Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Bioinformatics ; 35(1): 95-103, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30561547

RESUMO

Motivation: Multiple biological clocks govern a healthy pregnancy. These biological mechanisms produce immunologic, metabolomic, proteomic, genomic and microbiomic adaptations during the course of pregnancy. Modeling the chronology of these adaptations during full-term pregnancy provides the frameworks for future studies examining deviations implicated in pregnancy-related pathologies including preterm birth and preeclampsia. Results: We performed a multiomics analysis of 51 samples from 17 pregnant women, delivering at term. The datasets included measurements from the immunome, transcriptome, microbiome, proteome and metabolome of samples obtained simultaneously from the same patients. Multivariate predictive modeling using the Elastic Net (EN) algorithm was used to measure the ability of each dataset to predict gestational age. Using stacked generalization, these datasets were combined into a single model. This model not only significantly increased predictive power by combining all datasets, but also revealed novel interactions between different biological modalities. Future work includes expansion of the cohort to preterm-enriched populations and in vivo analysis of immune-modulating interventions based on the mechanisms identified. Availability and implementation: Datasets and scripts for reproduction of results are available through: https://nalab.stanford.edu/multiomics-pregnancy/. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Metaboloma , Microbiota , Gravidez , Proteoma , Transcriptoma , Biologia Computacional , Feminino , Humanos
2.
Brain ; 142(4): 978-991, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30860258

RESUMO

Stroke is a leading cause of cognitive impairment and dementia, but the mechanisms that underlie post-stroke cognitive decline are not well understood. Stroke produces profound local and systemic immune responses that engage all major innate and adaptive immune compartments. However, whether the systemic immune response to stroke contributes to long-term disability remains ill-defined. We used a single-cell mass cytometry approach to comprehensively and functionally characterize the systemic immune response to stroke in longitudinal blood samples from 24 patients over the course of 1 year and correlated the immune response with changes in cognitive functioning between 90 and 365 days post-stroke. Using elastic net regularized regression modelling, we identified key elements of a robust and prolonged systemic immune response to ischaemic stroke that occurs in three phases: an acute phase (Day 2) characterized by increased signal transducer and activator of transcription 3 (STAT3) signalling responses in innate immune cell types, an intermediate phase (Day 5) characterized by increased cAMP response element-binding protein (CREB) signalling responses in adaptive immune cell types, and a late phase (Day 90) by persistent elevation of neutrophils, and immunoglobulin M+ (IgM+) B cells. By Day 365 there was no detectable difference between these samples and those from an age- and gender-matched patient cohort without stroke. When regressed against the change in the Montreal Cognitive Assessment scores between Days 90 and 365 after stroke, the acute inflammatory phase Elastic Net model correlated with post-stroke cognitive trajectories (r = -0.692, Bonferroni-corrected P = 0.039). The results demonstrate the utility of a deep immune profiling approach with mass cytometry for the identification of clinically relevant immune correlates of long-term cognitive trajectories.


Assuntos
Cognição/fisiologia , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Isquemia Encefálica/complicações , Proteína de Ligação a CREB/metabolismo , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/imunologia , Disfunção Cognitiva/complicações , Disfunção Cognitiva/imunologia , Estudos de Coortes , Feminino , Humanos , Imunoglobulina M , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Neutrófilos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Acidente Vascular Cerebral/complicações , Sobreviventes
3.
J Matern Fetal Neonatal Med ; 35(25): 5621-5628, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33653202

RESUMO

BACKGROUND: Early identification of pregnant women at risk for preeclampsia (PE) is important, as it will enable targeted interventions ahead of clinical manifestations. The quantitative analyses of plasma proteins feature prominently among molecular approaches used for risk prediction. However, derivation of protein signatures of sufficient predictive power has been challenging. The recent availability of platforms simultaneously assessing over 1000 plasma proteins offers broad examinations of the plasma proteome, which may enable the extraction of proteomic signatures with improved prognostic performance in prenatal care. OBJECTIVE: The primary aim of this study was to examine the generalizability of proteomic signatures predictive of PE in two cohorts of pregnant women whose plasma proteome was interrogated with the same highly multiplexed platform. Establishing generalizability, or lack thereof, is critical to devise strategies facilitating the development of clinically useful predictive tests. A second aim was to examine the generalizability of protein signatures predictive of gestational age (GA) in uncomplicated pregnancies in the same cohorts to contrast physiological and pathological pregnancy outcomes. STUDY DESIGN: Serial blood samples were collected during the first, second, and third trimesters in 18 women who developed PE and 18 women with uncomplicated pregnancies (Stanford cohort). The second cohort (Detroit), used for comparative analysis, consisted of 76 women with PE and 90 women with uncomplicated pregnancies. Multivariate analyses were applied to infer predictive and cohort-specific proteomic models, which were then tested in the alternate cohort. Gene ontology (GO) analysis was performed to identify biological processes that were over-represented among top-ranked proteins associated with PE. RESULTS: The model derived in the Stanford cohort was highly significant (p = 3.9E-15) and predictive (AUC = 0.96), but failed validation in the Detroit cohort (p = 9.7E-01, AUC = 0.50). Similarly, the model derived in the Detroit cohort was highly significant (p = 1.0E-21, AUC = 0.73), but failed validation in the Stanford cohort (p = 7.3E-02, AUC = 0.60). By contrast, proteomic models predicting GA were readily validated across the Stanford (p = 1.1E-454, R = 0.92) and Detroit cohorts (p = 1.1.E-92, R = 0.92) indicating that the proteomic assay performed well enough to infer a generalizable model across studied cohorts, which makes it less likely that technical aspects of the assay, including batch effects, accounted for observed differences. CONCLUSIONS: Results point to a broader issue relevant for proteomic and other omic discovery studies in patient cohorts suffering from a clinical syndrome, such as PE, driven by heterogeneous pathophysiologies. While novel technologies including highly multiplex proteomic arrays and adapted computational algorithms allow for novel discoveries for a particular study cohort, they may not readily generalize across cohorts. A likely reason is that the prevalence of pathophysiologic processes leading up to the "same" clinical syndrome can be distributed differently in different and smaller-sized cohorts. Signatures derived in individual cohorts may simply capture different facets of the spectrum of pathophysiologic processes driving a syndrome. Our findings have important implications for the design of omic studies of a syndrome like PE. They highlight the need for performing such studies in diverse and well-phenotyped patient populations that are large enough to characterize subsets of patients with shared pathophysiologies to then derive subset-specific signatures of sufficient predictive power.


Assuntos
Pré-Eclâmpsia , Proteômica , Feminino , Humanos , Gravidez , Proteômica/métodos , Pré-Eclâmpsia/diagnóstico , Proteoma/metabolismo , Biomarcadores , Proteínas Sanguíneas
4.
Nat Mach Intell ; 2(10): 619-628, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33294774

RESUMO

The dense network of interconnected cellular signalling responses that are quantifiable in peripheral immune cells provides a wealth of actionable immunological insights. Although high-throughput single-cell profiling techniques, including polychromatic flow and mass cytometry, have matured to a point that enables detailed immune profiling of patients in numerous clinical settings, the limited cohort size and high dimensionality of data increase the possibility of false-positive discoveries and model overfitting. We introduce a generalizable machine learning platform, the immunological Elastic-Net (iEN), which incorporates immunological knowledge directly into the predictive models. Importantly, the algorithm maintains the exploratory nature of the high-dimensional dataset, allowing for the inclusion of immune features with strong predictive capabilities even if not consistent with prior knowledge. In three independent studies our method demonstrates improved predictions for clinically relevant outcomes from mass cytometry data generated from whole blood, as well as a large simulated dataset. The iEN is available under an open-source licence.

5.
Front Immunol ; 10: 1305, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31263463

RESUMO

Preeclampsia is one of the most severe pregnancy complications and a leading cause of maternal death. However, early diagnosis of preeclampsia remains a clinical challenge. Alterations in the normal immune adaptations necessary for the maintenance of a healthy pregnancy are central features of preeclampsia. However, prior analyses primarily focused on the static assessment of select immune cell subsets have provided limited information for the prediction of preeclampsia. Here, we used a high-dimensional mass cytometry immunoassay to characterize the dynamic changes of over 370 immune cell features (including cell distribution and functional responses) in maternal blood during healthy and preeclamptic pregnancies. We found a set of eight cell-specific immune features that accurately identified patients well before the clinical diagnosis of preeclampsia (median area under the curve (AUC) 0.91, interquartile range [0.82-0.92]). Several features recapitulated previously known immune dysfunctions in preeclampsia, such as elevated pro-inflammatory innate immune responses early in pregnancy and impaired regulatory T (Treg) cell signaling. The analysis revealed additional novel immune responses that were strongly associated with, and preceded the onset of preeclampsia, notably abnormal STAT5ab signaling dynamics in CD4+T cell subsets (AUC 0.92, p = 8.0E-5). These results provide a global readout of the dynamics of the maternal immune system early in pregnancy and lay the groundwork for identifying clinically-relevant immune dysfunctions for the prediction and prevention of preeclampsia.


Assuntos
Pré-Eclâmpsia/imunologia , Gravidez/imunologia , Imunidade Adaptativa , Adulto , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Citometria de Fluxo , Humanos , Imunidade Inata , Imunoensaio , Inflamação/sangue , Inflamação/complicações , Inflamação/imunologia , Modelos Imunológicos , Pré-Eclâmpsia/sangue , Pré-Eclâmpsia/diagnóstico , Gravidez/sangue , Estudos Prospectivos , Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa