Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1812(10): 1202-12, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21392578

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is a common, monogenic multi-systemic disorder characterized by the development of renal cysts and various extrarenal manifestations. Worldwide, it is a common cause of end-stage renal disease. ADPKD is caused by mutation in either one of two principal genes, PKD1 and PKD2, but has large phenotypic variability among affected individuals, attributable to PKD genic and allelic variability and, possibly, modifier gene effects. Recent studies have generated considerable information regarding the genetic basis and molecular diagnosis of this disease, its pathogenesis, and potential strategies for targeted treatment. The purpose of this article is to provide a comprehensive review of the genetics of ADPKD, including mechanisms responsible for disease development, the role of gene variations and mutations in disease presentation, and the putative role of microRNAs in ADPKD etiology. The emerging and important role of genetic testing and the advent of novel molecular diagnostic applications also are reviewed. This article is part of a Special Issue entitled: Polycystic Kidney Disease.


Assuntos
Rim Policístico Autossômico Dominante/genética , Processamento Alternativo , Animais , Sequência de Bases , Estudos de Associação Genética , Variação Genética , Humanos , MicroRNAs/genética , Mutação , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/etiologia , Canais de Cátion TRPP/genética
2.
Dev Cell ; 10(6): 707-18, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16740474

RESUMO

Heterotrimeric G proteins are critical cellular signal transducers. They are known to directly relay signals from seven-transmembrane G protein-coupled receptors (GPCRs) to downstream effectors. On the other hand, receptor tyrosine kinases (RTKs), a different family of membrane receptors, signal through docking sites in their carboxy-terminal tails created by autophosphorylated tyrosine residues. Here we show that a heterotrimeric G protein, G alpha(13), is essential for RTK-induced migration of mouse fibroblast and endothelial cells. G alpha(13) activity in cell migration is retained in a C-terminal mutant that is defective in GPCR coupling, suggesting that the migration function is independent of GPCR signaling. Thus, G alpha(13) appears to be a critical signal transducer for RTKs as well as GPCRs. This broader role of G alpha(13) in cell migration initiated by two types of receptors could provide a molecular basis for the vascular system defects exhibited by G alpha(13) knockout mice.


Assuntos
Movimento Celular/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/fisiologia , Fator de Crescimento Derivado de Plaquetas/farmacologia , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Linhagem Celular , Movimento Celular/fisiologia , Células Cultivadas , Embrião de Mamíferos , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Ativação Enzimática , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/deficiência , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Deleção de Genes , Glutationa Transferase/metabolismo , Humanos , Camundongos , Camundongos Knockout , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Biológicos , Proteínas Recombinantes/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo
3.
Hum Mutat ; 30(2): 264-73, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18837007

RESUMO

Genetic testing of PKD1 and PKD2 is useful for diagnosis and prognosis of autosomal dominant polycystic kidney disease (ADPKD), particularly in asymptomatic individuals or those without a family history. PKD1 testing is complicated by the large transcript size, complexity of the gene region, and the extent of gene variations. A molecular assay was developed using Transgenomic's SURVEYOR Nuclease and WAVE Nucleic Acid High Sensitivity Fragment Analysis System to screen for PKD1 and PKD2 variants, followed by sequencing of variant gene segments, thereby reducing the sequencing reactions by 80%. This method was compared to complete DNA sequencing performed by a reference laboratory for 25 ADPKD patients from 22 families. The pathogenic potential of gene variations of unknown significance was examined by evolutionary comparison, effects of amino acid substitutions on protein structure, and effects of splice-site alterations. A total of 90 variations were identified, including all 82 reported by the reference laboratory (100% sensitivity). A total of 76 variations (84.4%) were in PKD1 and 14 (15.6%) in PKD2. Definite pathogenic mutations (seven nonsense, four truncation, and three splicing defects) were detected in 64% (14/22) of families. The remaining 76 variants included 26 missense, 33 silent, and 17 intronic changes. Two heterozygous nonsense mutations were incorrectly determined by the reference laboratory as homozygous. "Probably pathogenic" mutations were identified in an additional five families (overall detection rate 86%). In conclusion, the SURVEYOR nuclease method was comparable to direct sequencing for detecting ADPKD mutations, achieving high sensitivity with lower cost, providing an important tool for genetic analysis of complex genes.


