Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Soft Matter ; 19(15): 2755-2763, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36987782

RESUMO

Water-insoluble DNA complexes are suitable for producing free-standing DNA films due to their low water sensitivity, which prevents their rapid degradation in aqueous environments. Here, we proposed two types of free-standing films that exhibit low dissolution rates in water: low molecular weight chitosan (LCS)-DNA films and phosphatidylcholine (PC)-cetyltrimethylammonium (CTMA)-DNA films. The structure and binding characteristics of the LCS-DNA and PC-CTMA-DNA complexes were investigated with UV-Vis spectroscopy and via the fluorescent characteristics of daunorubicin bound to them. A simple drop-casting method was then adopted for both complexes to fabricate free-standing films. An increase in antioxidant activity and water-resistance of the LCS-DNA DNA film was observed when the molar ratio of LCS to DNA was increased, but the dissolution rate of the LCS-DNA film was also dependent on the ionic strength of the dissolving solution. Fourteen days were required to dissolve the LCS-DNA film in deionized water, whereas immediate dissolution was observed in 1× phosphate-buffered saline (PBS). Deformation of the PC-CTMA-DNA film was accelerated by H2O2, such that the PC-CTMA-DNA film was degraded after 21 days of immersion in 1× PBS with H2O2. Due to the low dissolution rate in water and antioxidant activity, the free-standing LCS-DNA film should be able to store and protect embedded clinical materials, such as proteins and intercalating drugs, from moisture and enable localized delivery of treatments to designated sites. Also, the free-standing PC-CTMA-DNA film could be a biocompatible candidate for use as a membrane or sensor for detecting the levels of reactive oxygen species.


Assuntos
Quitosana , Água , Água/química , Antioxidantes , Peróxido de Hidrogênio , Quitosana/química , Cetrimônio , DNA/química
2.
Nanotechnology ; 34(24)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36881902

RESUMO

Construction of various nanostructures with nanometre-scale precision through various DNA building blocks depends upon self-assembly, base-pair complementarity and sequence programmability. During annealing, unit tiles are formed by the complementarity of base pairs in each strand. Enhancement of growth of target lattices is expected if seed lattices (i.e. boundaries for growth of target lattices) are initially present in a test tube during annealing. Although most processes for annealing DNA nanostructures adopt a one-step high temperature method, multi-step annealing provides certain advantages such as reusability of unit tiles and tuneability of lattice formation. We can construct target lattices effectively (through multi-step annealing) and efficiently (via boundaries) by multi-step annealing and combining boundaries. Here, we construct efficient boundaries made of single, double, and triple double-crossover DNA tiles for growth of DNA lattices. Two unit double-crossover DNA tile-based lattices and copy-logic implemented algorithmic lattices were introduced to test the growth of target lattices on boundaries. We used multi-step annealing to tune the formation of DNA crystals during fabrication of DNA crystals comprised of boundaries and target lattices. The formation of target DNA lattices was visualized using atomic force microscopy (AFM). The borders between boundaries and lattices in a single crystal were clearly differentiable from AFM images. Our method provides way to construct various types of lattices in a single crystal, which might generate various patterns and enhance the information capacity in a given crystal.


Assuntos
DNA , Nanoestruturas , Conformação de Ácido Nucleico , DNA/química , Microscopia de Força Atômica , Nanoestruturas/química , Nanotecnologia/métodos
3.
Nanotechnology ; 31(8): 085604, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31689698

RESUMO

Deoxyribonucleic acid (DNA) is effective for molecular computation because of its high energy efficiency, high information density, and parallel-computing capability. Although logic implementation using DNA molecules is well established in binary systems (base value of 2) via decoration of hairpin structures on DNA duplexes, systems with base values of >2 (e.g. 3, corresponding to a ternary system) are rarely discussed owing to the complexity of the design and the experimental difficulties with DNA. In this study, DNA rule tiles that participate to form algorithmic DNA crystals exhibiting the ternary representation of an N (N = 1 or 2)-input and 1-output algorithmic assembly are conceived. The number of possible algorithmic patterns is [Formula: see text] in the ternary N-input and 1-output logic gate. Thus, the number of possible rules is 27 (=33) for a 1-input and 1-output algorithmic logic gate and 19 638 (=39) for a 2-input and 1-output algorithmic logic gate. Ternary bit information (i.e. 0-, 1-, and 2-bit) is encoded on rule tiles without hairpins and with short and long hairpins. We construct converged, line-like, alternating, and commutative patterns by implementing specific rules (TR00, TR05, TR07, and TR15, respectively) for the 1-input and 1-output gate and an ascending line-like pattern (with the rule of TR3785) for the 2-input and 1-output gate. Specific patterns generated on ternary-representing rule-embedded algorithmic DNA crystals are visualized via atomic force microscopy, and the errors during the growth of the crystals are analyzed (average error rates obtained for all experimental data are <4%). Our method can easily be extended to a system having base values of >3.

4.
Int J Mol Sci ; 19(7)2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29954152

RESUMO

In order to incorporate functionalization into synthesized DNA nanostructures, enhance their production yield, and utilize them in various applications, it is necessary to study their physical stabilities and dynamic characteristics. Although simulation-based analysis used for DNA nanostructures provides important clues to explain their self-assembly mechanism, structural function, and intrinsic dynamic characteristics, few studies have focused on the simulation of DNA supramolecular structures due to the structural complexity and high computational cost. Here, we demonstrated the feasibility of using normal mode analysis for relatively complex DNA structures with larger molecular weights, i.e., finite-size DNA 2D rings and 3D buckyball structures. The normal mode analysis was carried out using the mass-weighted chemical elastic network model (MWCENM) and the symmetry-constrained elastic network model (SCENM), both of which are precise and efficient modeling methodologies. MWCENM considers both the weight of the nucleotides and the chemical bonds between atoms, and SCENM can obtain mode shapes of a whole structure by using only a repeated unit and its connectivity with neighboring units. Our results show the intrinsic vibrational features of DNA ring structures, which experience inner/outer circle and bridge motions, as well as DNA buckyball structures having overall breathing and local breathing motions. These could be used as the fundamental basis for designing and constructing more complicated DNA nanostructures.


Assuntos
DNA/química , Nanoestruturas/química , Nanotecnologia/métodos , Conformação de Ácido Nucleico
5.
Adv Mater ; : e2403071, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38779945

RESUMO

This study develops two deoxyribonucleic acid (DNA) lossy compression models, Models A and B, to encode grayscale images into DNA sequences, enhance information density, and enable high-fidelity image recovery. These models, distinguished by their handling of pixel domains and interpolation methods, offer a novel approach to data storage for DNA. Model A processes pixels in overlapped domains using linear interpolation (LI), whereas Model B uses non-overlapped domains with nearest-neighbor interpolation (NNI). Through a comparative analysis with Joint Photographic Experts Group (JPEG) compression, the DNA lossy compression models demonstrate competitive advantages in terms of information density and image quality restoration. The application of these models to the Modified National Institute of Standards and Technology (MNIST) dataset reveals their efficiency and the recognizability of decompressed images, which is validated by convolutional neural network (CNN) performance. In particular, Model B2, a version of Model B, emerges as an effective method for balancing high information density (surpassing over 20 times the typical densities of two bits per nucleotide) with reasonably good image quality. These findings highlight the potential of DNA-based data storage systems for high-density and efficient compression, indicating a promising future for biological data storage solutions.

6.
ACS Biomater Sci Eng ; 9(2): 608-616, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36595627

RESUMO

Thanks to its remarkable properties of self-assembly and molecular recognition, DNA can be used in the construction of various dimensional nanostructures to serve as templates for decorating nanomaterials with nanometer-scale precision. Accordingly, this study discusses a design strategy for fabricating such multidimensional DNA nanostructures made of simple C-motifs. One-dimensional (1D) honeycomb-like tubes (1HTs) and two-dimensional (2D) honeycomb-like lattices (2HLs) were constructed using a C-motif with an arm length of 14 nucleotides (nt) at an angle of 240° along the counterclockwise direction. We designed and fabricated four different types of 1HTs and three different 2HLs. The study used atomic force microscopy to characterize the distinct topologies of the 1D and 2D DNA nanostructures (i.e., 1HTs and 2HLs, respectively). The width deviation of the 1HTs and height suppression percentage of the 2HLs were calculated and discussed. Our study can be provided to construct various dimensional DNA nanostructures easily with high efficiency.


Assuntos
Nanoestruturas , Conformação de Ácido Nucleico , Nanoestruturas/química , DNA/química , Microscopia de Força Atômica
7.
ACS Omega ; 7(1): 176-186, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35036689

RESUMO

Prion protein aggregation is known to be modulated by macromolecules including nucleic acids. To clarify the role of nucleic acids in PrP pathology, we investigated the interaction between nucleic acids and the prion peptide (PrP)-a synthetic prion protein model peptide resembling a portion of the human prion protein in structure and function spanning amino acid residues 106-126. We used synthetic DNA lattices and natural DNA duplexes extracted from salmon (sDNA) bound with PrP and studied their interaction using distinct physical measurements. The formation of DNA lattices with PrP was visualized by atomic force microscopy (AFM) to investigate the influence of the PrP. PrP inhibited the growth of the double-crossover (DX) lattices significantly compared to the control peptide (CoP). We also conducted optical measurements such as ultraviolet-visible (UV-Vis), circular dichroism (CD), and Fourier transform infrared (FTIR) spectroscopies to validate the interaction between PrP and DNA immediately (D0) and after a 30-day incubation (D30) period. UV-Vis spectra showed variation in the absorbance intensities, specific for the binding of CoP and PrP to DNA. The CD analysis revealed the presence of various secondary structures, such as α-helices and ß-sheets, in PrP- and PrP-bound sDNA complexes. The PrP-sDNA interaction was confirmed using FTIR by the change and shift of the absorption peak intensity and the alteration of PrP secondary structures in the presence of DNA. The cytotoxic effects of the PrP-bound sDNA complexes were assessed by a cytotoxicity assay in human neuroblastoma cells in culture. It confirmed that PrP with sDNA was less cytotoxic than CoP. This study provides new applications for DNA molecules by investigating their effect in complex with aggregated proteins. Our study unequivocally showed the beneficial effect of the interaction between DNA and the pathological prion protein. It therefore provides valuable information to exploit this effect in the development of potential therapeutics. Moreover, our work might serve as a basis for further studies investigating the role of DNA interactions with other amyloidogenic proteins.

8.
ACS Appl Bio Mater ; 5(1): 97-104, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35014830

RESUMO

Multiple models and simulations have been proposed and performed to understand the mechanism of the various pattern formations existing in nature. However, the logical implementation of those patterns through efficient building blocks such as nanomaterials and biological molecules is rarely discussed. This study adopts a cellular automata model to generate simulation patterns (SPs) and experimental patterns (EPs) obtained from DNA lattices similar to the discrete horizontal brown-color line-like patterns on the bark of the Zelkova serrata tree, known as lenticels [observation patterns (OPs)]. SPs and EPs are generated through the implementation of six representative rules (i.e., R004, R105, R108, R110, R126, and R218) in three-input/one-output algorithmic logic gates. The EPs obtained through DNA algorithmic self-assembly are visualized by atomic force microscopy. Three different modules (A, B, and C) are introduced to analyze the similarities between the SPs, EPs, and OPs of Zelkova serrata lenticels. Each module has unique configurations with specific orientations allowing the calculation of the deviation of the SPs and the EPs with respect to the OPs within each module. The findings show that both the SP and the EP generated under R105 and R126 and analyzed with module B provide a higher similarity of Zelkova serrata lenticel-like patterns than the other four rules. This study provides a perspective regarding the use of DNA algorithmic self-assembly for the construction of various complex natural patterns.


Assuntos
DNA , Ulmaceae , Simulação por Computador , DNA/genética , Lógica , Microscopia de Força Atômica
9.
Colloids Surf B Biointerfaces ; 211: 112291, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34954515

RESUMO

The scaffolding of deoxyribonucleic acid (DNA) makes DNA molecules effective templates for hosting various types of nanomaterials. Recently, electrospun fibres formed by a variety of polymers have begun to see use in a number of applications, such as filtration in energy applications, insulation in thermodynamics and protein scaffolding in biomedicine. In this study, we constructed electrospun fibres and thin films made of DNA and cetyltrimethylammonium chloride (CTMA)-modified DNA (CDNA) embedded with dyes, organic light-emitting materials (OLEMs), and gold nanorods (GNRs). These materials provide significant advantages, including selectivity of dimensionality, solubility in organic and inorganic solvents, and functionality enhancement. In addition, coaxial fibres made of CDNA were constructed to demonstrate the feasibility of constructing relatively complex fibres with an electrospinner. To determine the basic physical characteristics of the fibres and thin films containing GNRs and OLEMs, we conducted current measurements, photoluminescence (PL) measurements, X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible (UV-Vis) spectroscopy. The currents in DNA and CDNA were found to exhibit Ohmic behaviour, while the PL emission could be controlled by OLEMs. In addition, the XPS provided the chemical configuration of samples, and the UV-Vis spectra revealed the plasmon resonance of GNR. Due to their simple fabrication and enhanced functionality, these DNA and CDNA fibres and thin films could be used in various devices (e.g., filters or blocking layers) and sensors (e.g., gas detectors and bio sensors) in a number of industries.


Assuntos
Ouro , Nanotubos , Cetrimônio , DNA/química , Ouro/química , Espectroscopia Fotoeletrônica
10.
ACS Omega ; 7(30): 26514-26522, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35936484

RESUMO

Using sequence programmability and the characteristics of self-assembly, DNA has been utilized in the construction of various nanostructures and the placement of specific patterns on lattices. Even though many complex structures and patterns formed by DNA assembly have been reported, the fabrication of multi-domain patterns in a single lattice has rarely been discussed. Multi-domains possessing specifically designed patterns in a single lattice provide the possibility to generate multiple patterns that enhance the pattern density in a given single lattice. Here, we introduce boundaries to construct double- and quadruple-domains with specific patterns in a single lattice and verify them with atomic force microscopy. ON, OFF, and ST (stripe) patterns on a lattice are made of DNA tiles with hairpins (ON), without hairpins (OFF), and alternating DNA tiles without and with hairpins (formed as a stripe, ST). For double- and quadruple-domain lattices, linear and cross boundaries were designed to fabricate two (e.g., ON and OFF, ON and ST, and OFF and ST) and four (OFF, ST, OFF, and ON) different types of patterns in single lattices, respectively. In double-domain lattices, each linear boundary is placed between two different domains. Similarly, four linear boundaries connected with a seed tile (i.e., a cross boundary) can separate four domains in a single lattice in quadruple-domain lattices. Due to the presence of boundaries, the pattern growth directions are different in each domain. The experimentally obtained multi-domain patterns agree well with our design. Lastly, we propose the possibility of the construction of a hexadomain lattice through the mapping from hexagonal to square grids converted by using an axial coordinate system. By proposing a hexadomain lattice design, we anticipate the possibility to extend to higher numbers of multi-domains in a single lattice, thereby further increasing the information density in a given lattice.

11.
ACS Appl Bio Mater ; 5(6): 2812-2818, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35543024

RESUMO

Recently, 3D printing has provided opportunities for designing complex structures with ease. These printed structures can serve as molds for complex materials such as DNA and cetyltrimethylammonium chloride (CTMA)-modified DNA that have easily tunable functionalities via the embedding of various nanomaterials such as ions, nanoparticles, fluorophores, and proteins. Herein, we develop a simple and efficient method for constructing DNA flat and curved films containing water-soluble/thermochromatic dyes and di/trivalent ions and CTMA-modified DNA films embedded with organic light-emitting molecules (OLEM) with the aid of 2D/3D frames made by a 3D printer. We study the Raman spectra, current, and resistance of Cu2+-doped and Tb3+-doped DNA films and the photoluminescence of OLEM-embedded CTMA-modified DNA films to better understand the optoelectric characteristics of the samples. Compared to pristine DNA, ion-doped DNA films show noticeable variation of Raman peak intensities, which might be due to the interaction between the ion and phosphate backbone of DNA and the intercalation of ions in DNA base pairs. As expected, ion-doped DNA films show an increase of current with an increase in bias voltage. Because of the presence of metallic ions, DNA films with embedded ions showed relatively larger current than pristine DNA. The photoluminescent emission peaks of CTMA-modified DNA films with OLEMRed, OLEMGreen, and OLEMBlue were obtained at the wavelengths of 610, 515, and 469 nm, respectively. Finally, CIE color coordinates produced from CTMA-modified DNA films with different OLEM color types were plotted in color space. It may be feasible to produce multilayered DNA films as well. If so, multilayered DNA films embedded with different color dyes, ions, fluorescent materials, nanoparticles, proteins, and drug molecules could be used to realize multifunctional physical devices such as energy harvesting and chemo-bio sensors in the near future.


Assuntos
DNA , Nanoestruturas , Cetrimônio , Corantes , DNA/química , Íons , Nanoestruturas/química
12.
ACS Omega ; 6(41): 27038-27044, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34693123

RESUMO

Nature manifests diverse and complicated patterns through efficient physical, chemical, and biological processes. One of the approaches to generate complex patterns, as well as simple patterns, is the use of the cellular automata algorithm. However, there are certain limitations to produce such patterns experimentally due to the difficulty of finding candidate programmable building blocks. Here, we demonstrated the feasibility of generating an ocellated lizard skin-like pattern by simulation considering the probabilistic occurrence of cells and constructed the simulation results on DNA lattices via bottom-up self-assembly. To understand the similarity between the simulated pattern (SP) and the observed pattern (OP) of lizard skin, a unique configuration scheme (unit configuration was composed of 7 cells) was conceived. SPs were generated through a computer with a controlling population of gray and black cells in a given pattern. Experimental patterns (EPs) on DNA lattices, consisting of double-crossover (DX) tiles without and with protruding hairpins, were fabricated and verified through atomic force microscopy (AFM). For analyzing the similarity of the patterns, we introduced deviation of the average configuration occurrence for SP and EP with respect to OP, i.e., σα(SO) and σα(EO). The configuration and deviation provide characteristic information of patterns. We recognized that the minimum values of <σα(SO)> and <σα(EO)> occurred when 50% (55%) of black cells in given SPs (DX tiles with hairpins in given EPs) appeared to be most similar to the OP. Our study provides a novel platform for the applicability of DNA molecules to systematically demonstrate other naturally existing complex patterns or processes with ease.

13.
Nanoscale ; 13(46): 19376-19384, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34812465

RESUMO

Target-oriented cellular automata with computation are the primary challenge in the field of DNA algorithmic self-assembly in connection with specific rules. We investigate the feasibility of using the principle of cellular automata for mathematical subjects by using specific logic gates that can be implemented into DNA building blocks. Here, we connect the following five representative elementary functions: (i) enumeration of multiples of 2, 3, and 4 (demonstrated via R094, R062, and R190 in 3-input/1-output logic rules); (ii) the remainder of 0 and 1 (R132); (iii) powers of 2 (R129); (iv) ceiling function for n/2 and n/4 (R152 and R144); and (v) analogous pattern of annihilation (R184) to DNA algorithmic patterns formed by specific rules. After designing the abstract building blocks and simulating the generation of algorithmic lattices, we conducted an experiment as follows: designing of DNA tiles with specific sticky ends, construction of DNA lattices via a two-step annealing method, and verification of expected algorithmic patterns on a given DNA lattice using an atomic force microscope (AFM). We observed representative patterns, such as horizontal and diagonal stripes and embedded triangles, on the given algorithmic lattices. The average error rates of individual rules are in the range of 8.8% (R184) to 11.9% (R062), and the average error rate for all the rules was 10.6%. Interpretation of elementary functions demonstrated through DNA algorithmic patterns could be extended to more complicated functions, which may lead to new insights for achieving the final answers of functions with experimentally obtained patterns.


Assuntos
Algoritmos , Autômato Celular , DNA , Humanos , Lógica
14.
ACS Nano ; 14(5): 5260-5267, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32159938

RESUMO

Owing to its high information density, energy efficiency, and massive parallelism, DNA computing has undergone several advances and made significant contributions to nanotechnology. Notably, arithmetic calculations implemented by multiple logic gates such as adders and subtractors have received much attention because of their well-established logic algorithms and feasibility of experimental implementation. Although small molecules have been used to implement these computations, a DNA tile-based calculator has been rarely addressed owing to complexity of rule design and experimental challenges for direct verification. Here, we construct a DNA-based calculator with three types of building blocks (propagator, connector, and solution tiles) to perform addition and subtraction operations through algorithmic self-assembly. An atomic force microscope is used to verify the solutions. Our method provides a potential platform for the construction of various types of DNA algorithmic crystals (such as flip-flops, encoders, and multiplexers) by embedding multiple logic gate operations in the DNA base sequences.


Assuntos
DNA , Nanotecnologia , Algoritmos , Sequência de Bases , DNA/genética , Lógica
15.
Sci Rep ; 9(1): 2252, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30783171

RESUMO

Numerical simulation (e.g. Monte Carlo simulation) is an efficient computational algorithm establishing an integral part in science to understand complex physical and biological phenomena related with stochastic problems. Aside from the typical numerical simulation applications, studies calculating numerical constants in mathematics, and estimation of growth behavior via a non-conventional self-assembly in connection with DNA nanotechnology, open a novel perspective to DNA related to computational physics. Here, a method to calculate the numerical value of π, and way to evaluate possible paths of self-avoiding walk with the aid of Monte Carlo simulation, are addressed. Additionally, experimentally obtained variation of the π as functions of DNA concentration and the total number of trials, and the behaviour of self-avoiding random DNA lattice growth evaluated through number of growth steps, are discussed. From observing experimental calculations of π (πexp) obtained by double crossover DNA lattices and DNA rings, fluctuation of πexp tends to decrease as either DNA concentration or the number of trials increases. Based upon experimental data of self-avoiding random lattices grown by the three-point star DNA motifs, various lattice configurations are examined and analyzed. This new kind of study inculcates a novel perspective for DNA nanostructures related to computational physics and provides clues to solve analytically intractable problems.


Assuntos
DNA/química , Modelos Químicos , Nanoestruturas/química , Conformação de Ácido Nucleico
16.
ACS Biomater Sci Eng ; 4(10): 3617-3623, 2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33450799

RESUMO

The ultimate goal of DNA computing is to store information at higher density and solve complex problems with less computational time and minimal error. Most algorithmic DNA lattices have been constructed using the free-solution growth (FSG) annealing method, and hairpin-embedded DNA rule tiles have been introduced in most algorithmic implementations to differentiate 0- and 1-bit information. Here, we developed streptavidin (SA)-decorated algorithmic COPY (produced line-like patterns with biotinylated 1-bit rule tiles) and XOR (triangle-like patterns) lattices constructed by a substrate-assisted growth (SAG) method and FSG. SA decoration in algorithmic lattices provides an efficient platform for visualizing bit information, and the SAG method in algorithmic assembly offers full coverage of algorithmic lattices on a substrate with a relatively lower DNA concentration than previous methods. The algorithmic COPY and XOR lattices assembled with various ratios of 0- and 1-bit rule tiles were verified by atomic force microscopy. We found that even asymmetric DNA patterns produced by certain algorithmic logic gates could be easily constructed by SAG. Finally, we evaluated sorting factors and error rates of algorithmic COPY and XOR lattices to determine the bit population and quality of the algorithmic assembly. Because of the catalytic effect of the substrate, the sorting factor of algorithmic DX-DNA lattices did not greatly influence the specific rules (i.e., COPY and XOR logic gates) annealed by SAG. Additionally, we found that the overall error rates of algorithmic DX-DNA lattices prepared by the FSG and SAG methods were low, within the range of 1-3%. Hence, the self-assembled algorithmic patterns generated with DNA molecules may serve as a scaffold for molecular demultiplexing circuits and computing.

17.
Sci Rep ; 6: 33662, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27670157

RESUMO

Antibiotic resistant bacteria not only affect human health and but also threatens the safety in hospitals and among communities. However, the emergence of drug resistant bacteria is inevitable due to evolutionary selection as a consequence of indiscriminate antibiotic usage. Therefore, it is necessary to develop a novel strategy by which pathogenic bacteria can be eliminated without triggering resistance. We propose a novel magnetic nanoparticle-based physical treatment against pathogenic bacteria, which blocks biofilm formation and kills bacteria. In this approach, multiple drug resistant Staphylococcus aureus USA300 and uropathogenic Escherichia coli CFT073 are trapped to the positively charged magnetic core-shell nanoparticles (MCSNPs) by electrostatic interaction. All the trapped bacteria can be completely killed within 30 min owing to the loss of membrane potential and dysfunction of membrane-associated complexes when exposed to the radiofrequency current. These results indicate that MCSNP-based physical treatment can be an alternative antibacterial strategy without leading to antibiotic resistance, and can be used for many purposes including environmental and therapeutic applications.

18.
Nanoscale ; 7(15): 6492-7, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25807187

RESUMO

The Watson-Crick complementarity of DNA is exploited to construct periodically patterned nanostructures, and we herein demonstrate tile-based three dimensional (3D) multilayered DNA nanostructures that incorporate two design strategies: vertical growth and horizontal layer stacking with substrate-assisted growth. To this end, we have designed a periodically holed double-double crossover (DDX) template that can be used to examine the growth of the multilayer structures in both the vertical and horizontal directions. For vertical growth, the traditional 2D double crossover (DX) DNA lattice is seeded and grown vertically from periodic holes in the DDX template. For horizontal stacking, the DDX layers are stacked by binding the connector tiles between each layer. Although both types of multilayers exhibited successful formation, the observations with an atomic force microscope indicated that the DDX layer growth achieved with the horizontal stacking approach could be considered to be slightly better relative to the vertical growth of the DX layers in terms of uniformity, layer size, and discreteness. In particular, the newly designed DDX template layer provided a parallel arrangement between each domain with substrate-assisted growth. This kind of layer arrangement suggests a possibility of using our design scheme in the construction of other periodic structures.


Assuntos
DNA/química , Nanocompostos/química , Silicatos de Alumínio/química , Imageamento Tridimensional , Teste de Materiais , Microscopia de Força Atômica , Nanotecnologia , Conformação de Ácido Nucleico , Oligonucleotídeos/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa