RESUMO
Interaction of mast cells (MCs) with fibroblasts is essential for MC maturation within tissue microenvironments, although the underlying mechanism is incompletely understood. Through a phenotypic screening of >30 mouse lines deficient in lipid-related genes, we found that deletion of the lysophosphatidic acid (LPA) receptor LPA1, like that of the phospholipase PLA2G3, the prostaglandin D2 (PGD2) synthase L-PGDS, or the PGD2 receptor DP1, impairs MC maturation and thereby anaphylaxis. Mechanistically, MC-secreted PLA2G3 acts on extracellular vesicles (EVs) to supply lysophospholipids, which are converted by fibroblast-derived autotaxin (ATX) to LPA. Fibroblast LPA1 then integrates multiple pathways required for MC maturation by facilitating integrin-mediated MC-fibroblast adhesion, IL-33-ST2 signaling, L-PGDS-driven PGD2 generation, and feedforward ATX-LPA1 amplification. Defective MC maturation resulting from PLA2G3 deficiency is restored by supplementation with LPA1 agonists or PLA2G3-modified EVs. Thus, the lipid-orchestrated paracrine circuit involving PLA2G3-driven lysophospholipid, eicosanoid, integrin, and cytokine signaling fine-tunes MC-fibroblast communication, ensuring MC maturation.
Assuntos
Anafilaxia , Fibroblastos , Lisofosfolipídeos , Mastócitos , Camundongos Knockout , Comunicação Parácrina , Diester Fosfórico Hidrolases , Receptores de Ácidos Lisofosfatídicos , Transdução de Sinais , Animais , Mastócitos/imunologia , Mastócitos/metabolismo , Anafilaxia/imunologia , Anafilaxia/metabolismo , Camundongos , Fibroblastos/metabolismo , Lisofosfolipídeos/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Diester Fosfórico Hidrolases/metabolismo , Diester Fosfórico Hidrolases/genética , Prostaglandina D2/metabolismo , Vesículas Extracelulares/metabolismo , Interleucina-33/metabolismo , Oxirredutases Intramoleculares/metabolismo , Oxirredutases Intramoleculares/genética , Receptores de Prostaglandina/metabolismo , Receptores de Prostaglandina/genética , Diferenciação Celular , Camundongos Endogâmicos C57BL , Proteína 1 Semelhante a Receptor de Interleucina-1 , LipocalinasRESUMO
The physiological functions of mast cells remain largely an enigma. In the context of barrier damage, mast cells are integrated in type 2 immunity and, together with immunoglobulin E (IgE), promote allergic diseases. Allergic symptoms may, however, facilitate expulsion of allergens, toxins and parasites and trigger future antigen avoidance1-3. Here, we show that antigen-specific avoidance behaviour in inbred mice4,5 is critically dependent on mast cells; hence, we identify the immunological sensor cell linking antigen recognition to avoidance behaviour. Avoidance prevented antigen-driven adaptive, innate and mucosal immune activation and inflammation in the stomach and small intestine. Avoidance was IgE dependent, promoted by Th2 cytokines in the immunization phase and by IgE in the execution phase. Mucosal mast cells lining the stomach and small intestine rapidly sensed antigen ingestion. We interrogated potential signalling routes between mast cells and the brain using mutant mice, pharmacological inhibition, neural activity recordings and vagotomy. Inhibition of leukotriene synthesis impaired avoidance, but overall no single pathway interruption completely abrogated avoidance, indicating complex regulation. Collectively, the stage for antigen avoidance is set when adaptive immunity equips mast cells with IgE as a telltale of past immune responses. On subsequent antigen ingestion, mast cells signal termination of antigen intake. Prevention of immunopathology-causing, continuous and futile responses against per se innocuous antigens or of repeated ingestion of toxins through mast-cell-mediated antigen-avoidance behaviour may be an important arm of immunity.
Assuntos
Alérgenos , Aprendizagem da Esquiva , Hipersensibilidade , Mastócitos , Animais , Camundongos , Alérgenos/imunologia , Aprendizagem da Esquiva/fisiologia , Hipersensibilidade/imunologia , Imunoglobulina E/imunologia , Mastócitos/imunologia , Estômago/imunologia , Vagotomia , Imunidade Inata/imunologia , Imunidade nas Mucosas/imunologia , Células Th2/imunologia , Citocinas/imunologia , Leucotrienos/biossíntese , Leucotrienos/imunologia , Intestino Delgado/imunologiaRESUMO
Carbonaceous (C-type) asteroids1 are relics of the early Solar System that have preserved primitive materials since their formation approximately 4.6 billion years ago. They are probably analogues of carbonaceous chondrites2,3 and are essential for understanding planetary formation processes. However, their physical properties remain poorly known because carbonaceous chondrite meteoroids tend not to survive entry to Earth's atmosphere. Here we report on global one-rotation thermographic images of the C-type asteroid 162173 Ryugu, taken by the thermal infrared imager (TIR)4 onboard the spacecraft Hayabusa25, indicating that the asteroid's boulders and their surroundings have similar temperatures, with a derived thermal inertia of about 300 J m-2 s-0.5 K-1 (300 tiu). Contrary to predictions that the surface consists of regolith and dense boulders, this low thermal inertia suggests that the boulders are more porous than typical carbonaceous chondrites6 and that their surroundings are covered with porous fragments more than 10 centimetres in diameter. Close-up thermal images confirm the presence of such porous fragments and the flat diurnal temperature profiles suggest a strong surface roughness effect7,8. We also observed in the close-up thermal images boulders that are colder during the day, with thermal inertia exceeding 600 tiu, corresponding to dense boulders similar to typical carbonaceous chondrites6. These results constrain the formation history of Ryugu: the asteroid must be a rubble pile formed from impact fragments of a parent body with microporosity9 of approximately 30 to 50 per cent that experienced a low degree of consolidation. The dense boulders might have originated from the consolidated innermost region or they may have an exogenic origin. This high-porosity asteroid may link cosmic fluffy dust to dense celestial bodies10.
RESUMO
Microenvironment-based alterations in phenotypes of mast cells influence the susceptibility to anaphylaxis, yet the mechanisms underlying proper maturation of mast cells toward an anaphylaxis-sensitive phenotype are incompletely understood. Here we report that PLA2G3, a mammalian homolog of anaphylactic bee venom phospholipase A2, regulates this process. PLA2G3 secreted from mast cells is coupled with fibroblastic lipocalin-type PGD2 synthase (L-PGDS) to provide PGD2, which facilitates mast-cell maturation via PGD2 receptor DP1. Mice lacking PLA2G3, L-PGDS or DP1, mast cell-deficient mice reconstituted with PLA2G3-null or DP1-null mast cells, or mast cells cultured with L-PGDS-ablated fibroblasts exhibited impaired maturation and anaphylaxis of mast cells. Thus, we describe a lipid-driven PLA2G3-L-PGDS-DP1 loop that drives mast cell maturation.
Assuntos
Fosfolipases A2 do Grupo III/imunologia , Mastócitos/imunologia , Comunicação Parácrina/imunologia , Prostaglandina D2/imunologia , Receptores de Prostaglandina/imunologia , Animais , Western Blotting , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/imunologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Fosfolipases A2 do Grupo III/genética , Fosfolipases A2 do Grupo III/metabolismo , Humanos , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/imunologia , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/genética , Lipocalinas/imunologia , Lipocalinas/metabolismo , Mastócitos/metabolismo , Mastócitos/ultraestrutura , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Análise de Sequência com Séries de Oligonucleotídeos , Comunicação Parácrina/genética , Prostaglandina D2/metabolismo , Receptores de Prostaglandina/genética , Receptores de Prostaglandina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Gse1 is a component of the CoREST complex that acts as an H3K4 and H3K9 demethylase and regulates gene expression. Here, we examined the expression and role of Gse1 in mouse development. Gse1 is expressed in male and female germ cells and plays both maternal and zygotic roles. Thus, maternal deletion of Gse1 results in a high incidence of prenatal death, and zygotic deletion leads to embryonic lethality from embryonic day 12.5 (E12.5) and perinatal death. Gse1 is expressed in the junctional zone and the labyrinth of the developing placenta. Gse1 mutant (Gse1Δex3/Δex3) placenta begins to exhibit histological defects from E14.5, being deficient in MCT4+ syncytiotrophoblast II. The number of various cell types was largely maintained in the mutant placenta at E10.5, but several genes were upregulated in giant trophoblasts at E10.5. Placenta-specific deletion of Gse1 with Tat-Cre suggested that defects in Gse1Δex3/Δex3 embryos are due to placental function deficiency. These results suggest that Gse1 is required for placental development in mice, and in turn, is essential for embryonic development.
Assuntos
Placenta , Placentação , Camundongos , Gravidez , Feminino , Animais , Masculino , Desenvolvimento Embrionário/genética , TrofoblastosRESUMO
Dendritic cells (DCs) present foreign antigens to T cells via the major histocompatibility complex (MHC), thereby inducing acquired immune responses. ATP accumulates at sites of inflammation or in tumor tissues, which triggers local inflammatory responses. However, it remains to be clarified how ATP modulates the functions of DCs. In this study, we investigated the effects of extracellular ATP on mouse bone marrow-derived dendritic cells (BMDCs) as well as the potential for subsequent T cell activation. We found that high concentrations of ATP (1 mM) upregulated the cell surface expression levels of MHC-I, MHC-II, and co-stimulatory molecules CD80 and CD86 but not those of co-inhibitory molecules PD-L1 and PD-L2 in BMDCs. Increased surface expression of MHC-I, MHC-II, CD80, and CD86 was inhibited by a pan-P2 receptor antagonist. In addition, the upregulation of MHC-I and MHC-II expression was inhibited by an adenosine P1 receptor antagonist and by inhibitors of CD39 and CD73, which metabolize ATP to adenosine. These results suggest that adenosine is required for the ATP-induced upregulation of MHC-I and MHC-II. In the mixed leukocyte reaction assay, ATP-stimulated BMDCs activated CD4 and CD8T cells and induced interferon-γ (IFN-γ) production by these T cells. Collectively, these results suggest that high concentrations of extracellular ATP upregulate the expression of antigen-presenting and co-stimulatory molecules but not that of co-inhibitory molecules in BMDCs. Cooperative stimulation of ATP and its metabolite adenosine was required for the upregulation of MHC-I and MHC-II. These ATP-stimulated BMDCs induced the activation of IFN-γ-producing T cells upon antigen presentation.
Assuntos
Células Dendríticas , Linfócitos T , Camundongos , Animais , Apresentação de Antígeno , Ativação Linfocitária , Trifosfato de Adenosina/metabolismoRESUMO
Mouse models are vital for assessing risk from environmental carcinogens, including ionizing radiation, yet the interspecies difference in the dose response precludes direct application of experimental evidence to humans. Herein, we take a mathematical approach to delineate the mechanism underlying the human-mouse difference in radiation-related cancer risk. We used a multistage carcinogenesis model assuming a mutational action of radiation to analyze previous data on cancer mortality in the Japanese atomic bomb survivors and in lifespan mouse experiments. Theoretically, the model predicted that exposure will chronologically shift the age-related increase in cancer risk forward by a period corresponding to the time in which the spontaneous mutational process generates the same mutational burden as that the exposure generates. This model appropriately fitted both human and mouse data and suggested a linear dose response for the time shift. The effect per dose decreased with increasing age at exposure similarly between humans and mice on a per-lifespan basis (0.72- and 0.71-fold, respectively, for every tenth lifetime). The time shift per dose was larger by two orders of magnitude in humans (7.8 and 0.046 years per Gy for humans and mice, respectively, when exposed at ~35% of their lifetime). The difference was mostly explained by the two orders of magnitude difference in spontaneous somatic mutation rates between the species plus the species-independent radiation-induced mutation rate. Thus, the findings delineate the mechanism underlying the interspecies difference in radiation-associated cancer mortality and may lead to the use of experimental evidence for risk prediction in humans.
Assuntos
Carcinogênese , Neoplasias Induzidas por Radiação , Animais , Camundongos , Neoplasias Induzidas por Radiação/mortalidade , Neoplasias Induzidas por Radiação/genética , Neoplasias Induzidas por Radiação/etiologia , Humanos , Carcinogênese/efeitos da radiação , Mutação , Relação Dose-Resposta à Radiação , Modelos Teóricos , Sobreviventes de Bombas Atômicas , Especificidade da Espécie , Radiação Ionizante , Feminino , MasculinoRESUMO
Mast cell stabilizers, including disodium cromoglycate (DSCG), were found to have potential as the agonists of an orphan G protein-coupled receptor, GPR35, although it remains to be determined whether GPR35 is expressed in mast cells and involved in suppression of mast cell degranulation. Our purpose in this study is to verify the expression of GPR35 in mast cells and to clarify how GPR35 modulates the degranulation. We explored the roles of GPR35 using an expression system, a mast cell line constitutively expressing rat GPR35, peritoneal mast cells, and bone marrow-derived cultured mast cells. Immediate allergic responses were assessed using the IgE-mediated passive cutaneous anaphylaxis (PCA) model. Various known GPR35 agonists, including DSCG and newly designed compounds, suppressed IgE-mediated degranulation. GPR35 was expressed in mature mast cells but not in immature bone marrow-derived cultured mast cells and the rat mast cell line. Degranulation induced by antigens was significantly downmodulated in the mast cell line stably expressing GPR35. A GPR35 agonist, zaprinast, induced a transient activation of RhoA and a transient decrease in the amount of filamentous actin. GPR35 agonists suppressed the PCA responses in the wild-type mice but not in the GPR35-/- mice. These findings suggest that GPR35 should prevent mast cells from undergoing degranulation induced by IgE-mediated antigen stimulation and be the primary target of mast cell stabilizers. SIGNIFICANCE STATEMENT: The agonists of an orphan G protein-coupled receptor, GPR35, including disodium cromoglycate, were found to suppress degranulation of rat and mouse mature mast cells, and their antiallergic effects were abrogated in the GPR35-/- mice, indicating that the primary target of mast cell stabilizers should be GPR35.
Assuntos
Cromolina Sódica , Estabilizadores de Mastócitos , Ratos , Camundongos , Animais , Cromolina Sódica/farmacologia , Estabilizadores de Mastócitos/farmacologia , Mastócitos , Receptores Acoplados a Proteínas G/metabolismo , Imunoglobulina E/metabolismo , Imunoglobulina E/farmacologia , Degranulação CelularRESUMO
Trophoblast stem cells (TSCs), derived from the trophectoderm of the blastocyst, are used as an in vitro model to reveal the mechanisms underlying placentation in mammals. In humans, suitable culture conditions for TSC derivation have recently been established. The established human TSCs (hTSCs) differentiate efficiently toward two trophoblast subtypes: syncytiotrophoblasts (STBs) and extravillous trophoblasts (EVTs). However, the efficiency of differentiation is lower in macaque TSCs than in hTSCs. Here, we demonstrate that the activation of Wnt signaling downregulated the expression of inhibitory G protein and induced trophoblastic lineage switching to the STB progenitor state. The treatment of macaque TSCs with a GSK-3 inhibitor, CHIR99021, upregulated STB progenitor markers and enhanced proliferation. Under the Wnt signaling-activated conditions, macaque TSCs effectively differentiated to STBs upon dbcAMP and forskolin treatment. RNA-seq analyses revealed the downregulation of inhibitory G protein, which may make macaque TSCs responsive to forskolin. Interestingly, this lineage switching appeared to be reversible as the macaque TSCs lost responsiveness to forskolin upon the removal of CHIR99021. The ability to regulate the direction of macaque TSC differentiation would be advantageous in elucidating the mechanisms underlying placentation in non-human primates.
RESUMO
BACKGROUND AND AIMS: Intrahepatic cholangiocarcinoma (ICC) is a deadly but poorly understood disease, and its treatment options are very limited. The aim of this study was to identify the molecular drivers of ICC and search for therapeutic targets. APPROACH AND RESULTS: We performed a Sleeping Beauty transposon-based in vivo insertional mutagenesis screen in liver-specific Pten -deficient mice and identified TNF receptor-related factor 3 ( Traf3 ) as the most significantly mutated gene in murine ICCs in a loss-of-function manner. Liver-specific Traf3 deletion caused marked cholangiocyte overgrowth and spontaneous development of ICC in Pten knockout and KrasG12D mutant mice. Hepatocyte-specific, but not cholangiocyte-specific, Traf3 -deficient and Pten -deficient mice recapitulated these phenotypes. Lineage tracing and single-cell RNA sequencing suggested that these ICCs were derived from hepatocytes through transdifferentiation. TRAF3 and PTEN inhibition induced a transdifferentiation-like phenotype of hepatocyte-lineage cells into proliferative cholangiocytes through NF-κB-inducing kinase (NIK) up-regulation in vitro. Intrahepatic NIK levels were elevated in liver-specific Traf3 -deficient and Pten -deficient mice, and NIK inhibition alleviated cholangiocyte overgrowth. In human ICCs, we identified an inverse correlation between TRAF3 and NIK expression, with low TRAF3 or high NIK expression associated with poor prognosis. Finally, we showed that NIK inhibition by a small molecule inhibitor or gene silencing suppressed the growth of multiple human ICC cells in vitro and ICC xenografts in vivo. CONCLUSIONS: TRAF3 inactivation promotes ICC development through NIK-mediated hepatocyte transdifferentiation. The oncogenic TRAF3-NIK axis may be a potential therapeutic target for ICC.
Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Camundongos , Animais , Transdução de Sinais/fisiologia , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/metabolismo , Transdiferenciação Celular , Hepatócitos/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Neoplasias dos Ductos Biliares/metabolismo , NF-kappa B/metabolismo , Quinase Induzida por NF-kappaBRESUMO
BACKGROUND AND AIMS: Immunotherapy has become the standard-of-care treatment for hepatocellular carcinoma (HCC), but its efficacy remains limited. To identify immunotherapy-susceptible HCC, we profiled the molecular abnormalities and tumor immune microenvironment (TIME) of rapidly increasing nonviral HCC. APPROACHES AND RESULTS: We performed RNA-seq of tumor tissues in 113 patients with nonviral HCC and cancer genome sequencing of 69 genes with recurrent genetic alterations reported in HCC. Unsupervised hierarchical clustering classified nonviral HCCs into three molecular classes (Class I, II, III), which stratified patient prognosis. Class I, with the poorest prognosis, was associated with TP53 mutations, whereas class III, with the best prognosis, was associated with cadherin-associated protein beta 1 (CTNNB1) mutations. Thirty-eight percent of nonviral HCC was defined as an immune class characterized by a high frequency of intratumoral steatosis and a low frequency of CTNNB1 mutations. Steatotic HCC, which accounts for 23% of nonviral HCC cases, presented an immune-enriched but immune-exhausted TIME characterized by T cell exhaustion, M2 macrophage and cancer-associated fibroblast (CAF) infiltration, high PD-L1 expression, and TGF-ß signaling activation. Spatial transcriptome analysis suggested that M2 macrophages and CAFs may be in close proximity to exhausted CD8+ T cells in steatotic HCC. An in vitro study showed that palmitic acid-induced lipid accumulation in HCC cells upregulated PD-L1 expression and promoted immunosuppressive phenotypes of cocultured macrophages and fibroblasts. Patients with steatotic HCC, confirmed by chemical-shift MR imaging, had significantly longer PFS with combined immunotherapy using anti-PD-L1 and anti-VEGF antibodies. CONCLUSIONS: Multiomics stratified nonviral HCCs according to prognosis or TIME. We identified the link between intratumoral steatosis and immune-exhausted immunotherapy-susceptible TIME.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Multiômica , Prognóstico , Linfócitos T CD8-Positivos , Microambiente TumoralRESUMO
Maturity-Onset Diabetes of the Young (MODY) is a diabetes mellitus subtype caused by a single gene. The detection rate of the responsible gene is 27% in the United Kingdom, indicating that the causative gene remains unknown in the majority of clinically diagnosed MODY cases. To improve the detection rate, we applied comprehensive genetic testing using whole exome sequencing (WES) followed by Multiplex Ligation-dependent Probe Amplification (MLPA) and functional analyses. Twenty-one unrelated Japanese participants with MODY were enrolled in the study. To detect copy number variations (CNVs), WES was performed first, followed by MLPA analysis for participants who were negative on the basis of WES. Undetermined variants were analyzed according to their functional properties. WES identified 7 pathogenic and 3 novel likely pathogenic variants in the 21 participants. Functional analyses revealed that 1 in 3 variants was pathogenic. MLPA analysis applied to the remaining 13 undetermined samples identified 4 cases with pathogenic CNVs: 3 in HNF4A and 1 in HNF1B. Pathogenic variants were identified in 12 participants (12/21, 57.1%) - relatively high rate reported to date. Notably, one-third of the participants had CNVs in HNF4A or HNF1B, indicating a limitation of WES-only screening.
Assuntos
Variações do Número de Cópias de DNA , Diabetes Mellitus Tipo 2 , Sequenciamento do Exoma , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/epidemiologia , População do Leste Asiático/genética , Predisposição Genética para Doença , Testes Genéticos , Fator 1-beta Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/genética , Japão/epidemiologia , Reação em Cadeia da Polimerase Multiplex , Mutação , PrevalênciaRESUMO
BACKGROUND AND AIMS: Because bronchoscopy is an invasive procedure, sedatives and analgesics are commonly administered, which may suppress the patient's spontaneous breathing and can lead to hypoventilation and hypoxemia. Few reports exist on the dynamic monitoring of oxygenation and ventilation during bronchoscopy. This study aimed to prospectively monitor and evaluate oxygenation and ventilation during bronchoscopy using transcutaneous arterial blood oxygen saturation and carbon dioxide. METHODS: We included patients who required pathological diagnosis using fluoroscopic bronchoscopy at our hospital between March 2021 and April 2022. Midazolam was intravenously administered to all patients as a sedative during bronchoscopy, and fentanyl was administered in addition to midazolam when necessary. A transcutaneous blood gas monitor was used to measure dynamic changes, including arterial blood partial pressure of carbon dioxide (tcPCO2), transcutaneous arterial blood oxygen saturation (SpO2), pulse rate, and perfusion index during bronchoscopy. Quantitative data of tcPCO2 and SpO2 were presented as mean ± standard deviation (SD) (min-max), while the quantitative data of midazolam plus fentanyl and midazolam alone were compared. Similarly, data on sex, smoking history, and body mass index were compared. Subgroup comparisons of the difference (Δ value) between baseline tcPCO2 at the beginning of bronchoscopy and the maximum value of tcPCO2 during the examination were performed. RESULTS: Of the 117 included cases, consecutive measurements were performed in 113 cases, with a success rate of 96.6%. Transbronchial lung biopsy was performed in 100 cases, whereas transbronchial lung cryobiopsy was performed in 17 cases. Midazolam and fentanyl were used as anesthetics during bronchoscopy in 46 cases, whereas midazolam alone was used in 67 cases. The median Δ value in the midazolam plus fentanyl and midazolam alone groups was 8.10 and 4.00 mmHg, respectively, indicating a significant difference of p < 0.005. The mean ± standard deviation of tcPCO2 in the midazolam plus fentanyl and midazolam alone groups was 44.8 ± 7.83 and 40.6 ± 4.10 mmHg, respectively. The SpO2 in the midazolam plus fentanyl and midazolam alone groups was 94.4 ± 3.37 and 96.2 ± 2.61%, respectively, with a larger SD and greater variability in the midazolam plus fentanyl group. CONCLUSION: A transcutaneous blood gas monitor is non-invasive and can easily measure the dynamic transition of CO2. Furthermore, tcPCO2 can be used to evaluate the ventilatory status during bronchoscopy easily. A transcutaneous blood gas monitor may be useful to observe regarding respiratory depression during bronchoscopy, particularly when analgesics are used.
Assuntos
Monitorização Transcutânea dos Gases Sanguíneos , Broncoscopia , Dióxido de Carbono , Saturação de Oxigênio , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monitorização Transcutânea dos Gases Sanguíneos/métodos , Broncoscopia/métodos , Dióxido de Carbono/sangue , Fentanila/administração & dosagem , Hipnóticos e Sedativos/administração & dosagem , Midazolam/administração & dosagem , Oxigênio/sangue , Saturação de Oxigênio/fisiologia , Estudos Prospectivos , Idoso de 80 Anos ou maisRESUMO
AIM: Patients with chronic hepatitis B (CHB) remain at risk for hepatocellular carcinoma (HCC) even with nucleos(t)ide analog therapy. We evaluated risk factors for HCC development, including serum hepatitis B virus (HBV) RNA, hepatitis B core-related antigen level, and growth differentiation factor 15 (GDF15) level, a predictor of HCC development in patients with chronic hepatitis C. METHODS: We collected clinical data and stored serum from CHB patients without a history of HCC who were receiving nucleos(t)ide analog treatment for more than 1 year and whose HBV DNA level was less than 3.0 log IU/mL. We measured the serum levels of HBV RNA and GDF15. RESULTS: Among 242 CHB patients, 57 had detectable HBV RNA, and GDF15 was quantified in all patients. The median GDF15 level was 0.86 ng/mL. Cox proportional hazards analysis revealed that male sex and higher GDF15, FIB-4 index, alpha-fetoprotein and gamma-glutamyl transpeptidase were independent risk factors for HCC. The presence of HBV RNA above the lower limit of quantification was not a risk factor. When we set cutoff values based on the Youden index, the cumulative incidence of HCC was significantly higher in the male, AFP ≥3.0 ng/mL, gamma-glutamyl transpeptidase ≥22 U/L, FIB-4 index ≥1.93, and GDF-15 ≥1.17 ng/mL groups. In patients with no or more than three of these five risk factors, the 10-year HCC cumulative incidence rates were 0% and 41.0%, respectively. CONCLUSIONS: High serum GDF15 is an independent risk factor for the occurrence of HCC in CHB patients treated with nucleos(t)ide analogs.
RESUMO
Itch is a prominent symptom of atopic dermatitis (AD). However, the underlying mechanism remains complex and has not yet been fully elucidated. Mas-related G protein-coupled receptor A3 (MrgprA3) has emerged attention as a marker of primary sensory neurons that specifically transmit itch signals; however, its involvement in AD-related itch has not been extensively explored. In this study, we developed an AD itch mouse model by repeatedly applying house dust mite (HDM) extract to barrier-impaired skin via a special diet. To clarify the role of MrgprA3+ neurons in itch behavior in our AD model, we adopted a toxin receptor-mediated cell knockout strategy using transgenic mice in which the diphtheria toxin receptor (DTR) gene was placed under the control of the Mrgpra3 promoter. When the HDM extract was repeatedly applied to the face and back skin of special diet-fed mice, the mice exhibited AD-like dry and eczematous skin lesions accompanied by three types of itch-related behaviors:1) spontaneous scratching, 2) acute scratching after antigen challenge, and 3) light touch-evoked scratching. Upon diphtheria toxin administration, substantial depletion of DTR+/MrgprA3+ neurons was observed in the dorsal root ganglion. Ablation of MrgprA3+ neurons suppressed acute itch responses after HDM application, whereas spontaneous and touch-evoked itch behaviors remained unaffected. Our findings unequivocally demonstrate that in our AD model, MrgprA3+ primary sensory neurons mediate acute allergic itch responses, whereas these neurons are not involved in spontaneous itch or alloknesis.
Assuntos
Dermatite Atópica , Modelos Animais de Doenças , Prurido , Receptores Acoplados a Proteínas G , Células Receptoras Sensoriais , Animais , Prurido/imunologia , Dermatite Atópica/imunologia , Células Receptoras Sensoriais/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Camundongos , Camundongos Transgênicos , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Masculino , Toxina Diftérica , Camundongos Endogâmicos C57BL , Pyroglyphidae/imunologia , Pele/inervação , Pele/metabolismo , Pele/patologiaRESUMO
BACKGROUND: In western Yokohama, our hospital and primary care clinics manage adults with asthma via a coordinated care system. We investigated the changes in the fractional expired nitric oxide (FeNO), forced expiratory volume in 1 second (FEV1), and forced oscillation technique (FOT) parameters over 3 years in a cohort of patients in our collaborative system. METHODS: From 288 adults with well controlled asthma managed under the Yokohama Seibu Hospital coordinated care system between January 2009 and May 2018, we selected 99 subjects to undergo spirometry, FeNO and FOT testing over 3 years and analyzed the changes in these parameters. RESULTS: Of the 99 patients enrolled, 17 (17.2%) experienced at least one exacerbation (insufficiently controlled (IC)), whereas, 82 (82.8%) remained in well controlled during the 3-year study period. Of well-controlled patients, 54 patients (54.5%) met the criteria for clinical remission under treatment (CR); the remaining 28 patients did not meet the CR criteria (WC). There were no differences in FeNO, FEV1, or FOT parameters at baseline among the IC, WC, and CR groups. The levels of FEV1 decreased gradually, whereas the levels of FeNO decreased significantly over 3 years. The levels of percent predicted FEV1 (%FEV1) significantly increased. We also observed significant improvement in FOT parameters; reactance at 5 Hz (R5), resonant frequency (Fres), and integral of reactance up to the resonant frequency (AX). The CR group demonstrated significant relationships between the change in FeNO and the change in FEV1 and between the change in FEV1 and the change in FOT parameters. No significant correlations emerged in the IC or WC group. CONCLUSION: The decrease in FeNO and increase in %FEV1, we observed in all study participants suggest that the coordinated care system model benefits patients with asthma. Although it is difficult to predict at baseline which patients will experience an exacerbation, monitoring changes in FeNO and FEV1 is useful in managing patients with asthma. Furthermore, monitoring changes in R5, Fres, and AX via forced oscillation technique testing is useful for detecting airflow limitation.
Assuntos
Asma , Espirometria , Humanos , Masculino , Feminino , Asma/fisiopatologia , Asma/terapia , Asma/diagnóstico , Volume Expiratório Forçado , Pessoa de Meia-Idade , Adulto , Óxido Nítrico/análise , Óxido Nítrico/metabolismo , Idoso , Teste da Fração de Óxido Nítrico ExaladoRESUMO
Dental drilling sounds can induce anxiety in some patients. This study aimed to use functional magnetic resonance imaging (fMRI) to assess the relationship between dental fear and auditory stimuli. Thirty-four right-handed individuals (21 women and 13 men; average age, 31.2 years) were selected. The level of dental fear was assessed using the dental fear survey (DFS). Based on a threshold DFS score > 52, participants were categorized into two groups: dental fear (DF) group (n = 12) and control group (n = 22). Two types of stimuli were presented in a single session: dental and neutral sounds. Cerebral activation during the presentation of these sounds was evaluated using contrast-enhanced blood oxygenation level-dependent fMRI. In the DF group, dental sounds induced significantly stronger activation in the left inferior frontal gyrus and left caudate nucleus (one-sample t test, P < 0.001). In contrast, in the control group, significantly stronger activation was observed in the bilateral Heschl's gyri and left middle frontal gyrus (one-sample t test, P < 0.001). Additionally, a two-sample t test revealed that dental sounds induced a significantly stronger activation in the left caudate nucleus in the DF group than in the control group (P < 0.005). These findings suggest that the cerebral activation pattern in individuals with DF differs from that in controls. Increased activation of subcortical regions may be associated with sound memory during dental treatment.
Assuntos
Ansiedade ao Tratamento Odontológico , Imageamento por Ressonância Magnética , Humanos , Feminino , Masculino , Adulto , Estudos de Casos e Controles , Estimulação AcústicaRESUMO
PURPOSE: Sodium-glucose cotransporter 2 inhibitors (SGLT2is) are commonly prescribed anti-diabetic medications with various beneficial effects; however, they have also been associated with ketoacidosis. The aim of this study was to determine the incidence of SGLT2i-associated perioperative ketoacidosis (SAPKA) in surgical patients. METHODS: We conducted a multicenter, prospective cohort study across 16 centers in Japan, enrolling surgical patients with diabetes who were prescribed SGLT2is between January 2021 and August 2022. Patients were monitored until the third postoperative day to screen for SAPKA, defined as urine ketone positivity with a blood pH of < 7.30 and HCO3 level ≤ 18.0 mEq/L, excluding cases of respiratory acidosis. RESULTS: In total, 759 of the 762 evaluated patients were included in the final analysis. Among these, three patients (0.40%) had urine ketones with a blood pH of < 7.30; however, blood gas analysis revealed respiratory acidosis in all three, and none of them was considered to have SAPKA. The estimated incidence of SGLT2i-associated postoperative ketoacidosis was 0% (95% confidence interval, 0%-0.4%). CONCLUSIONS: The observed incidence of SAPKA in our general surgical population was lower than expected. However, given that the study was observational in nature, interpretation of study results warrants careful considerations for biases.
Assuntos
Complicações Pós-Operatórias , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos , Estudos Prospectivos , Masculino , Feminino , Pessoa de Meia-Idade , Incidência , Idoso , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/diagnóstico , Cetose/induzido quimicamente , Cetose/epidemiologia , Japão/epidemiologia , Estudos de Coortes , Adulto , Cetoacidose Diabética/epidemiologia , Cetoacidose Diabética/induzido quimicamenteRESUMO
During emerging adulthood, individuals' subjective well-being declines owing to challenges regarding identity, work, and romantic relationships. Although the relationships among personality traits, self-construal, and well-being have been examined, studies have focused on personal rather than relational subjective well-being. Furthermore, self-construal's moderating effect on the relationship between personality traits and subjective well-being remains unclear. Therefore, this study examined the relationships among the Big-five personality traits and subjective well-being (life satisfaction, happiness, and interdependent happiness) and the moderating effect of self-construal among 1548 Japanese emerging adults (Mage = 22.24, SD = 1.01). Regression analysis indicated that all aspects of subjective well-being were negatively associated with neuroticism and positively associated with extraversion, independent and interdependent self-construal. Further, agreeableness was positively associated with personal and relational well-being. Independent or interdependent self-construal can moderate the relationships between neuroticism, extraversion, and agreeableness and subjective well-being. Overall, these findings provide valuable insights for improving Japanese emerging adults' well-being.
Assuntos
Felicidade , Personalidade , Adulto , Humanos , Adulto Jovem , Neuroticismo , Análise de RegressãoRESUMO
The mouse placenta is composed of three different trophoblast layers that are occupied by particular trophoblast subtypes to maintain placental function and pregnancy. Accurate control of trophoblast differentiation is required for proper placental function; however, the molecular mechanisms underlying cell fate decisions in trophoblast stem cells remain poorly understood. Epidermal growth factor (EGF) signaling is involved in multiple biological processes including cell survival, proliferation, and differentiation. The effect of EGF on trophoblast function has been reported in various species; however, the role of EGF signaling in mouse trophoblast specification remains unclear. In this study, we aimed to elucidate the role of EGF signaling in mouse trophoblast differentiation using mouse trophoblast stem cells (mTSCs) in an in vitro culture system. EGF stimulation at the early stage of differentiation repressed mTSC differentiation into spongiotrophoblast cells (SpT). Gene deletion and inhibitor experiments showed that the effect of EGF exposure went through epidermal growth factor receptor (Egfr) activity in mTSCs. EGF stimuli induced acute downstream activation of MAPK/ERK, PI3K/AKT, and JNK pathways, and inhibition of the MAPK/ERK pathway, but not others, alleviated EGF-mediated repression of SpT differentiation. Moreover, expression of Mash2, a master regulator of SpT differentiation, was repressed by EGF stimulation, and MAPK/ERK inhibition counteracted this repression. The Mash2 overexpression recovered SpT marker expression, indicating that the decrease in Mash2 expression was due to abnormal SpT differentiation in EGF-treated mTSCs. Our findings suggest that the EGF-Egfr-MAPK/ERK-Mash2 axis is a core regulatory mechanism for the EGF-mediated repression of SpT differentiation.