Assuntos
Análise Mutacional de DNA/métodos , Genoma Humano/genética , Mutação/genética , Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/genética , Sequência de Bases , Éxons , Variação Genética , Humanos , Dados de Sequência Molecular
4.
Cancer Epidemiol Biomarkers Prev ; 17(9): 2431-5, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18768513

RESUMO

Three sequence variations (rs1447295, rs16901979, and rs6983267) on 8q24 were recently shown to independently affect prostate cancer risk. Asian Indians have a low prostate cancer risk; however, in the absence of screening practices for the disease, most are diagnosed with metastatic prostate cancer. We evaluated the association of these single nucleotide polymorphisms (SNP) with advanced prostate cancer in 153 prostate cancer cases and 227 age-matched controls (northern India). Overall, there was a positive association between carriers of the allele A of rs1447295 and prostate cancer risk [odds ratio (OR), 1.60; 95% confidence interval (95% CI), 1.01-2.52] but no significant association with carriers of alleles A of rs16901979 and allele G of rs6983267. However, significant associations were observed for both SNPs in men with high Gleason scores (>/=7) and metastasis. Adjusting for age, the ORs were 1.77 (95% CI, 1.05-2.97) for carriers of rs1447295 A and 1.85 (95% CI, 1.04-3.28) for carriers of the rs16901979 A allele. We also observed significant joint effects among these loci associated with prostate cancer risk and severity, suggestive of additive effects of the independent SNPs. The ORs for the combined effects of rs1447295 A with rs16901979 A or rs6983267 G were 2.61 (95% CI, 1.11-6.12) and 1.84 (95% CI, 1.12-3.06), respectively. There was no joint effect between SNPs rs16901979 A and rs6983267 G. These results confirm the significance of these SNPs in prostate cancer etiology in a previously unstudied population who do not undergo prostate cancer screening and are diagnosed with severe disease.


Assuntos
Povo Asiático/genética , Cromossomos Humanos Par 8/genética , Variação Genética , Neoplasias da Próstata/genética , Idoso , Alelos , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/patologia , Risco
5.
J Mol Biol ; 429(24): 3836-3849, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29079481

RESUMO

Heterotrimeric G-proteins are essential cellular signal transducers. One of the G-proteins, Gα13, is critical for actin cytoskeletal reorganization, cell migration, cell proliferation, and apoptosis. Previously, we have shown that Gα13 is essential for both G-protein-coupled receptor and receptor tyrosine kinase-induced actin cytoskeletal reorganization such as dynamic dorsal ruffle turnover and cell migration. However, the mechanism by which Gα13 signals to actin cytoskeletal reorganization is not completely understood. Here we show that Gα13 directly interacts with Abl tyrosine kinase, which is a critical regulator of actin cytoskeleton. This interaction is critical for Gα13-induced dorsal ruffle turnover, endothelial cell remodeling, and cell migration. Our data uncover a new molecular signaling pathway by which Gα13 controls actin cytoskeletal reorganization.


Assuntos
Citoesqueleto de Actina/metabolismo , Movimento Celular/fisiologia , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Proteínas Oncogênicas v-abl/metabolismo , Animais , Células Cultivadas , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Camundongos , Camundongos Knockout , Proteínas Oncogênicas v-abl/genética , Transdução de Sinais , Esferoides Celulares , Cicatrização
6.
PLoS One ; 9(1): e86856, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24489795

RESUMO

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is clinically heterogenic. Biomarkers are needed to predict prognosis and guide management. We aimed to profile microRNA (miRNA) in ADPKD to gain molecular insight and evaluate biomarker potential. METHODS: Small-RNA libraries were generated from urine specimens of ADPKD patients (N = 20) and patients with chronic kidney disease of other etiologies (CKD, N = 20). In this report, we describe the miRNA profiles and baseline characteristics. For reference, we also examined the miRNA transcriptome in primary cultures of ADPKD cyst epithelia (N = 10), normal adult tubule (N = 8) and fetal tubule (N = 7) epithelia. RESULTS: In primary cultures of ADPKD kidney cells, miRNA cistrons mir-143(2) (9.2-fold), let-7i(1) (2.3-fold) and mir-3619(1) (12.1-fold) were significantly elevated compared to normal tubule epithelia, whereas mir-1(4) members (19.7-fold), mir-133b(2) (21.1-fold) and mir-205(1) (3.0-fold) were downregulated (P<0.01). Expression of the dysregulated miRNA in fetal tubule epithelia resembled ADPKD better than normal adult cells, except let-7i, which was lower in fetal cells. In patient biofluid specimens, mir-143(2) members were 2.9-fold higher in urine cells from ADPKD compared to other CKD patients, while expression levels of mir-133b(2) (4.9-fold) and mir-1(4) (4.4-fold) were lower in ADPKD. We also noted increased abundance mir-223(1) (5.6-fold), mir-199a(3) (1.4-fold) and mir-199b(1) (1.8-fold) (P<0.01) in ADPKD urine cells. In ADPKD urine microvesicles, miR-1(2) (7.2-fold) and miR-133a(2) (11.8-fold) were less abundant compared to other CKD patients (P<0.01). CONCLUSIONS: We found that in ADPKD urine specimens, miRNA previously implicated as kidney tumor suppressors (miR-1 and miR-133), as well as miRNA of presumed inflammatory and fibroblast cell origin (miR-223/miR-199), are dysregulated when compared to other CKD patients. Concordant with findings in the primary tubule epithelial cell model, this suggests roles for dysregulated miRNA in ADPKD pathogenesis and potential use as biomarkers. We intend to assess prognostic potential of miRNA in a followup analysis.


Assuntos
Epigênese Genética , Túbulos Renais/metabolismo , MicroRNAs/genética , Rim Policístico Autossômico Dominante/genética , Urotélio/metabolismo , Adulto , Idoso , Biomarcadores/urina , Progressão da Doença , Feminino , Feto , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Túbulos Renais/patologia , Masculino , MicroRNAs/urina , Pessoa de Meia-Idade , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/patologia , Rim Policístico Autossômico Dominante/urina , Cultura Primária de Células , Prognóstico , Urotélio/patologia
7.
J Mol Diagn ; 14(4): 305-13, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22608885

RESUMO

Genetic testing of PKD1 and PKD2 is useful for the diagnosis and prognosis of autosomal dominant polycystic kidney disease; however, analysis is complicated by the large transcript size, the complexity of the gene region, and the high level of gene variations. We developed a novel mutation screening assay for PKD1 by directly sequencing long-range (LR) PCR products. By using this method, the entire PKD1 coding region was amplified by nine reactions, generating product sizes from 2 to 6 kb, circumventing the need for specific PCR amplification of individual exons. This method was compared with direct sequencing used by a reference laboratory and the SURVEYOR-WAVE Nucleic Acid High Sensitivity Fragment Analysis System (Transgenomic) screening method for five patients with autosomal dominant polycystic kidney disease. A total of 53 heterozygous genetic changes were identified by LR PCR sequencing, including 41 (of 42) variations detected by SURVEYOR nuclease and all 32 variations reported by the reference laboratory, detecting an additional 12 intronic changes not identified by the other two methods. Compared with the reference laboratory, LR PCR sequencing had a sensitivity of 100%, a specificity of 98.5%, and an accuracy of 98.8%; compared with the SURVEYOR-WAVE method, it had a sensitivity of 97.1%, a specificity of 100%, and an accuracy of 99.4%. In conclusion, LR PCR sequencing was superior to the direct sequencing and screening methods for detecting genetic variations, achieving high sensitivity and improved intronic coverage with a faster turnaround time and lower costs, and providing a reliable tool for complex genetic analyses.


Assuntos
Testes Genéticos/métodos , Reação em Cadeia da Polimerase/métodos , Canais de Cátion TRPP/genética , Feminino , Humanos , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/genética
8.
Urology ; 72(2): 456-60, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18436282

RESUMO

OBJECTIVES: Prostate cancer (PC) varies widely by geographic location and ethnicity. American men have a high PC risk but most have localized disease. In contrast, Asian Indians have a low PC risk but most are diagnosed with metastatic disease. Epidemiological and genetic data suggest an important role of genetic susceptibility in PC. Most studies were performed in whites. Substantially less is known about gene variation-associated PC in low-risk populations. The objective of this study was to investigate the role of RNASEL and MSR1 in Asian-Indian men with advanced PC. METHODS: We genotyped DNA samples obtained from 113 cases and 245 age-matched controls (Northern India). RESULTS: For RNASEL, we identified 8 variants (7 novel and 1 previously published, D541E), including 4 exonic, 3 intronic, and 1 change in the 3'-noncoding region. Of these, we detected a novel 4-bp truncation mutation (Val51ArgfsX2) in 2 controls. For MSR1, we identified 4 novel variants (2 intronic and 2 exonic) and 2 previously reported variants (P275A and promoter -4,637 A>G). We also genotyped 3 common MSR1 variations (promoter -14,742 A>G, IVS5-59 C>A, and IVS7 delinsTTA). We found no associations among any of the sequence variations and PC. Three major haplotypes account for most of all MSR1 haplotypes in Asian Indians. Haplotype frequencies were not significantly different between cases and controls. CONCLUSIONS: Our results do not support a role for RNASEL, or MSR1 mutations in advanced Asian-Indian PC. This study warrants additional investigations of these genes in etiology particularly among individuals from diverse ethnic and geographic groups.


Assuntos
Endorribonucleases/análise , Predisposição Genética para Doença , Neoplasias da Próstata/genética , Receptores Depuradores Classe A/análise , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Genótipo , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/patologia , Fatores de Risco
9.
Cell ; 128(2): 341-55, 2007 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-17254971

RESUMO

The small GTPase Rac and the second messenger cGMP (guanosine 3',5'-cyclic monophosphate) are critical regulators of diverse cell functions. When activated by extracellular signals via membrane signaling receptors, Rac executes its functions through engaging downstream effectors such as p21-activated kinase (PAK), a serine/threonine protein kinase. However, the molecular mechanism by which membrane signaling receptors regulate cGMP levels is not known. Here we have uncovered a signaling pathway linking Rac to the increase of cellular cGMP. We show that Rac uses PAK to directly activate transmembrane guanylyl cyclases (GCs), leading to increased cellular cGMP levels. This Rac/PAK/GC/cGMP pathway is involved in platelet-derived growth factor-induced fibroblast cell migration and lamellipodium formation. Our findings connect two important regulators of cellular physiological functions and provide a general mechanism for diverse receptors to modulate physiological responses through elevating cellular cGMP levels.


Assuntos
GMP Cíclico/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Células CHO , Membrana Celular/genética , Membrana Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Células Cultivadas , Cricetinae , Cricetulus , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Guanilato Ciclase/metabolismo , Humanos , Camundongos , Camundongos Knockout , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteínas Serina-Treonina Quinases/genética , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Quinases Ativadas por p21
10.
J Biol Chem ; 281(43): 32660-7, 2006 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-16943201

RESUMO

Growth factors induce massive actin cytoskeletal remodeling in cells. These reorganization events underlie various cellular responses such as cell migration and morphological changes. One major form of actin reorganization is the formation and disassembly of dorsal ruffles (also named waves, dorsal rings, or circular ruffles). Dorsal ruffles are involved in physiological functions including cell migration, invasion, macropinocytosis, plasma membrane recycling, and others. Growth factors initiate rapid formation (within 5 min) of circular membrane ruffles, and these ruffles move along the dorsal side of the cells, constrict, close, and eventually disassemble ( approximately 20 min). Considerable attention has been devoted to the mechanism by which growth factors induce the formation of dorsal ruffles. However, little is known of the mechanism by which these ruffles are disassembled. Here we have shown that G proteins G(12) and G(13) control the rate of disassembly of dorsal ruffles. In Galpha(12)(-/-)Galpha(13)(-/-) fibroblast cells, dorsal ruffles induced by growth factor treatment remain visible substantially longer ( approximately 60 min) than in wild-type cells, whereas the rate of formation of these ruffles was the same with or without Galpha(12) and Galpha(13). Thus, Galpha(12)/Galpha(13) critically regulate dorsal ruffle turnover.


Assuntos
Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Fibroblastos/efeitos dos fármacos , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/fisiologia , Fator de Crescimento Derivado de Plaquetas/farmacologia , Actinas/metabolismo , Animais , Becaplermina , Células Cultivadas , Citoesqueleto/metabolismo , Feto/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/deficiência , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Camundongos , Microscopia de Fluorescência , Microscopia de Vídeo , Mutação , Células NIH 3T3 , Proteínas Proto-Oncogênicas c-sis , Fatores de Tempo
11.
Biochem Biophys Res Commun ; 297(3): 653-8, 2002 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-12270144

RESUMO

The biological activities of Rho family GTPases are controlled by their guanine nucleotide binding states in cell. Mg(2+) ions play key roles in guanine nucleotide binding and in preserving the structural integrity of GTPases. We describe here the kinetics of the interaction of GTP with the Rho family small GTPase Cdc42 in the absence and presence of Mg(2+). In contrast to the cases of Ras and Rab proteins, which require Mg(2+) for the nucleotide binding and intrinsic hydrolysis of GTP, our results show that in the absence of Mg(2+), the binding affinity of GTP to Cdc42 is in the submicromolar concentration, and the Mg(2+) cofactor has only a minor effect on the Cdc42-catalyzed intrinsic hydrolysis rate of GTP. These results suggest that the intrinsic GTPase reaction mechanism of Cdc42 may differ significantly from that of other subfamily members of the Ras superfamily.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Magnésio/farmacologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Cátions Bivalentes/farmacologia , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Guanosina Difosfato/metabolismo , Humanos , Hidrólise , Cinética , Proteínas Recombinantes/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Espectrofotometria , Proteína cdc42 de Ligação ao GTP/efeitos dos fármacos
12.
Anal Biochem ; 310(2): 156-62, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12423633

RESUMO

A novel spectrophotometric method to study the kinetics of the guanine nucleotide exchange factors-catalyzed reactions is presented. The method incorporates two coupling enzyme systems: (a). GTPase-activating protein which stimulates the intrinsic GTP hydrolysis reaction of small GTPases and (b). purine nucleotide phosphorylase and its chromophoric substrate, 7-methyl-6-thioguanosine, for quantitation of the resultant inorganic phosphate. The continuous coupled enzyme system was used for characterization of the interactions between the small GTPase RhoA and its guanine nucleotide exchange factors, Lbc and Dbl. Kinetic parameters obtained here show that there is no significant difference in kinetic mechanism of these GEFs in interaction with RhoA. The Michaelis-Menten constants were determined to be around 1micro M, and the rate constants k(cat) were around 0.1s(-1).


Assuntos
Guanosina/análogos & derivados , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Espectrometria de Fluorescência/métodos , Proteína rhoA de Ligação ao GTP/química , Proteína rhoA de Ligação ao GTP/metabolismo , Proteínas de Ancoragem à Quinase A , Proteínas Adaptadoras de Transdução de Sinal , Catálise , Escherichia coli/metabolismo , Fatores de Troca do Nucleotídeo Guanina , Guanosina/metabolismo , Humanos , Hidrólise , Cinética , Cloreto de Magnésio/química , Cloreto de Magnésio/metabolismo , Antígenos de Histocompatibilidade Menor , Fosfatos/química , Fosfatos/metabolismo , Ligação Proteica , Purina-Núcleosídeo Fosforilase/química , Purina-Núcleosídeo Fosforilase/metabolismo , Tionucleosídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa