3 complex was impaired, leading to increased lysosomal targeting and reduced surface levels on CD4+ T cells of EHD1/3/4 knockout mice. Our studies reveal a novel role of the EHD family of endocytic recycling regulatory proteins in TCR-mediated T cell functions.


Assuntos
Endocitose , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Complexo CD3/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Expressão Gênica , Técnicas de Inativação de Genes , Ativação Linfocitária , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Lisossomos/metabolismo , Camundongos , Camundongos Knockout , Família Multigênica , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Ligação Proteica , Transporte Proteico , Proteólise , Proteínas de Transporte Vesicular/genética
5.
Adv Exp Med Biol ; 1259: 125-153, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32578175

RESUMO

Patients with cancer frequently overexpress inflammatory cytokines with an associated neutrophilia both of which may be downregulated by diets with high omega-3 polyunsaturated fatty acids (ω-3 PUFA). The anti-inflammatory activity of dietary ω-3 PUFA has been suggested to have anticancer properties and to improve survival of cancer patients. Currently, the majority of dietary research efforts do not differentiate between obesity and dietary fatty acid consumption as mediators of inflammatory cell expansion and tumor microenvironmental infiltration, initiation, and progression. In this chapter, we discuss the relationships between dietary lipids, inflammation, neoplasia and strategies to regulate these relationships. We posit that dietary composition, notably the ratio of ω-3 vs. ω-6 PUFA, regulates tumor initiation and progression and the frequency and sites of metastasis that, together, impact overall survival (OS). We focus on three broad topics: first, the role of dietary lipids in chronic inflammation and tumor initiation, progression, and regression; second, lipid mediators linking inflammation and cancer; and third, dietary lipid regulation of murine and human tumor initiation, progression, and metastasis.


Assuntos
Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Neoplasias , Microambiente Tumoral/efeitos dos fármacos , Animais , Dieta , Ácidos Graxos Ômega-6/farmacologia , Humanos , Inflamação/dietoterapia , Inflamação/patologia , Neoplasias/dietoterapia , Neoplasias/patologia
6.
J Mammary Gland Biol Neoplasia ; 23(1-2): 43-58, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29574638

RESUMO

Studies in rodents have shown that dietary modifications as mammary glands (MG) develop, regulates susceptibility to mammary tumor initiation. However, the effects of dietary PUFA composition on MGs in adult life, remains poorly understood. This study investigated morphological alterations and inflammatory microenvironments in the MGs of adult mice fed isocaloric and isolipidic liquid diets with varying compositions of omega (ω)-6 and long-chain (Lc)-ω3FA that were pair-fed. Despite similar consumption levels of the diets, mice fed the ω-3 diet had significantly lower body-weight gains, and abdominal-fat and mammary fat pad (MFP) weights. Fatty acid analysis showed significantly higher levels of Lc-ω-3FAs in the MFPs of mice on the ω-3 diet, while in the MFPs from the ω-6 group, Lc-ω-3FAs were undetectable. Our study revealed that MGs from ω-3 group had a significantly lower ductal end-point density, branching density, an absence of ductal sprouts, a thinner ductal stroma, fewer proliferating epithelial cells and a lower transcription levels of estrogen receptor 1 and amphiregulin. An analysis of the MFP and abdominal-fat showed significantly smaller adipocytes in the ω-3 group, which was accompanied by lower transcription levels of leptin, IGF1, and IGF1R. Further, MFPs from the ω-3 group had significantly decreased numbers and sizes of crown-like-structures (CLS), F4/80+ macrophages and decreased expression of proinflammatory mediators including Ptgs2, IL6, CCL2, TNFα, NFκB, and IFNγ. Together, these results support dietary Lc-ω-3FA regulation of MG structure and density and adipose tissue inflammation with the potential for dietary Lc-ω-3FA to decrease the risk of mammary gland tumor formation.


Assuntos
Ácidos Graxos Ômega-3/metabolismo , Inflamação/metabolismo , Glândulas Mamárias Animais/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Dieta/métodos , Feminino , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C
7.
Adv Exp Med Biol ; 1036: 1-18, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29275461

RESUMO

The approvals of Provenge (Sipuleucel-T), Ipilimumab (Yervoy/anti-CTLA-4) and blockers of the PD-1 - PD-L1/PD-L2 pathway, such as nivolumab (Opdivo), pembrolizumab (Keytruda), or atezolizumab (Tecentriq), have established immunotherapy as a key component of comprehensive cancer care. Further, murine mechanistic studies and studies in immunocompromised patients have documented the critical role of immunity in effectiveness of radio- and chemotherapy. However, in addition to the ability of the immune system to control cancer progression, it can also promote tumor growth, via regulatory T cells (Tregs), myeloid-derived dendritic cells (MDSCs) and tumor associated macrophages (TAM), which can enhance survival of cancer cells directly or via the regulation of the tumor stroma.An increasing body of evidence supports a central role for the tumor microenvironment (TME) and the interactions between tumor stroma, infiltrating immune cells and cancer cells during the induction and effector phase of anti-cancer immunity, and the overall effectiveness of immunotherapy and other forms of cancer treatment. In this chapter, we discuss the roles of key TME components during tumor progression, metastatic process and cancer therapy-induced tumor regression, as well as opportunities for their modulation to enhance the overall therapeutic benefit.


Assuntos
Neoplasias/imunologia , Microambiente Tumoral/imunologia , Animais , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
8.
Adv Exp Med Biol ; 1036: 145-156, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29275470

RESUMO

Rodent and clinical studies have documented that myeloid cell infiltration of tumors is associated with neutrophilia, lymphocytopenia and poor patient outcomes. This contrasts with lymphocyte infiltration of tumors, which is associated with improved outcomes. Lifestyle parameters such as high fat diet s and omega (ω)-6 polyunsaturated fatty acids (PUFA) intake may influence these inflammatory parameters including extramedullary myelopoiesis that can contribute to a metastatic "niche". While, tumor secretion of growth factors (GFs) and chemokines regulate tumor-immune-cell crosstalk, in this chapter, we also emphasize how lifestyle choices, including, obesity, high-fat and high ω-6 PUFA dietary content, contribute to inflammation and myeloid cell infiltration of tumors. A relationship between obesity and high-fat diets (notably the saturated fats in Western diets) and tumor incidence, metastasis, and poor outcomes is generally accepted. However, the mechanisms of dietary promotion of inflammatory microenvironments and targeted drugs to inhibit the clinical sequel remain an unmet challenge. One approach, modification of dietary intake may have a preventative or therapeutic approach to regulate tumor-associated inflammation and remains an attractive, but little studied intervention.


Assuntos
Mediadores da Inflamação/imunologia , Lipídeos/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Animais , Humanos , Neoplasias/patologia
9.
Int Immunopharmacol ; 127: 111330, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38086271

RESUMO

OBJECTIVES: Interstitial lung disease (ILD) is associated with significant mortality in rheumatoid arthritis (RA) patients with key cellular players remaining largely unknown. This study aimed to characterize inflammatory and myeloid derived suppressor cell (MDSC) subpopulations in RA-ILD as compared to RA, idiopathic pulmonary fibrosis (IPF) without autoimmunity, and controls. METHODS: Peripheral blood was collected from patients with RA, RA-ILD, IPF, and controls (N = 60, 15/cohort). Myeloid cell subpopulations were identified phenotypically by flow cytometry using the following markers:CD45,CD3,CD19,CD56,CD11b,HLA-DR,CD14,CD16,CD15,CD125,CD33. Functionality of subsets were identified with intracellular arginase-1 (Arg-1) and inducible nitric oxide synthase (iNOS) expression. RESULTS: There was increased intermediate (CD14++CD16+) and nonclassical (CD14+/-CD16++) and decreased classical (CD14++CD16-) monocytes in RA, RA-ILD, and IPF vs. control. Intermediate monocytes were higher and classical monocytes were lower in RA-ILD vs. RA but not IPF. Monocytic (m)MDSCs were higher in RA-ILD vs. control and RA but not IPF. Granulocytic (g)MDSCs did not significantly differ. In contrast, neutrophils were increased in IPF and RA-ILD patients with elevated expression of Arg-1 sharing similar dimensional clustering pattern. Eosinophils were increased in RA-ILD vs. controls, RA and IPF. Across cohorts, iNOS was decreased in intermediate/nonclassical monocytes but increased in mMDSCs vs. classical monocytes. In RA-ILD, iNOS positive mMDSCs were increased versus classic monocytes. CONCLUSIONS: Myeloid cell subpopulations are significantly modulated in RA-ILD patients with expansion of CD16+ monocytes, mMDSCs, and neutrophils, a phenotypic profile more aligned with IPF than other RA patients. Eosinophil expansion was unique to RA-ILD, potentially facilitating disease pathogenesis and providing a future therapeutic target.


Assuntos
Artrite Reumatoide , Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Humanos , Monócitos , Células Mieloides
10.
Semin Cancer Biol ; 21(2): 131-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21145968

RESUMO

The infiltration of tumors and their metastases by hematopoietic cells can contribute both positively and negatively to tumor growth, invasion, and patient outcomes. These differing outcomes are associated with both tumor heterogeneity and the diversity of leukocytes infiltrating neoplastic lesions. Tumors infiltration by histiocytes (macrophages and dendritic cells (DCs)) is associated with poor clinical outcomes, although infiltration by a subset of DCs is related to improved outcomes. T-cell infiltration of tumors and metastases are surrogates for positive outcomes, although subset analysis suggests that not all infiltrating T-cells have this potential. Overall, tumor infiltration by CD8(+) T-cells is associated with a positive outcome, while the frequency of infiltrating CD4(+) cells may be a negative predictor. In addition to tumor infiltration by macrophages and T-cells, recent studies have shown that myeloid-derived suppressor cells (MDSCs), also infiltrate tumors, inhibiting T-cell and DC number and function and facilitate tumor growth, angiogenesis, and metastasis. In summary, hematopoietic cell infiltration of tumors can regulate tumor progression and provide a useful diagnostic surrogate. Further, strategies focused on the manipulation of cellular infiltration via cellular, gene and molecular immunotherapies have the potential to provide a novel target for adjuvant therapy.


Assuntos
Linfócitos do Interstício Tumoral/imunologia , Neoplasias/imunologia , Animais , Células Dendríticas/imunologia , Progressão da Doença , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Células Progenitoras Mieloides/imunologia , Células Progenitoras Mieloides/metabolismo , Neoplasias/diagnóstico , Neoplasias/metabolismo , Prognóstico , Linfócitos T Reguladores/imunologia
11.
Int Immunopharmacol ; 117: 109882, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36848790

RESUMO

Immunotherapy is an additional pillar when combined with traditional standards of care such as chemotherapy, radiotherapy, and surgery for cancer patients. It has revolutionized cancer treatment and rejuvenated the field of tumor immunology. Several types of immunotherapies, including adoptive cellular therapy (ACT) and checkpoint inhibitors (CPIs), can induce durable clinical responses. However, their efficacies vary, and only subsets of cancer patients benefit from their use. In this review, we address three goals: to provide insight into the history of these approaches, broaden our understanding of immune interventions, and discuss current and future approaches. We highlight how cancer immunotherapy has evolved and discuss how personalization of immune intervention may address present limitations. Cancer immunotherapy is considered a recent medical achievement and in 2013 was selected as the "Breakthrough of the Year" by Science. While the breadth of immunotherapeutics has been rapidly expanding, to include the use of chimeric antigen receptor (CAR) T-cell therapy and immune checkpoint inhibitor (ICI) therapy, immunotherapy dates back over 3000 years. The expansive history of immunotherapy, and related observations, have resulted in several approved immune therapeutics beyond the recent emphasis on CAR-T and ICI therapies. In addition to other classical forms of immune intervention, including human papillomavirus (HPV), hepatitis B, and the Mycobacterium bovis Bacillus Calmette-Guérin (BCG) tuberculosis vaccines, immunotherapies have had a broad and durable impact on cancer therapy and prevention. One classic example of immunotherapy was identified in 1976 with the use of intravesical administration of BCG in patients with bladder cancer; resulting in a 70 % eradication rate and is now standard of care. However, a greater impact from the use of immunotherapy is documented by the prevention of HPV infections that are responsible for 98 % of cervical cancer cases. In 2020, the World Health Organization (WHO) estimated that 341,831 women died from cervical cancer [1]. However, administration of a single dose of a bivalent HPV vaccine was shown to be 97.5 % effective in preventing HPV infections. These vaccines not only prevent cervical squamous cell carcinoma and adenocarcinoma, but also oropharyngeal, anal, vulvar, vaginal, and penile squamous cell carcinomas. The breadth, response and durability of these vaccines can be contrasted with CAR-T-cell therapies, which have significant barriers to their widespread use including logistics, manufacturing limitations, toxicity concerns, financial burden and lasting remissions observed in only 30 to 40 % of responding patients. Another, recent immunotherapy focus are ICIs. ICIs are a class of antibodies that can increase the immune responses against cancer cells in patients. However, ICIs are only effective against tumors with a high mutational burden and are associated with a broad spectrum of toxicities requiring interruption of administration and/or administration corticosteroids; both of which limit immune therapy. In summary, immune therapeutics have a broad impact worldwide, utilizing numerous mechanisms of action and when considered in their totality are more effective against a broader range of tumors than initially considered. These new cancer interventions have tremendous potential notability when multiple mechanisms of immune intervention are combined as well as with standard of care modalities.


Assuntos
Mycobacterium bovis , Infecções por Papillomavirus , Neoplasias da Bexiga Urinária , Neoplasias do Colo do Útero , Humanos , Feminino , Vacina BCG , Neoplasias do Colo do Útero/tratamento farmacológico , Imunoterapia/métodos , Neoplasias da Bexiga Urinária/tratamento farmacológico
12.
Amino Acids ; 42(5): 1541-51, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22476348

RESUMO

Protein S-nitrosylation is the covalent redox-related modification of cysteine sulfhydryl groups with nitric oxide, creating a regulatory impact similar to phosphorylation. Recent studies have reported a growing number of proteins to be S-nitrosylated in vivo resulting in altered functions. These studies support S-nitrosylation as a critical regulatory mechanism, fine-tuning protein activities within diverse cellular processes and biochemical pathways. In addition, S-nitrosylation appears to have key roles in the etiology of a broad range of human diseases. In this review, we discuss recent advances in proteomic approaches for the enrichment, identification, and quantitation of cysteine S-nitrosylated proteins and peptides. These advances have provided analytical tools with the power to interpret the impact of S-nitrosylation at the system level, providing a new platform for drug discovery and the identification of diagnostic markers for human diseases.


Assuntos
Cisteína/metabolismo , Óxido Nítrico/metabolismo , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Proteômica , Cisteína/química , Descoberta de Drogas , Humanos , Oxirredução , Peptídeos/química , Proteínas/química
13.
Int Immunopharmacol ; 106: 108628, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35203041

RESUMO

In recent years, immune therapy, notably immune checkpoint inhibitors (ICI), in conjunction with chemotherapy and surgery has demonstrated therapeutic activity for some tumor types. However, little is known about the optimal combination of immune therapy with standard of care therapies and approaches. In patients with gastrointestinal (GI) cancers, especially pancreatic ductal adenocarcinoma (PDAC), preoperative (neoadjuvant) chemotherapy has increased the number of patients who can undergo surgery and improved their responses. However, most chemotherapy is immunosuppressive, and few studies have examined the impact of neoadjuvant chemotherapy (NCT) on patient immunity and/or the optimal combination of chemotherapy with immune therapy. Furthermore, the majority of chemo/immunotherapy studies focused on immune regulation in cancer patients have focused on postoperative (adjuvant) chemotherapy and are limited to peripheral blood (PB) and occasionally tumor infiltrating lymphocytes (TILs); representing a minority of immune cells in the host. Our previous studies examined the phenotype and frequencies of myeloid and lymphoid cells in the PB and spleens of GI cancer patients, independent of chemotherapy regimen. These results led us to question the impact of NCT on host immunity. We report herein, unique studies examining the splenic and PB phenotypes, frequencies, and numbers of myeloid and lymphoid cell populations in NCT treated GI cancer patients, as compared to treatment naïve cancer patients and patients with benign GI tumors at surgery. Overall, we noted limited immunological differences in patients 6 weeks following NCT (at surgery), as compared to treatment naive patients, supporting rapid immune normalization. We observed that NCT patients had a lower myeloid derived suppressor cells (MDSCs) frequency in the spleen, but not the PB, as compared to treatment naive cancer patients and patients with benign GI tumors. Further, NCT patients had a higher splenic and PB frequency of CD4+ T-cells, and checkpoint protein expression, as compared to untreated, cancer patients and patients with benign GI tumors. Interestingly, in NCT treated cancer patients the frequency of mature (CD45RO+) CD4+ and CD8+ T-cells in the PB and spleens was higher than in treatment naive patients. These differences may also be associated, in part with patient stage, tumor grade, and/or NCT treatment regimen. In summary, the phenotypic profile of leukocytes at the time of surgery, approximately 6 weeks following NCT treatment in GI cancer patients, are similar to treatment naive GI cancer patients (i.e., patients who receive adjuvant therapy); suggesting that NCT may not limit the response to immune intervention and may improve tumor responses due to the lower splenic frequency of MDSCs and higher frequency of mature T-cells.


Assuntos
Neoplasias Gastrointestinais , Neoplasias Pancreáticas , Linfócitos T CD8-Positivos , Neoplasias Gastrointestinais/tratamento farmacológico , Humanos , Terapia Neoadjuvante , Neoplasias Pancreáticas/patologia , Baço
14.
Clin Exp Metastasis ; 38(3): 279-293, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34014424

RESUMO

Metastasis is the primary cause of cancer mortality and an improved understanding of its pathology is critical to the development of novel therapeutic approaches. Mechanism-based therapeutic strategies require insight into the timing of tumor cell dissemination, seeding of distant organs, formation of occult lesions and critically, their release from dormancy. Due to imaging limitations, primary tumors can only be detected when they reach a relatively large size (e.g. > 1 cm3), which, based on our understanding of tumor evolution, occurs approximately 10 years and about 30 doubling times following tumor initiation. Genomic profiling of paired primary tumors and metastases has suggested that tumor seeding at secondary sites occurs early during tumor progression and frequently, years prior to clinical diagnosis. Following seeding, tumor cells may enter into and remain in a dormant state, and if they survive and are released from dormancy, they can proliferate into an overt lesion. The timeline of tumor initiation and metastatic dormancy is regulated by tumor interactions with its microenvironment, angiogenesis, and tumor-specific cytotoxic T-lymphocyte (CTL) responses. Therefore, a better understanding of the cellular interactions responsible for immune evasion and/or tumor cell release from dormancy would facilitate the development of therapeutics targeted against this critical part of tumor progression. The immunosuppressive mechanisms mediated by myeloid-derived suppressor cells (MDSCs) contribute to tumor progression and, we posit, promote tumor cell escape from CTL-associated dormancy. Thus, while clinical and translational research has demonstrated a role for MDSCs in facilitating tumor progression and metastasis through tumor escape from adoptive and innate immune responses (T-, natural killer and B-cell responses), few studies have considered the role of MDSCs in tumor release from dormancy. In this review, we discuss MDSC expansion, driven by tumor burden associated growth factor secretion and their role in tumor cell escape from dormancy, resulting in manifest metastases. Thus, the therapeutic strategies to inhibit MDSC expansion and function may provide an approach to delay metastatic relapse and prolong the survival of patients with advanced malignancies.


Assuntos
Células Supressoras Mieloides/imunologia , Micrometástase de Neoplasia/patologia , Neoplasias/patologia , Evasão Tumoral/imunologia , Animais , Humanos , Micrometástase de Neoplasia/imunologia , Neoplasias/imunologia
15.
Cancer Immunol Immunother ; 59(1): 47-62, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19449184

RESUMO

Female mice transgenic for the rat proto-oncogene c-erb-B2, under control of the mouse mammary tumor virus (MMTV) promoter (neuN), spontaneously develop metastatic mammary carcinomas. The development of these mammary tumors is associated with increased number of GR-1(+)CD11b(+) myeloid derived suppressor cells (MDSCs) in the peripheral blood (PB), spleen and tumor. We report a complex relationship between tumor growth, MDSCs and immune regulatory molecules in non-mutated neu transgenic mice on a FVB background (FVB-neuN). The first and second tumors in FVB-neuN mice develop at a median of 265 (147-579) and 329 (161-523) days, respectively, resulting in a median survival time (MST) of 432 (201 to >500) days. During tumor growth, significantly increased number of MDSCs is observed in the PB and spleen, as well as, in infiltrating the mammary tumors. Our results demonstrate a direct correlation between tumor size and the number of MDSCs infiltrating the tumor and an inverse relationship between the frequency of CD4(+) T-cells and MDSCs in the spleen. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assessment of enzyme and cytokine transcript levels in the spleen, tumor, tumor-infiltrating non-parenchymal cells (NPCs) and mammary glands revealed a significant increase in transcript levels from grossly normal mammary glands and tumor-infiltrating NPCs during tumor progression. Tumor NPCs, as compared to spleen cells from wild-type (w/t) mice, expressed significantly higher levels of arginase-1 (ARG-1), nitric oxide synthase (NOS-2), vascular endothelial growth factor (VEGF-A) and significantly lower levels of interferon (IFN)-gamma, interleukin (IL)-2 and fms-like tyrosine kinase-3 ligand (Flt3L) transcript levels. Transcript levels in the spleens of tumor-bearing (TB) mice also differed from normal mice, although to a lesser extent than transcript levels from tumor-infiltrating NPCs. Furthermore, both spleen cells and NPCs from TB mice, but not control mice, suppressed alloantigen responses by syngeneic control spleen cells. Correlative studies revealed that the number of MDSCs in the spleen was directly associated with granulocyte colony stimulating factor (G-CSF) transcript levels in the spleen; while the number of MDSCs in the tumors was directly correlated with splenic granulocyte macrophage stimulating factor (GM-CSF) transcript levels, tumor volume and tumor cell number. Together our results support a role for MDSCs in tumor initiation and progressive, T-cell depression and loss of function provide evidence which support multiple mechanisms of MDSC expansion in a site-dependent manner.


Assuntos
Neoplasias Mamárias Experimentais/imunologia , Células Mieloides/fisiologia , Animais , Células Cultivadas , Feminino , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Células Mieloides/imunologia , Esplenomegalia/imunologia , Esplenomegalia/patologia
16.
Blood ; 111(12): 5457-66, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18375791

RESUMO

Tumor growth is associated with aberrant myelopoiesis, including the accumulation of CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSCs) that have the potential to promote tumor growth. However, the identity, growth, and migration of tumor-associated MDSCs remain undefined. We demonstrate herein that MDSCs at tumor site were composed primarily of bone marrow-derived CD11b(+)Gr-1(hi)Ly-6C(int) neutrophils and CD11b(+)Gr-1(int/dull)Ly-6C(hi) macrophages. Unexpectedly, in vivo bromodeoxyuridine (BrdU) labeling and parabiosis experiments revealed that tumor-infiltrating macrophages were replenished more rapidly than neutrophils. CCR2 deficiency caused striking conversion of infiltrating cellular dominance from macrophages to neutrophils in the tumor with the excessive production of CXCR2 ligands and granulocyte-colony stimulating factor in the tumor without affecting tumor growth. Overall, our data established the identity and dynamics of MDSCs in a tumor-bearing host mediated by chemokines and elucidated unexpected effects of the paucity of macrophages on tumor development.


Assuntos
Carcinoma Pulmonar de Lewis/patologia , Macrófagos/patologia , Células Mieloides/patologia , Mielopoese/fisiologia , Neutrófilos/patologia , Receptores de Quimiocinas/genética , Animais , Antígeno CD11b/metabolismo , Receptor 1 de Quimiocina CX3C , Carcinoma Pulmonar de Lewis/imunologia , Linhagem Celular Tumoral , Feminino , Proteínas de Fluorescência Verde/genética , Imunofenotipagem , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Células Mieloides/metabolismo , Transplante de Neoplasias , Neutrófilos/metabolismo , Receptores CCR1/genética , Receptores CCR2/genética , Receptores CCR5/genética , Receptores de Quimiocinas/metabolismo , Linfócitos T/metabolismo , Linfócitos T/patologia
17.
J Immunol ; 181(3): 1978-87, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18641335

RESUMO

The defense against the invasion of viruses and tumors relies on the presentation of viral and tumor-derived peptides to CTL by cell surface MHC class I molecules. Previously, we showed that the ubiquitously expressed protein amyloid precursor-like protein 2 (APLP2) associates with the folded form of the MHC class I molecule K(d). In the current study, APLP2 was found to associate with folded K(d) molecules following their endocytosis and to increase the amount of endocytosed K(d). In addition, increased expression of APLP2 was shown to decrease K(d) surface expression and thermostability. Correspondingly, K(d) thermostability and surface expression were increased by down-regulation of APLP2 expression. Overall, these data suggest that APLP2 modulates the stability and endocytosis of K(d) molecules.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Endocitose/imunologia , Antígenos H-2/imunologia , Proteínas do Tecido Nervoso/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Membrana Celular/metabolismo , Endossomos/imunologia , Endossomos/metabolismo , Regulação da Expressão Gênica , Antígenos H-2/metabolismo , Células HeLa , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Dobramento de Proteína , Temperatura
18.
Mol Ther ; 17(3): 508-15, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19127252

RESUMO

Intravascular delivery (1.5 x 10(9) particles and higher) of recombinant adenovirus (rAd) induces myeloid cell mediated, self-limiting hemodynamic responses in normal mice. However, we observed anaphylactoid-type reactions and exacerbated hemodynamic events following rAd injection in mice bearing malignant 4T1 mammary carcinoma. Because 4T1 tumors induce significant CD11b(+)Gr-1(+) myeloid cell expansion and activation, we set to determine whether this causes rAd-induced exaggerated responses. When treated with a single intravenous dose (1 x 10(10) particles) of rAd, mice implanted with 4T1 carcinoma succumbed due to the anaphylactoid-type reactions. In contrast, normal mice and mice implanted with a related mammary carcinoma (66cl4) that does not induce CD11b(+)Gr-1(+) cell expansion, showed minimal responses. Depletion of phagocytic CD11b(+)Gr-1(+) cells prior to rAd delivery protected 4T1 tumor-bearing animals, whereas passive transfer of CD11b(+)Gr-1(+) cells from 4T1 tumor-bearing animals was sufficient to convey susceptibility to anaphylactoid-type reactions in normal animals. We further show that there is upregulation of nitric oxide and leukotriene signaling pathways in the 4T1 tumor-induced CD11b(+)Gr-1(+) myeloid cells and that pretreating mice with inhibitors of nitric oxide synthetase and leukotrienes can attenuate the anaphylactoid-type reactions. These data show that malignant tumor growth can alter CD11b(+)Gr-1(+) myeloid cells, rendering hosts susceptible to anaphylactoid-type reactions upon intravascular treatment with rAd.


Assuntos
Adenoviridae/imunologia , Anafilaxia/metabolismo , Antígeno CD11b/imunologia , Diferenciação Celular , Terapia Genética/efeitos adversos , Neoplasias/patologia , Receptores de Quimiocinas/metabolismo , Adenoviridae/genética , Anafilaxia/fisiopatologia , Animais , Sistema Cardiovascular/metabolismo , Linhagem Celular Tumoral , Suscetibilidade a Doenças , Feminino , Frequência Cardíaca , Humanos , Antagonistas de Leucotrienos/farmacologia , Lipossomos , Camundongos , Células Mieloides/metabolismo , Transplante de Neoplasias , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Fagócitos , Receptores de Quimiocinas/imunologia , Receptores de Leucotrienos/metabolismo
19.
Infect Prev Pract ; 2(1): 100032, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34368688

RESUMO

BACKGROUND: Mitigating surface contamination by microbes such as S. aureus, Salmonella enterica, or Klebsiella pneumoniae, is an ongoing problem in hospital and food production environments. AIM: To determine whether addition of buffering solution to source water used for manufacture of aqueous ozone increases ozone efficacy against ozone-resistant bacterial species. METHODS: Antimicrobial effects of aqueous ozone were studied in combination with acetate, propionate, or butyrate short chain fatty acids (SCFA) as well as citrate or oxalate buffer formulations against Staphylococcus aureus on glass coupons. Aqueous ozone combined with an acetate buffer was also evaluated against Salmonella enterica and Klebsiella pneumoniae. FINDINGS: The acetate, propionate, and butyrate buffered aqueous ozone combinations had a significant 3-4 log reduction of S. aureus (P<0.05) colony forming unit (CFU), while citrate or oxalate buffered aqueous ozone, although statistically significant versus buffer alone, had less activity. Treatment of S. aureus, S. enterica, or K. pneumoniae with acetate buffered aqueous ozone also resulted in a 4 log or greater reduction in CFUs post-treatment for all three species, versus treatment with water alone. CONCLUSIONS: All buffer systems tested had a significantly greater reduction in CFUs following treatment with the combination of buffer and ozone, compared to treatment with buffer or ozone individually, which has not been previously reported for hard surfaces. These results suggest that SCFA buffered ozone has greater anti-bacterial activity relative to either agent alone, and the activity is independent of the buffering activity. Thus, these formulations have potential to sanitize without residues, using an environmentally conscious formulation.

20.
Int Immunopharmacol ; 85: 106655, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32521493

RESUMO

Patients with resectable tumor, either in the body or the tail of the pancreas, and cancer patients with a primary tumor adjacent to the splenic vasculature frequently undergo a splenectomy as standard of care during resection. The spleen provides an unutilized source of lymphocytes with potential utility for adoptive cellular therapy (ACT). In this report, spleen and peripheral blood (PB) cells from cancer patients were compared to one another and normal PB by flow cytometry with a focus on CD8+ T-cells, memory phenotype, and their relative expression of checkpoint proteins including program death ligand-1 (PD1). PD1 is both an activation marker for T-cells including antigen (Ag) specific responses, as well as a marker of T-cell exhaustion associated with co-expression of other checkpoint molecules such as lymphocyte activating gene-3 (LAG-3) and T-cell immunoglobulin and mucin domain containing-3 (TIM-3). In summary, the spleen is a rich source of CD8+PD1+ T-cells, with an 8-fold higher frequency compared to the PB. These CD8+ T-cells are predominantly central and transitional memory T-cells with associated effector phenotypes and low expression of TIM-3 and LAG-3 with potential utility for ACT".


Assuntos
Neoplasias/sangue , Neoplasias/imunologia , Baço/citologia , Linfócitos T/imunologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Receptor de Morte Celular Programada 1/imunologia , Baço/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa