Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Death Differ ; 27(9): 2668-2680, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32313198

RESUMO

The incidence of nonmelanoma skin cancer (NMSC) has been increasing worldwide. Most studies have highlighted the importance of cancer-associated fibroblasts (CAFs) in NMSC progression. However much less is known about the communication between normal fibroblasts and epithelia; disruption of this communication affects tumor initiation and the latency period in the emergence of tumors. Delineating the mechanism that mediates this epithelial-mesenchymal communication in NMSC could identify more effective targeted therapies. The nuclear receptor PPARß/δ in fibroblasts has been shown to modulate adjacent epithelial cell behavior, however, its role in skin tumorigenesis remains unknown. Using chemically induced skin carcinogenesis, we showed that FSPCre-Pparb/dex4 mice, whose Pparb/d gene was selectively deleted in fibroblasts, had delayed emergence and reduced tumor burden compared with control mice (Pparb/dfl/fl). However, FSPCre-Pparb/dex4-derived tumors showed increased proliferation, with no difference in differentiation, suggesting delayed tumor initiation. Network analysis revealed a link between dermal Pparb/d and TGF-ß1 with epidermal NRF2 and Nox4. In vitro investigations showed that PPARß/δ deficiency in fibroblasts increased epidermal Nox4-derived H2O2 production, which triggered an NRF2-mediated antioxidant response. We further showed that H2O2 upregulated NRF2 mRNA via the B-Raf-MEK1/2 pathway. The enhanced NRF2 response altered the activities of PTEN, Src, and AKT. In vivo, we detected the differential phosphorylation profiles of B-Raf, MEK1/2, PTEN, Src, and AKT in the vehicle-treated and chemically treated epidermis of FSPCre-Pparb/dex4 mice compared with that in Pparb/dfl/fl mice, prior to the first appearance of tumors in Pparb/dfl/fl. Our study revealed a role for fibroblast PPARß/δ in the epithelial-mesenchymal communication involved in cellular redox homeostasis.


Assuntos
Fibroblastos/metabolismo , Fibroblastos/patologia , PPAR delta/deficiência , PPAR beta/deficiência , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Epiderme/patologia , Redes Reguladoras de Genes , Glicoproteínas/metabolismo , Queratinócitos/metabolismo , Cinética , Melanoma/metabolismo , Melanoma/patologia , Camundongos Transgênicos , NADPH Oxidase 4/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas de Neoplasias/metabolismo , PPAR delta/metabolismo , PPAR beta/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/genética , Fator de Crescimento Transformador beta1/metabolismo , Carga Tumoral
2.
Oncogene ; 37(15): 2067-2078, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29367760

RESUMO

Tumor stroma has an active role in the initiation, growth, and propagation of many tumor types by secreting growth factors and modulating redox status of the microenvironment. Although PPARß/δ in fibroblasts was shown to modulate oxidative stress in the wound microenvironment, there has been no evidence of a similar effect in the tumor stroma. Here, we present evidence of oxidative stress modulation by intestinal stromal PPARß/δ, using a FSPCre-Pparb/d-/- mouse model and validated it with immortalized cell lines. The FSPCre-Pparb/d-/- mice developed fewer intestinal polyps and survived longer when compared with Pparb/dfl/fl mice. The pre-treatment of FSPCre-Pparb/d-/- and Pparb/dfl/fl with antioxidant N-acetyl-cysteine prior DSS-induced tumorigenesis resulted in lower tumor load. Gene expression analyses implicated an altered oxidative stress processes. Indeed, the FSPCre-Pparb/d-/- intestinal tumors have reduced oxidative stress than Pparb/dfl/fl tumors. Similarly, the colorectal cancer cells and human colon epithelial cells also experienced lower oxidative stress when co-cultured with fibroblasts depleted of PPARß/δ expression. Therefore, our results establish a role for fibroblast PPARß/δ in epithelial-mesenchymal communication for ROS homeostasis.


Assuntos
Antioxidantes/metabolismo , Fibroblastos/metabolismo , PPAR delta/genética , PPAR beta/genética , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Carga Tumoral/efeitos dos fármacos , Animais , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Técnicas de Silenciamento de Genes , Células HCT116 , Células HT29 , Humanos , Camundongos , Camundongos Knockout , Carga Tumoral/genética
3.
Cell Discov ; 4: 15, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29619245

RESUMO

Connective tissue diseases of the skin are characterized by excessive collagen deposition in the skin and internal organs. Fibroblasts play a pivotal role in the clinical presentation of these conditions. Nuclear receptor peroxisome-proliferator activated receptors (PPARs) are therapeutic targets for dermal fibrosis, but the contribution of the different PPAR subtypes are poorly understood. Particularly, the role of fibroblast PPARß/δ in dermal fibrosis has not been elucidated. Thus, we generated a mouse strain with selective deletion of PPARß/δ in the fibroblast (FSPCre-Pparb/d-/-) and interrogated its epidermal and dermal transcriptome profiles. We uncovered a downregulated gene, leucine-rich alpha-2-glycoprotein-1 (Lrg1), of previously unknown function in skin development and architecture. Our findings suggest that the regulation of Lrg1 by PPARß/δ in fibroblasts is an important signaling conduit integrating PPARß/δ and TGFß1-signaling networks in skin health and disease. Thus, the FSPCre-Pparb/d-/- mouse model could serve as a novel tool in the current gunnery of animal models to better understand dermal fibrosis.

4.
Sci Rep ; 7: 44351, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28287161

RESUMO

Many gastrointestinal diseases exhibit a protracted and aggravated inflammatory response that can lead to hypercytokinaemia, culminating in extensive tissue damage. Recently, angiopoietin-like 4 (ANGPTL4) has been implicated in many inflammation-associated diseases. However, how ANGPTL4 regulates colonic inflammation remains unclear. Herein, we show that ANGPTL4 deficiency in mice (ANGPTL4-/-) exacerbated colonic inflammation induced by dextran sulfate sodium (DSS) or stearic acid. Microbiota was similar between the two genotypes prior DSS challenge. A microarray gene expression profile of the colon from DSS-treated ANGPTL4-/- mice was enriched for genes involved in leukocyte migration and infiltration, and showed a close association to inflamed ulcerative colitis (UC), whereas the profile from ANGPTL4+/+ littermates resembled that of non-inflamed UC biopsies. Bone marrow transplantation demonstrates the intrinsic role of colonic ANGPTL4 in regulating leukocyte infiltration during DSS-induced inflammation. Using immortalized human colon epithelial cells, we revealed that the ANGPTL4-mediated upregulation of tristetraprolin expression operates through CREB and NF-κB transcription factors, which in turn, regulates the stability of chemokines. Together, our findings suggest that ANGPTL4 protects against acute colonic inflammation and that its absence exacerbates the severity of inflammation. Our findings emphasize the importance of ANGPTL4 as a novel target for therapy in regulating and attenuating inflammation.


Assuntos
Proteína 4 Semelhante a Angiopoietina/genética , Quimiocinas/genética , Colo/metabolismo , Perfilação da Expressão Gênica , Inflamação/genética , Tristetraprolina/genética , Proteína 4 Semelhante a Angiopoietina/metabolismo , Animais , Linhagem Celular , Quimiocinas/metabolismo , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Colo/patologia , Sulfato de Dextrana , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estabilidade de RNA , Ácidos Esteáricos , Células THP-1 , Tristetraprolina/metabolismo
5.
Cell Rep ; 10(5): 654-663, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25660016

RESUMO

Excessive host inflammatory responses negatively impact disease outcomes in respiratory infection. Host-pathogen interactions during the infective phase of influenza are well studied, but little is known about the host's response during the repair stage. Here, we show that influenza infection stimulated the expression of angiopoietin-like 4 (ANGPTL4) via a direct IL6-STAT3-mediated mechanism. ANGPTL4 enhanced pulmonary tissue leakiness and exacerbated inflammation-induced lung damage. Treatment of infected mice with neutralizing anti-ANGPTL4 antibodies significantly accelerated lung recovery and improved lung tissue integrity. ANGPTL4-deficient mice also showed reduced lung damage and recovered faster from influenza infection when compared to their wild-type counterparts. Retrospective examination of human lung biopsy specimens from infection-induced pneumonia with tissue damage showed elevated expression of ANGPTL4 when compared to normal lung samples. These observations underscore the important role that ANGPTL4 plays in lung infection and damage and may facilitate future therapeutic strategies for the treatment of influenza pneumonia.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa