Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 363, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910248

RESUMO

Fluorescence nanoscopy, also known as super-resolution microscopy, has transcended the conventional resolution barriers and enabled visualization of biological samples at nanometric resolutions. A series of super-resolution techniques have been developed and applied to investigate the molecular distribution, organization, and interactions in blood cells, as well as the underlying mechanisms of blood-cell-associated diseases. In this review, we provide an overview of various fluorescence nanoscopy technologies, outlining their current development stage and the challenges they are facing in terms of functionality and practicality. We specifically explore how these innovations have propelled forward the analysis of thrombocytes (platelets), erythrocytes (red blood cells) and leukocytes (white blood cells), shedding light on the nanoscale arrangement of subcellular components and molecular interactions. We spotlight novel biomarkers uncovered by fluorescence nanoscopy for disease diagnosis, such as thrombocytopathies, malignancies, and infectious diseases. Furthermore, we discuss the technological hurdles and chart out prospective avenues for future research directions. This review aims to underscore the significant contributions of fluorescence nanoscopy to the field of blood cell analysis and disease diagnosis, poised to revolutionize our approach to exploring, understanding, and managing disease at the molecular level.


Assuntos
Microscopia de Fluorescência , Humanos , Microscopia de Fluorescência/métodos , Eritrócitos , Animais , Plaquetas/metabolismo , Células Sanguíneas , Hematologia/métodos , Nanotecnologia/métodos , Leucócitos/metabolismo
2.
Zhongguo Zhong Yao Za Zhi ; 49(2): 361-369, 2024 Jan.
Artigo em Zh | MEDLINE | ID: mdl-38403312

RESUMO

The 4-coumarate: CoA ligase(4CL) is a key enzyme in the upstream pathway of phenylpropanoids such as flavonoids, soluble phenolic esters, lignans, and lignins in plants. In this study, 13 4CL family members of Arabidopsis thaliana were used as reference sequences to identify the 4CL gene family candidate members of Isatis indigotica from the reported I. indigotica genome. Further bioinformatics analysis and analysis of the expression pattern of 4CL genes and the accumulation pattern of flavonoids were carried out. Thirteen 4CL genes were obtained, named Ii4CL1-Ii4CL13, which were distributed on chromosomes 1, 2, 3, 4, and 6. The analysis of the gene structure and conserved structural domains revealed the intron number of I. indigotica 4CL genes was between 1 and 12 and the protein structural domains were highly conserved. Cis-acting element analysis showed that there were multiple response elements in the promoter sequence of I. indigotica 4CL gene family, and jasmonic acid had the largest number of reaction elements. The collinearity analysis showed that there was a close relationship between the 4CL gene family members of I. indigotica and A. thaliana. As revealed by qPCR results, the expression analysis of the 4CL gene family showed that 10 4CL genes had higher expression levels in the aboveground part of I. indigotica. The content assay of flavonoids in different parts of I. indigotica showed that flavonoids were mainly accumulated in the aboveground part of plants. This study provides a basis for further investigating the roles of the 4CL gene family involved in the biosynthesis of flavonoids in I. indigotica.


Assuntos
Isatis , Ligases , Ligases/genética , Isatis/genética , Regiões Promotoras Genéticas , Plantas/metabolismo , Flavonoides , Coenzima A Ligases/genética , Coenzima A Ligases/química , Coenzima A Ligases/metabolismo
3.
World J Surg ; 47(12): 3192-3202, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37709983

RESUMO

PURPOSE: This study aims to compare the survival outcomes of metaplastic breast cancer (MPBC) with triple-negative breast cancer (TNBC) and identify prognostic factors that influence the survival outcomes of MPBC patients and TNBC patients. METHODS: Patients with nonmetastatic MPBC or TNBC were reviewed from our database. Patients' clinicopathologic and molecular features were analyzed with respect to outcomes, including disease-free survival (DFS) and overall survival (OS). Propensity score matching (PSM) with a one-to-three matching between MPBC patients and TNBC patients was performed. RESULTS: A total of 857 female patients (76 MPBC patients and 781 TNBC patients) were included in this study. A subgroup of triple-negative MPBC (n = 60) was matched with TNBC (n = 180) cases based on patient characteristics and treatments. Kaplan-Meier analysis indicated that the MPBC group was associated with worse OS and DFS before (P = 0.0046 both) and after (P = 0.011 and P = 0.0046, respectively) PSM. Multivariable analysis revealed that a higher T stage (T > 2) (P = 0.032) and higher lymph node stage (N3 vs. N0-2, P = 0.012) were associated with worse OS after PSM. For DFS, the MPBC group (P = 0.012), higher T stage (T > 2) (P = 0.032), and higher lymph node stage (N3 vs. N0-2, P = 0.045) were associated with worse DFS. Among the 76 MPBC patients, a higher T stage and mesenchymal differentiation were associated with worse OS (pT1/2 vs. pT3/4 and mesenchymal differentiation vs. other subtypes, P = 0.007 and P = 0.011, respectively). CONCLUSIONS: Compared with TNBC, MPBC was associated with worse OS and DFS. Mesenchymal differentiation has a worse DFS than other subtypes of MPBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/terapia , Prognóstico , Pontuação de Propensão , Estimativa de Kaplan-Meier , Linfonodos/patologia
4.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1510-1517, 2023 Mar.
Artigo em Zh | MEDLINE | ID: mdl-37005838

RESUMO

Chalcone isomerase is a key rate-limiting enzyme in the biosynthesis of flavonoids in higher plants, which determines the production of flavonoids in plants. In this study, RNA was extracted from different parts of Isatis indigotica and reverse-transcribed into cDNA. Specific primers with enzyme restriction sites were designed, and a chalcone isomerase gene was cloned from I. indigotica, named IiCHI. IiCHI was 756 bp in length, containing a complete open reading frame and encoding 251 amino acids. Homology analysis showed that IiCHI was closely related to CHI protein of Arabidopsis thaliana and had typical active sites of chalcone isomerase. Phylogenetic tree analysis showed that IiCHI was classified into type Ⅰ CHI clade. Recombinant prokaryotic expression vector pET28a-IiCHI was constructed and purified to obtain IiCHI recombinant protein. In vitro enzymatic analysis showed that the IiCHI protein could convert naringenin chalcone into naringenin, but could not catalyze the production of liquiritigenin by isoliquiritigenin. The results of real-time quantitative polymerase chain reaction(qPCR) showed that the expression level of IiCHI in the aboveground parts was higher than that in the underground parts and the expression level was the highest in the flowers of the aboveground parts, followed by leaves and stems, and no expression was observed in the roots and rhizomes of the underground parts. This study has confirmed the function of chalcone isomerase in I. indigotica and provided references for the biosynthesis of flavonoid components.


Assuntos
Arabidopsis , Isatis , Isatis/genética , Proteínas de Plantas/metabolismo , Filogenia , Arabidopsis/genética , Flavonoides , Clonagem Molecular
5.
Cell Mol Life Sci ; 79(1): 27, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-34971423

RESUMO

The rate-limiting serine biogenesis enzyme PHGDH is overexpressed in cancers. Both serine withdrawal and genetic/pharmacological inhibition of PHGDH have demonstrated promising tumor-suppressing activities. However, the enzyme properties of PHGDH are not well understood and the discovery of PHGDH inhibitors is still in its infancy. Here, oridonin was identified from a natural product library as a new PHGDH inhibitor. The crystal structure of PHGDH in complex with oridonin revealed a new allosteric site. The binding of oridonin to this site reduced the activity of the enzyme by relocating R54, a residue involved in substrate binding. Mutagenesis studies showed that PHGDH activity was very sensitive to cysteine mutations, especially those in the substrate binding domain. Conjugation of oridonin and other reported covalent PHGDH inhibitors to these sites will therefore inhibit PHGDH. In addition to being inhibited enzymatically, PHGDH can also be inhibited by protein aggregation and proteasome-mediated degradation. Several tested PHGDH cancer mutants showed altered enzymatic activity, which can be explained by protein structure and stability. Overall, the above studies present new biophysical and biochemical insights into PHGDH and may facilitate the future design of PHGDH inhibitors.


Assuntos
Fenômenos Biofísicos , Inibidores Enzimáticos/farmacologia , Fosfoglicerato Desidrogenase/antagonistas & inibidores , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Cisteína/genética , Cisteína/metabolismo , Diterpenos do Tipo Caurano/química , Diterpenos do Tipo Caurano/farmacologia , Inibidores Enzimáticos/química , Ácidos Glicéricos/metabolismo , Humanos , Mutação/genética , NAD/metabolismo , Fosfoglicerato Desidrogenase/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Agregados Proteicos , Proteólise/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos
6.
Zhongguo Zhong Yao Za Zhi ; 47(24): 6587-6595, 2022 Dec.
Artigo em Zh | MEDLINE | ID: mdl-36604907

RESUMO

Based on the transcriptome data of Isatis indigotica, a total of 110 putative glycosytransferases were identified. Through prokaryotic expression and enzymic activity assay in vitro, a novel lignan glycosyltransferase gene was screened out and named IiUGT349, which catalyzed lariciresinol into lariciresinol-4-O-ß-D-glucoside and lariciresinol-4'-O-ß-D-glucoside. Bioinformatics analysis suggested that IiUGT349 contained an open reading frame(ORF) of 1 401 bp encoding a protein of 467 amino acids. A protein analysis indicated that IiUGT349 have a predecited molecular weight of 52.77 kDa and pI of 5.96. Phylogenetic analysis showed that IiUGT349 belonging to UGT90 family shared low amino acid sequence identity with the reported lignan glycosyltransferases, which may represent a novel type of lignan glycosyltransferases. Quantitative real-time PCR(qRT-PCR) analysis showed that IiUGT349 was expressed in roots, stems, young leaves and leaves, with the highest expression level in stems. Further biochemical analysis showed that the optimal reaction time of IiUGT349 recombinant protein was 12 h and the optimal temperature was 45 ℃. Subcellular localization demonstrated that IiUGT349 was located in the cytoplasm and nucleus of plants. In this study, a new glucosyltransferase gene IiUGT349 from I. indigotica belonging to the UGT90 family was cloned, which laid a foundation to further investigate its' function and elucidate the lignan glycosides biosynthesis pathway and plays an important role for great significance for the synthetic biology of active lignan glycosides.


Assuntos
Isatis , Lignanas , Clonagem Molecular , Glucosídeos/metabolismo , Isatis/genética , Isatis/química , Lignanas/metabolismo , Filogenia , Glicosiltransferases/metabolismo
7.
Zhongguo Zhong Yao Za Zhi ; 47(15): 4074-4083, 2022 Aug.
Artigo em Zh | MEDLINE | ID: mdl-36046897

RESUMO

The lignan glycosyltransferase UGT236(belonging to the UGT71 B family) from Isatis indigotica can catalyze the production of phloridzin from phloretin in vitro. UGT236 shares high identity with P2'GT from apple. In this study, the recombinant plasmid pET28 a-MBP-UGT236 was transferred into Escherichia coli Rosetta(DE3) cells and induced by isopropyl-ß-D-thiogalactoside(IPTG). The purified UGT236 protein was used for enzymatic characterization with phloretin as substrate. The results showed that UGT236 had the optimal reaction temperature of 40 ℃ and the optimal pH 8(Na_2HPO_4-NaH_2PO_4 system). The UGT236 activity was inhibited by Ni~(2+) and Al~(3+), enhanced by Fe~(2+), Co~(2+), and Mn~(2+), and did not affected by Mg~(2+), Ca~(2+), Li~+, Na~+, or K~+. The K_m, K_(cat), and K_(cat)/K_m of phloretin were 61.03 µmol·L~(-1), 0.01 s~(-1), and 157.11 mol~(-1)·s~(-1)·L, and those of UDPG were 183.6 µmol·L~(-1), 0.01 s~(-1), and 51.91 mol~(-1)·s~(-1)·L, respectively. The possible active sites were predicted by homologous modeling and molecular docking. By mutagenisis and catalytic activity detection, three key active sites, Glu391, His15, and Thr141, were identified, while Phe146 was related to product diversity. In summary, we found that the lignan glycosyltransferase UGT236 from I.indigotica could catalyze the reaction of phloretin into phloridzin. Several key amino acid residues were identified by structure prediction, molecular docking, and site-mutagenesis, which provided a basis for studying the specificity and diversity of phloretin glycoside products. This study can provide a reference for artificially producing glycosyltransferase elements with high efficiency and specific catalysis.


Assuntos
Isatis , Lignanas , Glucosiltransferases/genética , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Lignanas/metabolismo , Simulação de Acoplamento Molecular , Floretina/metabolismo , Florizina/metabolismo
8.
J Nat Prod ; 84(5): 1478-1488, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33890470

RESUMO

The protein chromosome region maintenance 1 (CRM1) is an important nuclear export factor and drug target in diseases such as cancer and viral infections. Several plant-derived CRM1 inhibitors including plumbagin and oridonin possess potent antitumor activities. However, their modes of CRM1 inhibition remain unclear. Here, a multimutant CRM1 was engineered to enable crystallization of these two small molecules in its NES groove. Plumbagin and oridonin share the same three conjugation sites in CRM1. In solution, these two inhibitors targeted more CRM1 sites and inhibited its activity through promoting its aggregation, in addition to directly targeting the NES groove. While the plumbagin-bound NES groove resembles the NES-bound groove state, the oridonin complex reveals for the first time a more open NES groove. The observed greater NES groove dynamics may improve cargo loading through a "capture-and-tighten" mechanism. This work thus provides new insights on the mechanism of CRM1 inhibition by two natural products and a structural basis for further development of these or other CRM1 inhibitors.


Assuntos
Diterpenos do Tipo Caurano/farmacologia , Carioferinas/antagonistas & inibidores , Naftoquinonas/farmacologia , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Sequência de Aminoácidos , Estrutura Molecular , Proteínas Mutantes/antagonistas & inibidores , Engenharia de Proteínas , Estrutura Terciária de Proteína , Proteína Exportina 1
9.
Bioorg Chem ; 115: 105159, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34298241

RESUMO

Serine, the source of the one-carbon units essential for de novo purine and deoxythymidine synthesis plays a crucial role in the growth of cancer cells. Phosphoglycerate dehydrogenase (PHGDH) which catalyzes the first, rate-limiting step in de novo serine biosynthesis has become a promising target for the cancer treatment. Here we identified H-G6 as a potential PHGDH inhibitor from the screening of an in-house small molecule library based on the enzymatic assay. We adopted activity-directed combinatorial chemical synthesis strategy to optimize this hit compound. Compound b36 was found to be the noncompetitive and the most promising one with IC50 values of 5.96 ± 0.61 µM against PHGDH. Compound b36 inhibited the proliferation of human breast cancer and ovarian cancer cells, reduced intracellular serine synthesis, damaged DNA synthesis, and induced cell cycle arrest. Collectively, our results suggest that b36 is a novel PHGDH inhibitor, which could be a promising modulator to reprogram the serine synthesis pathway and might be a potential anticancer lead worth further exploration.


Assuntos
Inibidores Enzimáticos/síntese química , Fosfoglicerato Desidrogenase/antagonistas & inibidores , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Combinatória , Dano ao DNA/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Fosfoglicerato Desidrogenase/metabolismo , Relação Estrutura-Atividade
10.
Med Sci Monit ; 26: e922634, 2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32799214

RESUMO

BACKGROUND The aim of this study was to show whether the standardized Ginkgo biloba extract EGb761, a traditional Chinese medicine, has a therapeutic effect on pulmonary fibrosis (PF). MATERIAL AND METHODS Bleomycin (BLM) was used for establishing the PF mouse model. The mice were treated with a gradient of EGb761 for 28 days to determine an appropriate drug dose. On day 28, the effect of EGb761 on lung injury and inflammation was confirmed by hematoxylin and eosin and Masson staining and evaluated by pulmonary alveolitis and Ashcroft score. The balance of M1/M2 macrophages was evaluated with the respective markers inducible nitric oxide synthase and and interleukin-10 by real-time polymerase chain reaction. Furthermore, the expressions of fibrosis-associated protein alpha-smooth muscle actin (SMA), related inflammatory protein transforming growth factor (TGF)-ß1, the apoptosis-related proteins B-cell lymphoma-associated X protein (Bax), B-cell lymphoma (Bcl)-2, caspase-3, caspase-9, and phosphorylated nuclear factor (NF)-kappaB (p65) were assessed by western blot. RESULTS On day 28, PF was induced by treating with BLM, whereas EGb761 suppressed the PF of lung tissue. The BLM-induced imbalance of M1/M2 macrophages was reduced by EGb761. Furthermore, the increasing amounts of alpha-SMA and TGF-ß1 induced by BLM were suppressed by EGb761. In addition, the protein or messenger ribonucleic acid expression levels of phosphorylated NF-kappaB (p65), caspase-3, and caspase-9 were upregulated, whereas Bax and Bcl-2 were downregulated. Treatment with EGb761 restored the levels of these proteins except for caspase-9. CONCLUSIONS This study illustrated the protective effect of EGb761 on BLM-induced PF by regulating the balance of M1/M2 macrophages and NF-kappaB (p65)-mediated apoptosis. The results demonstrated the potential clinical therapeutic effect of EGb761, providing a novel possibility for curing PF.


Assuntos
Apoptose/efeitos dos fármacos , Bleomicina/toxicidade , Ginkgo biloba/química , Macrófagos Alveolares/efeitos dos fármacos , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Fibrose Pulmonar/prevenção & controle , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/imunologia
11.
HIV Clin Trials ; 17(1): 29-37, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26899540

RESUMO

OBJECTIVES: Antiretroviral regimen switching may be considered for HIV-1-infected, virologically-suppressed patients to enable treatment simplification or improve tolerability, but should be guided by knowledge of pre-existing drug resistance. The current study examined the impact of pre-existing drug resistance mutations on virologic outcomes among virologically-suppressed patients switching to Rilpivirine (RPV)/emtricitabine (FTC)/tenofovir disoproxil fumarate (TDF). METHODS: SPIRIT was a phase 3b study evaluating the safety and efficacy of switching to RPV/FTC/TDF in virologically-suppressed HIV-1-infected patients. Pre-existing drug resistance at baseline was determined by proviral DNA genotyping for 51 RPV/FTC/TDF-treated patients with known mutations by historical RNA genotype and matched controls and compared with clinical outcome at Week 48. RESULTS: Drug resistance mutations in protease or reverse transcriptase were detected in 62.7% of patients by historical RNA genotype and in 68.6% by proviral DNA genotyping at baseline. Proviral DNA sequencing detected 89% of occurrences of NRTI and NNRTI resistance-associated mutations reported by historical genotype. Mutations potentially affecting RPV activity, including E138A/G/K/Q, Y181C, and H221Y, were detected in isolates from 11 patients by one or both assays. None of the patients with single mutants had virologic failure through Week 48. One patient with pre-existing Y181Y/C and M184I by proviral DNA genotyping experienced virologic failure. Nineteen patients with K103N present by historical genotype were confirmed by proviral DNA sequencing and 18/19 remained virologically-suppressed. DISCUSSION: Virologic success rates were high among virologically-suppressed patients with pre-existing NRTI and NNRTI resistance-associated mutations who switched to RPV/FTC/TDF in the SPIRIT study. While plasma RNA genotyping remains preferred, proviral DNA genotyping may provide additional value in virologically-suppressed patients for whom historical resistance data are unavailable.


Assuntos
Farmacorresistência Viral , Combinação Emtricitabina, Rilpivirina e Tenofovir/uso terapêutico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , Fármacos Anti-HIV/uso terapêutico , Genótipo , Humanos , Mutação , RNA Viral/genética , RNA Viral/metabolismo
13.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38399453

RESUMO

Immunotherapy has shown clinical benefit in patients with non-small-cell lung cancer (NSCLC). Due to the limited response of monotherapy, combining immune checkpoint inhibitors (ICIs) and chemotherapy is considered a treatment option for advanced NSCLC. However, the mechanism of combined therapy and the potential patient population that could benefit from combined therapy remain undetermined. Here, we developed an NSCLC model based on the published quantitative systems pharmacology (QSP)-immuno-oncology platform by making necessary adjustments. After calibration and validation, the established QSP model could adequately characterise the biological mechanisms of action of the triple combination of atezolizumab, nab-paclitaxel, and carboplatin in patients with NSCLC, and identify predictive biomarkers for precision dosing. The established model could efficiently characterise the objective response rate and duration of response of the IMpower131 trial, reproducing the efficacy of alternative dosing. Furthermore, CD8+ and CD4+ T cell densities in tumours were found to be significantly related to the response status. This significant extension of the QSP model not only broadens its applicability but also more accurately reflects real-world clinical settings. Importantly, it positions the model as a critical foundation for model-informed drug development and the customisation of treatment plans, especially in the context of combining single-agent ICIs with platinum-doublet chemotherapy.

14.
Breast Cancer Res Treat ; 141(1): 43-53, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23959396

RESUMO

Trastuzumab is effective in the treatment of HER2/neu over-expressing breast cancer, but not all patients benefit from it. In vitro data suggest a role for HER3 in the initiation of signaling activity involving the AKT­mTOR pathway leading to trastuzumab insensitivity. We sought to investigate the potential of HER3 alone and in the context of p95HER2 (p95), a trastuzumab resistance marker, as biomarkers of trastuzumab escape. Using the VeraTag® assay platform, we developed a dual antibody proximity-based assay for the precise quantitation of HER3 total protein (H3T) from formalin-fixed paraffin-embedded (FFPE) breast tumors. We then measured H3T in 89 patients with metastatic breast cancer treated with trastuzumab-based therapy, and correlated the results with progression-free survival and overall survival using Kaplan­Meier and decision tree analyses that also included HER2 total (H2T) and p95 expression levels. Within the sub-population of patients that over-expressed HER2, high levels of HER3 and/or p95 protein expression were significantly associated with poor clinical outcomes on trastuzumab-based therapy. Based on quantitative H3T, p95, and H2T measurements, multiple subtypes of HER2-positive breast cancer were identified that differ in their outcome following trastuzumab therapy. These data suggest that HER3 and p95 are informative biomarkers of clinical outcomes on trastuzumab therapy, and that multiple subtypes of HER2-positive breast cancer may be defined by quantitative measurements of H3T, p95, and H2T.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Mama/secundário , Técnica Indireta de Fluorescência para Anticorpo , Regulação Neoplásica da Expressão Gênica , Genes erbB-2 , Proteínas de Neoplasias/biossíntese , Receptor ErbB-2/análise , Receptor ErbB-3/análise , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Neoplasias da Mama/classificação , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Estudos de Coortes , Árvores de Decisões , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Estimativa de Kaplan-Meier , Proteínas de Neoplasias/genética , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/imunologia , Prognóstico , Estrutura Terciária de Proteína , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia , Receptor ErbB-3/genética , Receptor ErbB-3/imunologia , Estudos Retrospectivos , Método Simples-Cego , Trastuzumab , Resultado do Tratamento
16.
Front Plant Sci ; 13: 921815, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774804

RESUMO

Isatis indigotica is a popular herbal medicine with its noticeable antiviral properties, which are primarily due to its lignan glycosides such as lariciresinol-4-O-ß-D-glucoside and lariciresinol-4,4'-bis-O-ß-D-glucosides (also called clemastanin B). UDP-glucose-dependent glycosyltransferases are the key enzymes involved in the biosynthesis of these antiviral metabolites. In this study, we systematically characterized the UGT72 family gene IiUGT1 and two UGT71B family genes, IiUGT4 and IiUGT71B5a, with similar enzymatic functions. Kinetic analysis showed that IiUGT4 was more efficient than IiUGT1 or IiUGT71B5a for the glycosylation of lariciresinol. Further knock-down and overexpression of these IiUGTs in I. indigotica's hairy roots indicates that they play different roles in planta: IiUGT71B5a primarily participates in the biosynthesis of coniferin not pinoresinol diglucoside, and IiUGT1 primarily participates in the biosynthesis of pinoresinol diglucoside, while IiUGT4 is responsible for the glycosylation of lariciresinol and plays a dominant role in the biosynthesis of lariciresinol glycosides in I. indigotica. Analysis of the molecular docking and site-mutagenesis of IiUGT4 have found that key residues for its catalytic activity are H373, W376, E397, and that F151 could be associated with substrate preference. This study elucidates the biosynthetic route of anti-viral lignan glycosides in I. indigotica, and provides the foundation for the production of anti-viral lignan glycosides via synthetic biology under the heterologous model.

17.
Hortic Res ; 9: uhac140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072835

RESUMO

Isatis indigotica accumulates several active substances, including C-glycosylflavonoids, which have important pharmacological activities and health benefits. However, enzymes catalyzing the methylation step of C-glycosylflavonoids in I. indigotica remain unknown. In this study, three O-methyltransferases (OMTs) were identified from I. indigotica that have the capacity for O-methylation of the C-glycosylflavonoid isoorientin. The Type II OMTs IiOMT1 and IiOMT2 efficiently catalyze isoorientin to form isoscoparin, and decorate one of the aromatic vicinal hydroxyl groups on flavones and methylate the C6, C8, and 3'-hydroxyl positions to form oroxylin A, wogonin, and chrysoeriol, respectively. However, the Type I OMT IiOMT3 exhibited broader substrate promiscuity and methylated the C7 and 3'-hydroxyl positions of flavonoids. Further site-directed mutagenesis studies demonstrated that five amino acids of IiOMT1/IiOMT2 (D121/D100, D173/D149, A174/A150R, N200/N176, and D248/D233) were critical residues for their catalytic activity. Additionally, only transient overexpression of Type II OMTs IiOMT1 and IiOMT2 in Nicotiana benthamiana significantly increased isoscoparin accumulation, indicating that the Type II OMTs IiOMT1 and IiOMT2 could catalyze the methylation step of C-glycosylflavonoid, isoorientin at the 3'-hydroxyl position. This study provides insights into the biosynthesis of methylated C-glycosylflavonoids, and IiOMTs could be promising catalysts in the synthesis of bioactive compounds.

18.
Front Oncol ; 12: 951589, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36620535

RESUMO

Purpose: The aim of this study was to improve the intratumoral accumulation of an antibody-drug conjugate (ADC) and minimize its off-target toxicity, SKB264, a novel anti-trophoblast antigen 2 (TROP2) ADC that was developed using 2-methylsulfonyl pyrimidine as the linker to conjugate its payload (KL610023), a belotecan-derivative topoisomerase I inhibitor. The preclinical pharmacologic profiles of SKB264 were assessed in this study. Methods: The in vitro and in vivo pharmacologic profiles of SKB264, including efficacy, pharmacokinetics-pharmacodynamics (PK-PD), safety, and tissue distribution, were investigated using TROP2-positive cell lines, cell-derived xenograft (CDX), patient-derived xenograft (PDX) models, and cynomolgus monkeys. Moreover, some profiles were compared with IMMU-132. Results: In vitro, SKB264 and SKB264 monoclonal antibody (mAb) had similar internalization abilities and binding affinities to TROP2. After cellular internalization, KL610023 was released and inhibited tumor cell survival. In vivo, SKB264 significantly inhibited tumor growth in a dose-dependent manner in both CDX and PDX models. After SKB264 administration, the serum or plasma concentration/exposure of SKB264 (conjugated ADC, number of payload units ≥1), total antibody (Tab, unconjugated and conjugated mAb regardless of the number of the payload units), and KL610023 in cynomolgus monkeys increased proportionally with increasing dosage from 1 to 10 mg/kg. The linker stability of SKB264 was significantly enhanced as shown by prolonged payload half-life in vivo (SKB264 vs. IMMU-132, 56.3 h vs. 15.5 h). At the same dose, SKB264's exposure in tumor tissue was 4.6-fold higher than that of IMMU-132. Conclusions: Compared with IMMU-132, the longer half-life of SKB264 had a stronger targeting effect and better antitumor activity, suggesting the better therapeutic potential of SKB264 for treating TROP2-positive tumors.

19.
Bio Protoc ; 11(2): e3886, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33732775

RESUMO

Small GTPases are cellular switches that are switched on when bound to GTP and switched off when bound to GDP. Different small GTPase proteins or those with mutations may bind to GTP or GDP with different relative affinities. However, small GTPases generally have very high affinities for guanine nucleotides, rendering it difficult to compare the relative binding affinities for GTP and GDP. Here we developed a method for comparing the relative binding strength of a protein to GTP and GDP using a mant-GDP dissociation assay, whereby the abilities of GTP and GDP to induce the dissociation of bound mant-GDP are compared. This equilibrium type assay is simple, economic, and much faster than obtaining each protein's affinity for GDP and GTP. The GDP/GTP preference value obtained is useful for comparing the relative GTP/GDP binding preferences of different GTPases or different mutants, even though it is not the real GDP/GTP affinity ratio (but rather an estimation of the ratio).

20.
Theranostics ; 11(6): 2966-2986, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33456583

RESUMO

Introduction: Serine hydroxymethyltransferase 2 (SHMT2) plays a critical role in serine-glycine metabolism to drive cancer cell proliferation. However, the nonmetabolic function of SHMT2 in tumorigenesis, especially in human colorectal cancer (CRC) progression, remains largely unclear. Methods: SHMT2 expression in human CRC cells was identified by western blot and immunofluorescence assay. The CRC cell proliferation, migration, and invasion after SHMT2 knockdown or overexpression were explored through in vitro and in vivo assays. Immunofluorescence, mRNA-seq, co-immunoprecipitation, chromatin immunoprecipitation-qPCR and immunohistochemistry assays were used to investigate the underlying mechanisms behind the SHMT2 nonmetabolic function. Results: We demonstrated that SHMT2 was distributed in the cytoplasm and nucleus of human CRC cells. SHMT2 knockdown resulted in the significant inhibition of CRC cell proliferation, which was not restored by serine, glycine, or formate supplementation. The invasion and migration of CRC cells were suppressed after SHMT2 knockdown. Mechanistically, SHMT2 interacted with ß-catenin in the cytoplasm. This interaction inhibited the ubiquitylation-mediated degradation of ß-catenin and subsequently modulated the expression of its target genes, leading to the promotion of CRC cell proliferation and metastasis. Notably, the lysine 64 residue on SHMT2 (SHMT2K64) mediated its interaction with ß-catenin. Moreover, transcription factor TCF4 interacted with ß-catenin, which in turn increased SHMT2 expression, forming an SHMT2/ß-catenin positive feedback loop. In vivo xenograft experiments confirmed that SHMT2 promoted the growth and metastasis of CRC cells. Finally, the level of SHMT2 was found to be significantly increased in human CRC tissues. The SHMT2 level was correlated with an increased level of ß-catenin, associated with CRC progression and predicted poor patient survival. Conclusion: Taken together, our findings reveal a novel nonmetabolic function of SHMT2 in which it stabilizes ß-catenin to prevent its ubiquitylation-mediated degradation and provide a potential therapeutic strategy for CRC therapy.


Assuntos
Neoplasias Colorretais/genética , Citoplasma/genética , Glicina Hidroximetiltransferase/genética , beta Catenina/genética , Animais , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células HCT116 , Células HT29 , Humanos , Camundongos , Camundongos Nus , Fator de Transcrição 4/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa