Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Small ; : e2402993, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750614

RESUMO

2D covalent organic framework (COF) materials with extended conjugated structure and periodic columnar π-arrays exhibit promising applications in organic optoelectronics. However, there is a scarcity of reports on optoelectronic COFs, mainly due to the lack of suitable π-skeletons. Here, two multi-functional optoelectronic 2D COFs DPP-TPP-COF and DPP-TBB-COF are constructed with diketopyrrolopyrrole as electron acceptor (A), and 1,3,6,8-tetraphenylpyrene and 1,3,5-triphenylbenzene as electron donor (D) through imine bonds. Both 2D COFs showed good crystallinities and AA stacking with a rhombic framework for DPP-TPP-COF and hexagonal one for DPP-TBB-COF, respectively. The electron D-A and ordered intermolecular packing structures endow the COFs with broad UV-vis absorptions and narrow bandgaps along with suitable HOMO/LUMO energy levels, resulting in multi-functional optoelectronic properties, including photothermal conversion, supercapacitor property, and ambipolar semiconducting behavior. Among them, DPP-TPP-COF exhibits a high photothermal conversion efficiency of 47% under 660 nm laser irradiation, while DPP-TBB-COF exhibits superior specific capacitance of 384 F g-1. Moreover, P-type doping and N-type doping are achieved by iodine and tetrakis(dimethylamino)ethylene on a single host COF, resulting in ambipolar semiconducting behavior. These results provide a paradigm for the application of multi-functional optoelectronic COF materials.

2.
Inorg Chem ; 63(25): 11802-11811, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38861686

RESUMO

Removing trace acetylene from the ethylene stream through selective hydrogenation is a crucial process in the production of polymer-grade ethylene. However, achieving high selectivity while maintaining high activity remains a significant challenge, especially for nonprecious metal catalysts. Herein, the trade-off between activity and selectivity is solved by synergizing enhanced dispersion and hydrogen spillover. Specifically, a bubbling method is proposed for preparing SiO2-supported copper and/or bismuth carbonate with high dispersion, which is then employed to synthesize highly dispersed Bi-modified CuxC-Cu catalyst. The catalyst displays outstanding catalytic performance for acetylene selective hydrogenation, achieving acetylene conversion of 100% and ethylene selectivity of 91.1% at 100 °C. The high activity originates from the enhanced dispersion, and the exceptional selectivity is due to the enhanced spillover capacity of active hydrogen from CuxC to Cu, which is promoted by the Bi addition. The results offer an avenue to design efficient catalysts for selective hydrogenation from nonprecious metals.

3.
Inorg Chem ; 63(12): 5611-5622, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38477101

RESUMO

The significant threat posed by the high toxicity of heavy metals and antibiotics in water pollutants has prompted a growing emphasis on the development of highly efficient removal methods for these pollutants. In this paper, flexible electrospinning polyacrylonitrile (PAN) nanofiber-supported CdBi2S4 was synthesized via a hydrothermal method, followed by amination treatment with diethylenetriamine (DETA). The as-prepared CdBi2S4/NH2-PAN nanofiber, enriched with sulfur vacancies, demonstrated outstanding visible-light trapping ability and a suitable band gap, leading to efficient separation and transport of photogenerated carriers, ultimately resulting in exceptional photocatalytic capability. The optimal 3-CdBi2S4/NH2-PAN nanofiber achieved impressive reduction rates of 92.26% for Cr(VI) and 96.45% for tetracycline hydrochloride (TCH) within 120 min, which were much higher than those for CdS/NH2-PAN, Bi2S3/NH2-PAN, and CdBi2S4/PAN nanofibers. After five cycles, the removal rate of the CdBi2S4/NH2-PAN nanofiber consistently remained above 90%. Their ease of separation and recovery from the application environment contributes to their practicality. Additionally, compared with conventional suspended particle catalyzers, the composite nanofiber exhibited remarkable flexibility and self-supporting properties.

4.
Inorg Chem ; 63(8): 3974-3985, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38346714

RESUMO

Designing transition-metal oxides for catalytically removing the highly toxic benzene holds significance in addressing indoor/outdoor environmental pollution issues. Herein, we successfully synthesized ultrathin LayCoOx nanosheets (thickness of ∼1.8 nm) with high porosity, using a straightforward coprecipitation method. Comprehensive characterization techniques were employed to analyze the synthesized LayCoOx catalysts, revealing their low crystallinity, high surface area, and abundant porosity. Catalytic benzene oxidation tests demonstrated that the La0.029CoOx-300 nanosheet exhibited the most optimal performance. This catalyst enabled complete benzene degradation at a relatively low temperature of 220 °C, even under a high space velocity (SV) of 20,000 h-1, and displayed remarkable durability throughout various catalytic assessments, including SV variations, exposure to water vapor, recycling, and long time-on-stream tests. Characterization analyses confirmed the enhanced interactions between Co and doped La, the presence of abundant adsorbed oxygen, and the extensive exposure of Co3+ species in La0.029CoOx-300 nanosheets. Theoretical calculations further revealed that La doping was beneficial for the formation of oxygen vacancies and the adsorption of more hydroxyl groups. These features strongly promoted the adsorption and activation of oxygen, thereby accelerating the benzene oxidation processes. This work underscores the advantages of doping rare-earth elements into transition-metal oxides as a cost-effective yet efficient strategy for purifying industrial exhausts.

5.
Inorg Chem ; 62(33): 13544-13553, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37561968

RESUMO

In catalytic oxidation reactions, the presence of environmental water poses challenges to the performance of Pt catalysts. This study aims to overcome this challenge by introducing hydroxyl groups onto the surface of Pt catalysts using the pyrolysis reduction method. Two silica supports were employed to investigate the impact of hydroxyl groups: SiO2-OH with hydroxyl groups and SiO2-C without hydroxyl groups. Structural characterization confirmed the presence of Pt-Ox, Pt-OHx, and Pt0 species in the Pt/SiO2-OH catalysts, while only Pt-Ox and Pt0 species were observed in the Pt/SiO2-C catalysts. Catalytic performance tests demonstrated the remarkable capacity of the 0.5 wt % Pt/SiO2-OH catalyst, achieving complete conversion of benzene at 160 °C under a high space velocity of 60,000 h-1. Notably, the catalytic oxidation capacity of the Pt/SiO2-OH catalyst remained largely unaffected even in the presence of 10 vol % water vapor. Moreover, the catalyst exhibited exceptional recyclability and stability, maintaining its performance over 16 repeated cycles and a continuous operation time of 70 h. Theoretical calculations revealed that the construction of Pt-OHx sites on the catalyst surface was beneficial for modulating the d-band structure, which in turn enhanced the adsorption and activation of reactants. This finding highlights the efficacy of decorating the Pt surface with hydroxyl groups as an effective strategy for improving the water resistance, catalytic activity, and long-term stability of Pt catalysts.

6.
Nanotechnology ; 32(14): 145718, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33333494

RESUMO

Defect engineering has been widely used in experiments to modulate the electrocatalytic properties of molybdenum disulfide (MoS2). However, the effect of vacancy concentration on the vacancy distribution, electronic properties, and hydrogen evolution reaction (HER) activity remains elusive. Herein, we perform density functional theory (DFT) studies to investigate defective MoS2 with different numbers of sulfur vacancies. In the case of low S-vacancy concentration, the vacancies prefer to agglomerate rather than being dispersed, while at the higher-vacancy concentration, the combination of local point defect and clustered vacancy chain is preferred. The coupling between S-vacancies leads to decreased band gap and increased Mo-H adsorption strength with increasing vacancy concentration. The optimal HER activity is identified to occur below vacancy concentration of 12.50%. Our work provides an atomic-level understanding about the role of S-vacancies in the HER performance of MoS2, and offers useful guidelines for the design of defective MoS2 and other TMDs electrocatalysts.

7.
Angew Chem Int Ed Engl ; 60(11): 5970-5977, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33315288

RESUMO

Reported here is a new high electron affinity acceptor end group for organic semiconductors, 2,1,3-benzothiadiazole-4,5,6-tricarbonitrile (TCNBT). An n-type organic semiconductor with an indacenodithiophene (IDT) core and TCNBT end groups was synthesized by a sixfold nucleophilic substitution with cyanide on a fluorinated precursor, itself prepared by a direct arylation approach. This one-step chemical modification significantly impacted the molecular properties: the fluorinated precursor, TFBT IDT, a poor ambipolar semiconductor, was converted into TCNBT IDT, a good n-type semiconductor. The electron-deficient end group TCNBT dramatically decreased the energy of the highest occupied and lowest unoccupied molecular orbitals (HOMO/LUMO) compared to the fluorinated analogue and improved the molecular orientation when utilized in n-type organic field-effect transistors (OFETs). Solution-processed OFETs based on TCNBT IDT exhibited a charge-carrier mobility of up to µe ≈0.15 cm2 V-1 s-1 with excellent ambient stability for 100 hours, highlighting the benefits of the cyanated end group and the synthetic approach.

8.
Anal Chem ; 91(22): 14530-14537, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31617350

RESUMO

In this study, an accurately and digitally regulated allosteric nanoswitch based on the conformational control of two DNA hairpins was developed. By switching between UV irradiation and blue light conditions, the second molecular beacon (H#2) would bind/separate with a repression sequence (RES) via the introduced PTG molecules (a photosensitive azobenzene derivative), resulting in the target aptamer sequence in the first molecular beacon (H#1) not being able/being able to hold the stem-loop configuration, hence losing/regaining the ability to bind with the target. Importantly, we successfully monitor conformation changes of the nanoswitch by an elegant mathematical model for connecting Ki (the dissociation constant between RES and H#2) with Kd (the overall equilibrium constant of the nanoswitch binding the target), hence realizing "observing" DNA structure across dimensions from "structural visualization" to digitization and, accurately, digitally regulating DNA structure from digitization to "structural visualization".


Assuntos
Aptâmeros de Nucleotídeos/química , DNA/química , Nanoestruturas/química , Compostos Azo/química , Compostos Azo/efeitos da radiação , DNA/metabolismo , DNA/efeitos da radiação , Sequências Repetidas Invertidas , Ligantes , Modelos Químicos , Conformação de Ácido Nucleico/efeitos da radiação , Trombina/metabolismo , Raios Ultravioleta
9.
J Nanosci Nanotechnol ; 19(1): 142-147, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30327014

RESUMO

Hierarchical rose-like structured MnCo2O4 spinel was synthesized via a facile solvothermal process using polyvinyl pyrrolidone (PVP) as the soft template, which was characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), etc. When evaluated as the anode materials for lithium ion batteries, the as-synthesized MnCo2O4 spinel exhibited excellent cycling performance and rate capacity. The initial discharge and charge capacity reached 1502 mA·h·g-1 and 1131 mA·h·g-1 at the current density of 100 mA·g-1, respectively.

10.
Macromol Rapid Commun ; 37(16): 1357-63, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27304842

RESUMO

Here, a conjugated polymer VTTPD based on thieno[3,4-c]pyrrole-4,6-dione (TPD) and dithiophene with vinyl as linker is synthesized and characterized. Electrochemical and optical studies indicate the LUMO and HOMO energies of the polymer are -3.70 and -5.39 eV. Theoretical calculation with density functional theory suggests that H-bonds are formed between the TPD carbonyl (O) and its neighboring vinyl (H) which benefit the planarity and π-conjugation of the polymer backbone. Bottom contact bottom gate organic field effect transistor devices based on VTTPD are fabricated and examined in air. After annealing at 160 °C, the devices exhibit excellent performance of µh = 0.4 cm(2) V(-1) s(-1) , Ion/off = 10(6) , Vth within -10 V to -5 V. Thin film morphologies before and after the annealing process are also investigated with XRD and AFM.


Assuntos
Pirróis/química , Tiofenos/química , Transistores Eletrônicos , Compostos de Vinila/química , Técnicas Eletroquímicas , Ligação de Hidrogênio , Teoria Quântica , Temperatura , Termodinâmica
11.
Org Lett ; 25(31): 5774-5778, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37503938

RESUMO

In this work, an N-substituted diketopyrrolopyrrole (DPP) derivative Ph-DPP was synthesized, showing interaction toward Lewis alkaline anions such as F-. The typical electron-transfer-dominated anion-π interaction product Ph-DPP•- and unexpected isomer product i-Ph-DPP were both observed, and their formation mechanism was studied by density functional theory calculations, suggesting that a deprotonation initiation route is favored, which gives interesting insight for understanding the debatable role of F- in such non-covalent intermolecular interactions.

12.
Adv Mater ; 35(20): e2300240, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36812459

RESUMO

The development of high-performance organic thin-film transistor (OTFT) materials is vital for flexible electronics. Numerous OTFTs are so far reported but obtaining high-performance and reliable OTFTs simultaneously for flexible electronics is still challenging. Herein, it is reported that self-doping in conjugated polymer enables high unipolar n-type charge mobility in flexible OTFTs, as well as good operational/ambient stability and bending resistance. New naphthalene diimide (NDI)-conjugated polymers PNDI2T-NM17 and PNDI2T-NM50 with different contents of self-doping groups on their side chains are designed and synthesized. The effects of self-doping on the electronic properties of resulting flexible OTFTs are investigated. The results reveal that the flexible OTFTs based on self-doped PNDI2T-NM17 exhibit unipolar n-type charge-carrier properties and good operational/ambient stability thanks to the appropriate doping level and intermolecular interactions. The charge mobility and on/off ratio are fourfold and four orders of magnitude higher than those of undoped model polymer, respectively. Overall, the proposed self-doping strategy is useful for rationally designing OTFT materials with high semiconducting performance and reliability.

13.
Adv Mater ; 35(11): e2209800, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36565038

RESUMO

Narrowband photoresponsive molecules are highly coveted in high-resolution imaging, sensing, and monochromatic photodetection, especially those extending into the near-infrared (NIR) spectral range. Here, a new class of J-aggregating materials based on quinoidal indacenodithiophenes (IDTs) that exhibit an ultra-narrowband (full width half maxima of 22 nm) NIR absorption peak centered at 770 nm is reported. The spectral width is readily tuned by the length of the solubilizing alkyl group, with longer chains resulting in significant spectral narrowing. The J-aggregate behavior is confirmed by a combination of excited state lifetime measurements and single-crystal X-ray diffraction measurements. Their utility as electron-transporting materials is demonstrated in both transistor and phototransistor devices, with the latter demonstrating good response at NIR wavelengths (780 nm) over a range of intensities.

14.
Chem Commun (Camb) ; 58(48): 6809-6812, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35612549

RESUMO

In this work, single bond directly linked COF-like conjugated microporous polymer NDTT is constructed via Stille coupling with thiophene-substituted naphthalene diimides and triazine, showing fair crystallinity. NDTT is utilized as an electrode for supercapacitor applications, exhibiting promising performance with excellent capacitance reaching 425.3 F g-1 under a current of 0.2 A g-1.

15.
Chem Commun (Camb) ; 58(81): 11398-11401, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36128916

RESUMO

The development of non-noble metal catalysts for selective hydrogenation still remains a challenge. Herein, NiCu@carbon core-shell nanoparticles supported on Al2O3 (NiCu@C/Al2O3) were prepared, which showed enhanced catalytic performance of acetylene-selective hydrogenation in comparison with NiCu/Al2O3 without carbon encapsulation. In detail, NiCu@C/Al2O3 displayed high ethylene selectivity (>86%) even at an acetylene conversion of 100% and excellent stability (>90 h). Thus, NiCu@C/Al2O3 exhibited great potential as an alternative to Pd-based catalysts for acetylene-selective hydrogenation.

16.
J Org Chem ; 76(21): 9046-52, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21950344

RESUMO

Three linear and one cyclic tetrathiafulvalene-1,4,5,8-naphthalenediimide (TTF-NDI) compounds 1, 2, 3, and 4 were synthesized and studied in the presence of metal ions. Both absorption and electron spin resonance spectroscopic studies clearly indicate that electron transfer occurs from TTF to the NDI unit in the presence of metal ions (Pb(2+) and Sc(3+)) for linear compounds 1 and 2. The mechanism based on the metal ion coordination is proposed for the electron transfer within 1 and 2 after the addition of metal ions. Compound 3 exhibits intramolecular charge-transfer absorption because of the cyclophane framework. Interestingly, intramolecular electron transfer also takes place for 3 after the addition of either Sc(3+) or Pb(2+).

17.
J Phys Condens Matter ; 33(39)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34256369

RESUMO

The defective single layer MoS2(SL-MoS2) with high defect concentrations has shown promising electrocatalytic potential, but it is also highly reactive with gas molecules. The study of electro-chemical activity on gas doped defective SL-MoS2is of importance yet still scarcely discussed. Herein, we performed density functional theory calculations to study the adsorption and chemical activity of four major air molecules on the defective SL-MoS2under different defect concentrations, and evaluated the influence on the hydrogen evolution reaction activity. The N2and CO2molecules are in physisorption states, H2O molecule is in molecular chemisorption state, while O2can be strongly captured and dissociated into atomic O*, which repair the S-vacancy and form O-doped structure. Further study showed that compared to the inert S surface of pure MoS2, the O incorporation greatly enhance the surface reactivity. Using H adsorption as the test probe, the adsorption of H becomes stronger with the increasing oxygen concentration. We further unravel the electronic origins underlying the catalytic activity. The lowest unoccupied electronic states are shown to correlate linearly with the activity, and thus can be used as an electronic descriptor to characterize the electrocatalytic activity.

18.
Chem Commun (Camb) ; 57(87): 11533-11536, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34661589

RESUMO

We report the preparation of a two-dimensional superhydrophobic covalent organic framework (COF)-coated cotton fabric via a rapid one-step method at room temperature. The COF-coated fabric was found to have stable superhydrophobicity and remarkable water-in-oil emulsion separation capacity with ultra-high flux under only gravity.

19.
Chem Commun (Camb) ; 57(84): 11021-11024, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34605498

RESUMO

Stable Zr-UiO-67 is prepared by introducing a fluorine-containing layer on its surface through a polymeric network assisted post-synthetic modification (PSM) strategy. The stability of the MOFs in acidic, alkaline and saline environments is improved because of the existence of a protective layer. The MOFs are superlyophobic towards liquids with a surface tension threshold of over 48 mN m-1, making them a potential choice for separating various liquid-liquid mixtures and emulsions.

20.
Chem Asian J ; 15(21): 3421-3427, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32869504

RESUMO

COFs were synthesized by a microwave-assisted solvothermal route, with the building blocks containing 1,3,5-tris(4-aminophenyl) benzene and 2,3,5,6-tetra-fluoroterephthalaldehyde (or 1,4-phthalaldehyde). The -F groups introduced into the benzene ring promoted hydrophobicity and stability of the COFs. The universality and long effectiveness of oil adsorption can be realized when applying COFs as adsorbent. The powder also exhibited excellent water-in-oil emulsions separation performance, with the separation efficiency no lower than 99.5%. In this work, the use of microwave solvothermal synthesis of superhydrophobic COFs is potential to replace the conventional synthesis process and more suitable for industrial scale-up production. Furthermore, the findings provide a new strategy for solving the problem of oil spill treatment and industrial water-in-oil emulsions separation by using the emerging 2D COFs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa