Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Development ; 150(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36897355

RESUMO

Neurogenesis is initiated by basic helix-loop-helix proneural proteins. Here, we show that Actin-related protein 6 (Arp6), a core component of the H2A.Z exchange complex SWR1, interacts with proneural proteins and is crucial for efficient onset of proneural protein target gene expression. Arp6 mutants exhibit reduced transcription in sensory organ precursors (SOPs) downstream of the proneural protein patterning event. This leads to retarded differentiation and division of SOPs and smaller sensory organs. These phenotypes are also observed in proneural gene hypomorphic mutants. Proneural protein expression is not reduced in Arp6 mutants. Enhanced proneural gene expression fails to rescue retarded differentiation in Arp6 mutants, suggesting that Arp6 acts downstream of or in parallel with proneural proteins. H2A.Z mutants display Arp6-like retardation in SOPs. Transcriptomic analyses demonstrate that loss of Arp6 and H2A.Z preferentially decreases expression of proneural protein-activated genes. H2A.Z enrichment in nucleosomes around the transcription start site before neurogenesis correlates highly with greater activation of proneural protein target genes by H2A.Z. We propose that upon proneural protein binding to E-box sites, H2A.Z incorporation around the transcription start site allows rapid and efficient activation of target genes, promoting rapid neural differentiation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ativação Transcricional , Actinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34544873

RESUMO

The biological mechanisms underpinning learning are unclear. Mounting evidence has suggested that adult hippocampal neurogenesis is involved although a causal relationship has not been well defined. Here, using high-resolution genetic mapping of adult neurogenesis, combined with sequencing information, we identify follistatin (Fst) and demonstrate its involvement in learning and adult neurogenesis. We confirmed that brain-specific Fst knockout (KO) mice exhibited decreased hippocampal neurogenesis and demonstrated that FST is critical for learning. Fst KO mice exhibit deficits in spatial learning, working memory, and long-term potentiation (LTP). In contrast, hippocampal overexpression of Fst in KO mice reversed these impairments. By utilizing RNA sequencing and chromatin immunoprecipitation, we identified Asic4 as a target gene regulated by FST and show that Asic4 plays a critical role in learning deficits caused by Fst deletion. Long-term overexpression of hippocampal Fst in C57BL/6 wild-type mice alleviates age-related decline in cognition, neurogenesis, and LTP. Collectively, our study reveals the functions for FST in adult neurogenesis and learning behaviors.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Folistatina/fisiologia , Hipocampo/metabolismo , Neurogênese , Plasticidade Neuronal , Aprendizagem Espacial/fisiologia , Canais Iônicos Sensíveis a Ácido/genética , Animais , Cognição , Feminino , Potenciação de Longa Duração , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sinapses/fisiologia
3.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892173

RESUMO

A-to-I RNA editing, catalyzed by the ADAR protein family, significantly contributes to the diversity and adaptability of mammalian RNA signatures, aligning with developmental and physiological needs. Yet, the functions of many editing sites are still to be defined. The Unc80 gene stands out in this context due to its brain-specific expression and the evolutionary conservation of its codon-altering editing event. The precise biological functions of Unc80 and its editing, however, are still largely undefined. In this study, we first demonstrated that Unc80 editing occurs in an ADAR2-dependent manner and is exclusive to the brain. By employing the CRISPR/Cas9 system to generate Unc80 knock-in mouse models that replicate the natural editing variations, our findings revealed that mice with the "gain-of-editing" variant (Unc80G/G) exhibit heightened basal neuronal activity in critical olfactory regions, compared to the "loss-of-editing" (Unc80S/S) counterparts. Moreover, an increase in glutamate levels was observed in the olfactory bulbs of Unc80G/G mice, indicating altered neurotransmitter dynamics. Behavioral analysis of odor detection revealed distinctive responses to novel odors-both Unc80 deficient (Unc80+/-) and Unc80S/S mice demonstrated prolonged exploration times and heightened dishabituation responses. Further elucidating the olfactory connection of Unc80 editing, transcriptomic analysis of the olfactory bulb identified significant alterations in gene expression that corroborate the behavioral and physiological findings. Collectively, our research advances the understanding of Unc80's neurophysiological functions and the impact of its editing on the olfactory sensory system, shedding light on the intricate molecular underpinnings of olfactory perception and neuronal activity.


Assuntos
Adenosina Desaminase , Percepção Olfatória , Edição de RNA , Animais , Camundongos , Percepção Olfatória/fisiologia , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Bulbo Olfatório/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Neurônios/metabolismo , Sistemas CRISPR-Cas , Masculino , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
4.
FASEB J ; 35(10): e21929, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34553421

RESUMO

Recent studies emphasize the importance of 5-HT2C receptor (5-HT2C R) signaling in the regulation of energy homeostasis. The 5-HT2C R is the only G-protein-coupled receptor known to undergo post-transcriptional adenosine to inosine (A-to-I) editing by adenosine deaminase acting on RNA (ADAR). 5-HT2C R has emerged as an important role in the modulation of pancreatic ß cell functions. This study investigated mechanisms behind the effects of palmitic acid (PA) on insulin secretion in different overexpressed 5-HT2C R edited isoforms in pancreatic MIN6 ß cells. Results showed that the expressions of 5HT2C R and ADAR2 were upregulated in the pancreatic islets of mice fed with high-fat diet (HFD) compared to control mice. PA treatment significantly induced the expressions of 5-HT2C R and ADAR2 in pancreatic MIN6 ß cells. PA treatment significantly induced the editing of 5-HT2C R in pancreatic MIN6 ß cells. There was no significant difference in cell viability between naïve cells and three overexpressed 5-HT2C R edited isoforms in pancreatic MIN6 ß cells. Overexpressed 5-HT2C R edited isoforms showed reduced glucose-stimulated insulin secretion (GSIS) compared with green fluorescent protein (GFP) expressed cells. Moreover, 5-HT2C R edited isoforms displayed reduced endoplasmic reticulum (ER) calcium release and store-operated calcium entry (SOCE) activation, probably through inhibition of stromal interaction molecule 1 trafficking under PA treatment. Altogether, our results show that PA-mediated editing of 5-HT2C R modulates GSIS through alteration of ER calcium release and SOCE activation in pancreatic MIN6 ß cells.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Secreção de Insulina/genética , Células Secretoras de Insulina/metabolismo , Edição de RNA , Receptor 5-HT2C de Serotonina/genética , Adenosina Desaminase/genética , Animais , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dieta Hiperlipídica , Retículo Endoplasmático/metabolismo , Glucose/metabolismo , Resistência à Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Camundongos , Modelos Animais , Ácido Palmítico/farmacologia , Isoformas de Proteínas/genética , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Molécula 1 de Interação Estromal/metabolismo , Regulação para Cima/efeitos dos fármacos
5.
FASEB J ; 34(1): 1107-1121, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914708

RESUMO

The nucleolus is best known for its cellular role in regulating ribosome production and growth. More recently, an unanticipated role for the nucleolus in innate immunity has recently emerged whereby downregulation of fibrillarin and nucleolar contraction confers pathogen resistance across taxa. The mechanism of this downregulation, however, remains obscure. Here we report that rather than fibrillarin itself being the proximal factor in this pathway, the key player is a fibrillarin-stabilizing deubiquitinylase USP-33. This was discovered by a candidate-gene search of Caenorhabditis elegans in which CED-3 caspase was revealed to execute targeted cleavage of USP-33, thus destabilizing fibrillarin. We also showed that cep-1 and ced-3 mutant worms altered nucleolar size and decreased antimicrobial peptide gene, spp-1, expression rendering susceptibility to bacterial infection. These phenotypes were reversed by usp-33 knockdown, thus linking the CEP-1-CED-3-USP-33 pathway with nucleolar control and resistance to bacterial infection in worms. Parallel experiments with the human analogs of caspases and USP36 revealed similar roles in coordinating these two processes. In summary, our work outlined a conserved cascade that connects cell death signaling to nucleolar control and innate immune response.


Assuntos
Infecções Bacterianas/metabolismo , Caenorhabditis elegans/microbiologia , Nucléolo Celular/metabolismo , Enzimas Desubiquitinantes/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/metabolismo , Animais , Apoptose , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Células HeLa , Humanos , Microscopia de Fluorescência , Infecções por Pseudomonas , Interferência de RNA , Infecções Estafilocócicas , Estaurosporina/farmacologia , Ubiquitina Tiolesterase/metabolismo
6.
EMBO Rep ; 20(5)2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30948460

RESUMO

Adenosine deaminase acting on RNA (ADAR)-catalyzed adenosine-to-inosine RNA editing is potentially dysregulated in neoplastic progression. However, how this transcriptome recoding process is functionally correlated with tumorigenesis remains largely elusive. Our analyses of RNA editome datasets identify hypoxia-related genes as A-to-I editing targets. In particular, two negative regulators of HIF-1A-the natural antisense transcript HIF1A-AS2 and the ubiquitin ligase scaffold LIMD1-are directly but differentially modulated by ADAR1. We show that HIF1A-AS2 antagonizes the expression of HIF-1A in the immediate-early phase of hypoxic challenge, likely through a convergent transcription competition in cis ADAR1 in turn suppresses transcriptional progression of the antisense gene. In contrast, ADAR1 affects LIMD1 expression post-transcriptionally, by interfering with the cytoplasmic translocation of LIMD1 mRNA and thus protein translation. This multi-tier regulation coordinated by ADAR1 promotes robust and timely accumulation of HIF-1α upon oxygen depletion and reinforces target gene induction and downstream angiogenesis. Our results pinpoint ADAR1-HIF-1α axis as a hitherto unrecognized key regulator in hypoxia.


Assuntos
Adenosina Desaminase/genética , Hipóxia Celular/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas de Ligação a RNA/genética , Transdução de Sinais/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Citoplasma/genética , Humanos , Proteínas com Domínio LIM/genética , Células MCF-7 , Edição de RNA/genética , RNA Mensageiro/genética , Transcrição Gênica/genética
7.
J Biol Chem ; 293(26): 10158-10171, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29769310

RESUMO

Processing of the eukaryotic transcriptome is a dynamic regulatory mechanism that confers genetic diversity, and splicing and adenosine to inosine (A-to-I) RNA editing are well-characterized examples of such processing. Growing evidence reveals the cross-talk between the splicing and RNA editing, but there is a paucity of substantial evidence for its mechanistic details and contribution in a physiological context. Here, our findings demonstrate that tumor-associated differential RNA editing, in conjunction with splicing machinery, regulates the expression of variants of HNRPLL, a gene encoding splicing factor. We discovered an HNRPLL transcript variant containing an additional exon 12A (E12A), which is a substrate of ADAR1 and ADAR2. Adenosine deaminases acting on RNA (ADAR) direct deaminase-dependent expression of the E12A transcript, and ADAR-mediated regulation of E12A is largely splicing-based, and does not affect the stability or nucleocytoplasmic distribution of the transcript. Furthermore, ADAR-mediated modification of exon 12A generates an enhancer for the oncogenic splicing factor SRSF1 and consequently promotes the frequency of alternative splicing. Gene expression profiling by RNA-seq revealed that E12A acts distinctly from HNRPLL and regulates a set of growth-related genes, such as cyclin CCND1 and growth factor receptor TGFBR1 Accordingly, silencing E12A expression leads to impaired clonogenic ability and enhanced sensitivity to doxorubicin, thus highlighting the significance of this alternative isoform in tumor cell survival. In summary, we present the interplay of RNA editing and splicing as a regulatory mechanism of gene expression and also its physiological relevance. These findings extend our understanding of transcriptional dynamics and provide a mechanistic explanation to the link of RNA editors to tumorigenesis.


Assuntos
Processamento Alternativo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Íntrons/genética , Edição de RNA , Antígenos de Superfície/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Ciclina D1/genética , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Células HeLa , Humanos , RNA Mensageiro/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Transcrição Gênica/genética
8.
PLoS Genet ; 11(10): e1005580, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26492166

RESUMO

Ribosome biogenesis takes place in the nucleolus, the size of which is often coordinated with cell growth and development. However, how metazoans control nucleolar size remains largely unknown. Caenorhabditis elegans provides a good model to address this question owing to distinct tissue distribution of nucleolar sizes and a mutant, ncl-1, which exhibits larger nucleoli than wild-type worms. Here, through a series of loss-of-function analyses, we report that the nucleolar size is regulated by a circuitry composed of microRNA let-7, translation repressor NCL-1, and a major nucleolar pre-rRNA processing protein FIB-1/fibrillarin. In cooperation with RNA binding proteins PUF and NOS, NCL-1 suppressed the translation of FIB-1/fibrillarin, while let-7 targeted the 3'UTR of ncl-1 and inhibited its expression. Consequently, the abundance of FIB-1 is tightly controlled and correlated with the nucleolar size. Together, our findings highlight a novel genetic cascade by which post-transcriptional regulators interplay in developmental control of nucleolar size and function.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Proteínas Cromossômicas não Histona/genética , MicroRNAs/genética , RNA Ribossômico/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Regiões 3' não Traduzidas , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Nucléolo Celular/genética , Tamanho Celular , Proteínas Cromossômicas não Histona/metabolismo , Feminino , MicroRNAs/metabolismo , Imagem Óptica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Vulva/crescimento & desenvolvimento , Vulva/metabolismo
9.
PLoS Genet ; 11(7): e1005391, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26177073

RESUMO

While some human-specific protein-coding genes have been proposed to originate from ancestral lncRNAs, the transition process remains poorly understood. Here we identified 64 hominoid-specific de novo genes and report a mechanism for the origination of functional de novo proteins from ancestral lncRNAs with precise splicing structures and specific tissue expression profiles. Whole-genome sequencing of dozens of rhesus macaque animals revealed that these lncRNAs are generally not more selectively constrained than other lncRNA loci. The existence of these newly-originated de novo proteins is also not beyond anticipation under neutral expectation, as they generally have longer theoretical lifespan than their current age, due to their GC-rich sequence property enabling stable ORFs with lower chance of non-sense mutations. Interestingly, although the emergence and retention of these de novo genes are likely driven by neutral forces, population genetics study in 67 human individuals and 82 macaque animals revealed signatures of purifying selection on these genes specifically in human population, indicating a proportion of these newly-originated proteins are already functional in human. We thus propose a mechanism for creation of functional de novo proteins from ancestral lncRNAs during the primate evolution, which may contribute to human-specific genetic novelties by taking advantage of existed genomic contexts.


Assuntos
Evolução Molecular , Genética Populacional , Filogenia , RNA Longo não Codificante/genética , Animais , Sequência Rica em GC/genética , Genoma Humano , Humanos , Macaca mulatta/genética , Fases de Leitura Aberta , Primatas/genética , Splicing de RNA/genética
10.
Mol Biol Evol ; 33(5): 1370-5, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26882984

RESUMO

Although population genetics studies have significantly accelerated the evolutionary and functional interrogations of genes and regulations, limited polymorphism data are available for rhesus macaque, the model animal closely related to human. Here, we report the first genome-wide effort to identify and visualize the population genetics profile in rhesus macaque. On the basis of the whole-genome sequencing of 31 independent macaque animals, we profiled a comprehensive polymorphism map with 46,146,548 sites. The allele frequency for each polymorphism site, the haplotype structure, as well as multiple population genetics parameters were then calculated on a genome-wide scale. We further developed a specific interface, the RhesusBase PopGateway, to facilitate the visualization of these annotations, and highlighted the applications of this highly integrative platform in clarifying the selection signatures of genes and regulations in the context of the primate evolution. Overall, the updated RhesusBase provides a comprehensive monkey population genetics framework for in-depth evolutionary studies of human biology.


Assuntos
Macaca mulatta/genética , Animais , Evolução Biológica , China , Bases de Dados de Ácidos Nucleicos , Genética Populacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metagenômica/métodos , Metagenômica/normas , Análise de Sequência de DNA/métodos
11.
EMBO Rep ; 16(4): 528-38, 2015 04.
Artigo em Inglês | MEDLINE | ID: mdl-25666827

RESUMO

Many causal mutations of intellectual disability have been found in genes involved in epigenetic regulations. Replication-independent deposition of the histone H3.3 variant by the HIRA complex is a prominent nucleosome replacement mechanism affecting gene transcription, especially in postmitotic neurons. However, how HIRA-mediated H3.3 deposition is regulated in these cells remains unclear. Here, we report that dBRWD3, the Drosophila ortholog of the intellectual disability gene BRWD3, regulates gene expression through H3.3, HIRA, and its associated chaperone Yemanuclein (YEM), the fly ortholog of mammalian Ubinuclein1. In dBRWD3 mutants, increased H3.3 levels disrupt gene expression, dendritic morphogenesis, and sensory organ differentiation. Inactivation of yem or H3.3 remarkably suppresses the global transcriptome changes and various developmental defects caused by dBRWD3 mutations. Our work thus establishes a previously unknown negative regulation of H3.3 and advances our understanding of BRWD3-dependent intellectual disability.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Chaperonas de Histonas/genética , Histonas/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Cromatina/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/antagonistas & inibidores , Histonas/metabolismo , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Morfogênese/genética , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Fatores de Transcrição/metabolismo
12.
Nucleic Acids Res ; 43(Database issue): D849-55, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25398898

RESUMO

Whole-exome sequencing, which centres on the protein coding regions of disease/cancer associated genes, represents the most cost-effective method to-date for deciphering the association between genetic alterations and diseases. Large-scale whole exome/genome sequencing projects have been launched by various institutions, such as NCI, Broad Institute and TCGA, to provide a comprehensive catalogue of coding variants in diverse tissue samples and cell lines. Further functional and clinical interrogation of these sequence variations must rely on extensive cross-platforms integration of sequencing information and a proteome database that explicitly and comprehensively archives the corresponding mutated peptide sequences. While such data resource is a critical for the mass spectrometry-based proteomic analysis of exomic variants, no database is currently available for the collection of mutant protein sequences that correspond to recent large-scale genomic data. To address this issue and serve as bridge to integrate genomic and proteomics datasets, CMPD (http://cgbc.cgu.edu.tw/cmpd) collected over 2 millions genetic alterations, which not only facilitates the confirmation and examination of potential cancer biomarkers but also provides an invaluable resource for translational medicine research and opportunities to identify mutated proteins encoded by mutated genes.


Assuntos
Bases de Dados de Proteínas , Proteínas Mutantes/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Proteoma/genética , Linhagem Celular Tumoral , Humanos , Internet , Mutação
13.
PLoS Genet ; 10(4): e1004274, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24722121

RESUMO

Understanding of the RNA editing process has been broadened considerably by the next generation sequencing technology; however, several issues regarding this regulatory step remain unresolved--the strategies to accurately delineate the editome, the mechanism by which its profile is maintained, and its evolutionary and functional relevance. Here we report an accurate and quantitative profile of the RNA editome for rhesus macaque, a close relative of human. By combining genome and transcriptome sequencing of multiple tissues from the same animal, we identified 31,250 editing sites, of which 99.8% are A-to-G transitions. We verified 96.6% of editing sites in coding regions and 97.5% of randomly selected sites in non-coding regions, as well as the corresponding levels of editing by multiple independent means, demonstrating the feasibility of our experimental paradigm. Several lines of evidence supported the notion that the adenosine deamination is associated with the macaque editome--A-to-G editing sites were flanked by sequences with the attributes of ADAR substrates, and both the sequence context and the expression profile of ADARs are relevant factors in determining the quantitative variance of RNA editing across different sites and tissue types. In support of the functional relevance of some of these editing sites, substitution valley of decreased divergence was detected around the editing site, suggesting the evolutionary constraint in maintaining some of these editing substrates with their double-stranded structure. These findings thus complement the "continuous probing" model that postulates tinkering-based origination of a small proportion of functional editing sites. In conclusion, the macaque editome reported here highlights RNA editing as a widespread functional regulation in primate evolution, and provides an informative framework for further understanding RNA editing in human.


Assuntos
Macaca mulatta/genética , Edição de RNA/genética , RNA/genética , Adenosina/genética , Adenosina Desaminase/genética , Animais , Genoma/genética , Transcriptoma/genética
14.
Mol Biol Evol ; 32(12): 3143-57, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26341297

RESUMO

Although millions of RNA editing events have been reported to modify hereditary information across the primate transcriptome, evidence for their functional significance remains largely elusive, particularly for the vast majority of editing sites in noncoding regions. Here, we report a new mechanism for the functionality of RNA editing-a crosstalk with PIWI-interacting RNA (piRNA) biogenesis. Exploiting rhesus macaque as an emerging model organism closely related to human, in combination with extensive genome and transcriptome sequencing in seven tissues of the same animal, we deciphered accurate RNA editome across both long transcripts and the piRNA species. Superimposing and comparing these two distinct RNA editome profiles revealed 4,170 editing-bearing piRNA variants, or epiRNAs, that primarily derived from edited long transcripts. These epiRNAs represent distinct entities that evidence an intersection between RNA editing regulations and piRNA biogenesis. Population genetics analyses in a macaque population of 31 independent animals further demonstrated that the epiRNA-associated RNA editing is maintained by purifying selection, lending support to the functional significance of this crosstalk in rhesus macaque. Correspondingly, these findings are consistent in human, supporting the conservation of this mechanism during the primate evolution. Overall, our study reports the earliest lines of evidence for a crosstalk between selectively constrained RNA editing regulation and piRNA biogenesis, and further illustrates that such an interaction may contribute substantially to the diversification of the piRNA repertoire in primates.


Assuntos
Macaca mulatta/genética , Edição de RNA , RNA Interferente Pequeno/biossíntese , Análise de Sequência de RNA/métodos , Animais , Humanos , Macaca mulatta/metabolismo , Modelos Animais , RNA Interferente Pequeno/genética , Transcriptoma
15.
Hum Mutat ; 36(2): 167-74, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25196204

RESUMO

Next-generation sequencing (NGS) technologies have revolutionized the field of genetics and are trending toward clinical diagnostics. Exome and targeted sequencing in a disease context represent a major NGS clinical application, considering its utility and cost-effectiveness. With the ongoing discovery of disease-associated genes, various gene panels have been launched for both basic research and diagnostic tests. However, the fundamental inconsistencies among the diverse annotation sources, software packages, and data formats have complicated the subsequent analysis. To manage disease-associated NGS data, we developed Vanno, a Web-based application for in-depth analysis and rapid evaluation of disease-causative genome sequence alterations. Vanno integrates information from biomedical databases, functional predictions from available evaluation models, and mutation landscapes from TCGA cancer types. A highly integrated framework that incorporates filtering, sorting, clustering, and visual analytic modules is provided to facilitate exploration of oncogenomics datasets at different levels, such as gene, variant, protein domain, or three-dimensional structure. Such design is crucial for the extraction of knowledge from sequence alterations and translating biological insights into clinical applications. Taken together, Vanno supports almost all disease-associated gene tests and exome sequencing panels designed for NGS, providing a complete solution for targeted and exome sequencing analysis. Vanno is freely available at http://cgts.cgu.edu.tw/vanno.


Assuntos
Software , Curadoria de Dados , Exoma , Genoma Humano , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Anotação de Sequência Molecular , Análise de Sequência de DNA
16.
J Biol Chem ; 289(30): 21108-19, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24841198

RESUMO

Salt-inducible kinase 2 (SIK2) is the only AMP-activated kinase (AMPK) family member known to interact with protein phosphatase 2 (PP2A). However, the functional aspects of this complex are largely unknown. Here we report that the SIK2-PP2A complex preserves both kinase and phosphatase activities. In this capacity,SIK2 attenuates the association of the PP2A repressor, the protein phosphatase methylesterase-1 (PME-1), thus preserving the methylation status of the PP2A catalytic subunit. Furthermore, the SIK2-PP2A holoenzyme complex dephosphorylates and inactivates Ca2(+)/calmodulin-dependent protein kinase I (CaMKI), an upstream kinase for phosphorylating PME-1/Ser(15). The functionally antagonistic SIK2-PP2A and CaMKI and PME-1 networks thus constitute a negative feedback loop that modulates the phosphatase activity of PP2A. Depletion of SIK2 led to disruption of the SIK2-PP2A complex, activation of CaMKI, and downstream effects, including phosphorylation of HDAC5/Ser(259), sequestration of HDAC5 in the cytoplasm, and activation of myocyte-specific enhancer factor 2C (MEF2C)-mediated gene expression. These results suggest that the SIK2-PP2A complex functions in the regulation of MEF2C-dependent transcription. Furthermore, this study suggests that the tightly linked regulatory loop comprised of the SIK2-PP2A and CaMKI and PME-1 networks may function in fine-tuning cell proliferation and stress response.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Proliferação de Células/fisiologia , Complexos Multienzimáticos/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina , Hidrolases de Éster Carboxílico/genética , Citoplasma/enzimologia , Citoplasma/genética , Deleção de Genes , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Complexos Multienzimáticos/genética , Fosforilação/fisiologia , Proteína Fosfatase 2/genética , Proteínas Serina-Treonina Quinases/genética , Transcrição Gênica/fisiologia
17.
Mol Biol Evol ; 31(5): 1309-24, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24577841

RESUMO

With genome sequence and composition highly analogous to human, rhesus macaque represents a unique reference for evolutionary studies of human biology. Here, we developed a comprehensive genomic framework of rhesus macaque, the RhesusBase2, for evolutionary interrogation of human genes and the associated regulations. A total of 1,667 next-generation sequencing (NGS) data sets were processed, integrated, and evaluated, generating 51.2 million new functional annotation records. With extensive NGS annotations, RhesusBase2 refined the fine-scale structures in 30% of the macaque Ensembl transcripts, reporting an accurate, up-to-date set of macaque gene models. On the basis of these annotations and accurate macaque gene models, we further developed an NGS-oriented Molecular Evolution Gateway to access and visualize macaque annotations in reference to human orthologous genes and associated regulations (www.rhesusbase.org/molEvo). We highlighted the application of this well-annotated genomic framework in generating hypothetical link of human-biased regulations to human-specific traits, by using mechanistic characterization of the DIEXF gene as an example that provides novel clues to the understanding of digestive system reduction in human evolution. On a global scale, we also identified a catalog of 9,295 human-biased regulatory events, which may represent novel elements that have a substantial impact on shaping human transcriptome and possibly underpin recent human phenotypic evolution. Taken together, we provide an NGS data-driven, information-rich framework that will broadly benefit genomics research in general and serves as an important resource for in-depth evolutionary studies of human biology.


Assuntos
Evolução Molecular , Macaca mulatta/genética , Animais , Bases de Dados de Ácidos Nucleicos , Perfilação da Expressão Gênica , Genoma Humano , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Modelos Genéticos , Anotação de Sequência Molecular , Especificidade da Espécie
18.
J Biol Chem ; 288(47): 33861-33872, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24129571

RESUMO

Salt-inducible kinase 2 (SIK2) is an important regulator of cAMP response element-binding protein-mediated gene expression in various cell types and is the only AMP-activated protein kinase family member known to interact with the p97/valosin-containing protein (VCP) ATPase. Previously, we have demonstrated that SIK2 can regulate autophagy when proteasomal function is compromised. Here we report that physical and functional interactions between SIK2 and p97/VCP underlie the regulation of endoplasmic reticulum (ER)-associated protein degradation (ERAD). SIK2 co-localizes with p97/VCP in the ER membrane and stimulates its ATPase activity through direct phosphorylation. Although the expression of wild-type recombinant SIK2 accelerated the degradation and removal of ERAD substrates, the kinase-deficient variant conversely had no effect. Furthermore, down-regulation of endogenous SIK2 or mutation of the SIK2 target site on p97/VCP led to impaired degradation of ERAD substrates and disruption of ER homeostasis. Collectively, these findings highlight a mechanism by which the interplay between SIK2 and p97/VCP contributes to the regulation of ERAD in mammalian cells.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Degradação Associada com o Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/genética , Retículo Endoplasmático/genética , Células HEK293 , Células HeLa , Humanos , Mutação , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteína com Valosina
19.
J Biol Chem ; 288(9): 6227-37, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23322770

RESUMO

Salt-inducible kinase 2 (SIK2) is a serine/threonine protein kinase belonging to the AMP-activated protein kinase (AMPK) family. SIK2 has been shown to function in the insulin-signaling pathway during adipocyte differentiation and to modulate CREB-mediated gene expression in response to hormones and nutrients. However, molecular mechanisms underlying the regulation of SIK2 kinase activity remains largely elusive. Here we report a dynamic, post-translational regulation of its kinase activity that is coordinated by an acetylation-deacetylation switch, p300/CBP-mediated Lys-53 acetylation inhibits SIK2 kinase activity, whereas HDAC6-mediated deacetylation restores the activity. Interestingly, overexpression of acetylation-mimetic mutant of SIK2 (SIK2-K53Q), but not the nonacetylatable K53R variant, resulted in accumulation of autophagosomes. Further consistent with a role in autophagy, knockdown of SIK2 abrogated autophagosome and lysosome fusion. Consequently, SIK2 and its kinase activity are indispensable for the removal of TDP-43Δ inclusion bodies. Our findings uncover SIK2 as a critical determinant in autophagy progression and further suggest a mechanism in which the interplay among kinase and deacetylase activities contributes to cellular protein pool homeostasis.


Assuntos
Autofagia/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Acetilação , Substituição de Aminoácidos , Linhagem Celular , Desacetilase 6 de Histona , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Corpos de Inclusão/enzimologia , Corpos de Inclusão/genética , Lisina/genética , Lisina/metabolismo , Lisossomos/enzimologia , Lisossomos/genética , Mutação de Sentido Incorreto , Proteínas Serina-Treonina Quinases/genética
20.
Biochim Biophys Acta ; 1829(12): 1309-19, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24189493

RESUMO

EDD (E3 isolated by differential display) was initially isolated as a progestin-regulated gene in breast cancer cells, and represents the human ortholog of the Drosophila melanogaster hyperplastic discs gene (hyd). It encodes a highly conserved and predominantly nuclear ubiquitin E3 ligase of the HECT family, with potential multifunctional roles in development and tumorigenesis. In this study, we further examined the largely uncharacterized role of EDD in transcriptional regulation by uncovering the spectrum of its direct target genes at a genome-wide level. Use of a systematic approach that integrates gene expression and chromatin binding profiling identified several candidate EDD-target genes, one of which is ACVRL1, a TGF-ß receptor with functional implications in blood vessel development. Further characterization revealed a negative regulation of ACVRL1 gene expression by EDD that is exerted at the promoter. Consistent with the aberrant upregulation of ACVRL1 and downstream Smad signaling, abrogation of EDD led to deregulated vessel development and endothelial cell motility. Collectively, these results extended the known cellular roles of EDD to critical functions in transcriptional regulation as well as angiogenesis, and may provide mechanistic explanations for EDD's tumorigenic and developmental roles.


Assuntos
Receptores de Activinas Tipo II/genética , Movimento Celular , Genômica , Regiões Promotoras Genéticas/genética , Ativação Transcricional , Ubiquitina-Proteína Ligases/metabolismo , Receptores de Activinas Tipo II/metabolismo , Western Blotting , Quimiotaxia , Imunoprecipitação da Cromatina , Técnica Indireta de Fluorescência para Anticorpo , Células HeLa , Humanos , Técnicas Imunoenzimáticas , Luciferases/metabolismo , Ligação Proteica , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa