Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(13): 2265-2278.e14, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35568034

RESUMO

Breakthrough infections by SARS-CoV-2 variants become the global challenge for pandemic control. Previously, we developed the protein subunit vaccine ZF2001 based on the dimeric receptor-binding domain (RBD) of prototype SARS-CoV-2. Here, we developed a chimeric RBD-dimer vaccine approach to adapt SARS-CoV-2 variants. A prototype-Beta chimeric RBD-dimer was first designed to adapt the resistant Beta variant. Compared with its homotypic forms, the chimeric vaccine elicited broader sera neutralization of variants and conferred better protection in mice. The protection of the chimeric vaccine was further verified in macaques. This approach was generalized to develop Delta-Omicron chimeric RBD-dimer to adapt the currently prevalent variants. Again, the chimeric vaccine elicited broader sera neutralization of SARS-CoV-2 variants and conferred better protection against challenge by either Delta or Omicron SARS-CoV-2 in mice. The chimeric approach is applicable for rapid updating of immunogens, and our data supported the use of variant-adapted multivalent vaccine against circulating and emerging variants.


Assuntos
COVID-19 , Vacinas , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Camundongos , SARS-CoV-2/genética
2.
Cell ; 185(11): 1974-1985.e12, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35512704

RESUMO

Comprehensive sequencing of patient tumors reveals genomic mutations across tumor types that enable tumorigenesis and progression. A subset of oncogenic driver mutations results in neomorphic activity where the mutant protein mediates functions not engaged by the parental molecule. Here, we identify prevalent variant-enabled neomorph-protein-protein interactions (neoPPI) with a quantitative high-throughput differential screening (qHT-dS) platform. The coupling of highly sensitive BRET biosensors with miniaturized coexpression in an ultra-HTS format allows large-scale monitoring of the interactions of wild-type and mutant variant counterparts with a library of cancer-associated proteins in live cells. The screening of 17,792 interactions with 2,172,864 data points revealed a landscape of gain of interactions encompassing both oncogenic and tumor suppressor mutations. For example, the recurrent BRAF V600E lesion mediates KEAP1 neoPPI, rewiring a BRAFV600E/KEAP1 signaling axis and creating collateral vulnerability to NQO1 substrates, offering a combination therapeutic strategy. Thus, cancer genomic alterations can create neo-interactions, informing variant-directed therapeutic approaches for precision medicine.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas B-raf , Carcinogênese , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Mutação , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo
3.
Cell ; 185(10): 1728-1744.e16, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35460644

RESUMO

As the emerging variants of SARS-CoV-2 continue to drive the worldwide pandemic, there is a constant demand for vaccines that offer more effective and broad-spectrum protection. Here, we report a circular RNA (circRNA) vaccine that elicited potent neutralizing antibodies and T cell responses by expressing the trimeric RBD of the spike protein, providing robust protection against SARS-CoV-2 in both mice and rhesus macaques. Notably, the circRNA vaccine enabled higher and more durable antigen production than the 1mΨ-modified mRNA vaccine and elicited a higher proportion of neutralizing antibodies and distinct Th1-skewed immune responses. Importantly, we found that the circRNARBD-Omicron vaccine induced effective neutralizing antibodies against the Omicron but not the Delta variant. In contrast, the circRNARBD-Delta vaccine protected against both Delta and Omicron or functioned as a booster after two doses of either native- or Delta-specific vaccination, making it a favorable choice against the current variants of concern (VOCs) of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Macaca mulatta , Camundongos , RNA Circular/genética , SARS-CoV-2/genética , Vacinas Sintéticas/genética , Vacinas de mRNA
4.
Mol Cell Proteomics ; 22(2): 100494, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36621768

RESUMO

AMP-activated protein kinase alpha 2 (AMPKα2) regulates energy metabolism, protein synthesis, and glucolipid metabolism myocardial cells. Ketone bodies produced by fatty acid ß-oxidation, especially ß-hydroxybutyrate, are fatty energy-supplying substances for the heart, brain, and other organs during fasting and long-term exercise. They also regulate metabolic signaling for multiple cellular functions. Lysine ß-hydroxybutyrylation (Kbhb) is a ß-hydroxybutyrate-mediated protein posttranslational modification. Histone Kbhb has been identified in yeast, mouse, and human cells. However, whether AMPK regulates protein Kbhb is yet unclear. Hence, the present study explored the changes in proteomics and Kbhb modification omics in the hearts of AMPKα2 knockout mice using a comprehensive quantitative proteomic analysis. Based on mass spectrometry (LC-MS/MS) analysis, the number of 1181 Kbhb modified sites in 455 proteins were quantified between AMPKα2 knockout mice and wildtype mice; 244 Kbhb sites in 142 proteins decreased or increased after AMPKα2 knockout (fold change >1.5 or <1/1.5, p < 0.05). The regulation of Kbhb sites in 26 key enzymes of fatty acid degradation and tricarboxylic acid cycle was noted in AMPKα2 knockout mouse cardiomyocytes. These findings, for the first time, identified proteomic features and Kbhb modification of cardiomyocytes after AMPKα2 knockout, suggesting that AMPKα2 regulates energy metabolism by modifying protein Kbhb.


Assuntos
Ácido 3-Hidroxibutírico , Proteínas Quinases Ativadas por AMP , Miocárdio , Animais , Humanos , Camundongos , Ácido 3-Hidroxibutírico/química , Ácido 3-Hidroxibutírico/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Cromatografia Líquida , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Proteômica , Espectrometria de Massas em Tandem
5.
Environ Res ; : 119537, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960362

RESUMO

To recover methane from waste activated sludge through anaerobic digestion (AD) is one promising alternative to achieve carbon neutrality for wastewater treatment plants. However, humic acids (HAs) are one of the major compositions in waste activated sludge, and their accumulation performs inhibition effects on AD. This study investigated the potentials of biochar (BC) in alleviating inhibition effects of HAs on AD. Results showed that although the accumulated HAs reduced methane yield by 9.37% compared to control, the highest methane yield, 132.6 mL CH4/g VSS, was obtained after adding BC, which was 45.9% higher than that in HA group. Mechanism analysis showed that BC promoted the activities of hydrolase such as protease and α-glucosidase, which were 69.7% and 29.7% higher than those in HA group, respectively. The conversion of short-chain fatty acids was accelerated. In addition, the evolution of electroactive microorganisms like Clostridium_sensu_stricto_13 and Methanosaeta were consistent with the activitiy of electron transfer and the content of cytochrome c. Furthermore, parts of HAs rather than all of them were adsorbed by BC, and the remaining free HAs and BC formed synergistic effects on methanogenesis, then both CO2 reduction and acetoclastic methanogenesis pathways were improved. The findings may provide some solutions to alleviate inhibition effects of HAs on AD.

6.
Environ Res ; 251(Pt 1): 118578, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38423498

RESUMO

Biochar produced from bio-wastes has been widely used to promote the performance of anaerobic digestion. Waste activated sludge (WAS) is considered as a kind of popular precursor for biochar preparation, but the abundant resources in WAS were neglected previously. In this study, the roles of biochar prepared from raw, pretreated, and fermented sludge on anaerobic digestion were investigated. That is, parts of carbon sources and nutrients like polysaccharides, proteins, and phosphorus were firstly recovered after sludge pretreatment or fermentation, and then the sludge residuals were used as raw material to prepare biochar. The methane yield improved by 22.1% with adding the biochar (AK-BC) prepared by sludge residual obtained from alkaline pretreatment. Mechanism study suggested that the characteristics of AK-BC like specific surface area and defect levels were updated. Then, the conversion performance of intermediate metabolites and electro-activities of extracellular polymeric substances were up-regulated. As a result, the activity of electron transfer was increased with the presence of AK-BC, with increase ratio of 21.4%. In addition, the electroactive microorganisms like Anaerolineaceae and Methanosaeta were enriched with the presence of AK-BC, and the potential direct interspecies electron transfer was possibly established. Moreover, both aceticlastic and CO2-reducing methanogenesis pathways were improved by up-regulating related enzymes. Therefore, the proposed strategy can not only obtain preferred biochar but also recover abundant resources like carbon source, nutrients, and bioenergy.


Assuntos
Carvão Vegetal , Metano , Esgotos , Carvão Vegetal/química , Esgotos/química , Esgotos/microbiologia , Anaerobiose , Metano/metabolismo , Eliminação de Resíduos Líquidos/métodos , Álcalis/química , Reatores Biológicos
7.
J Infect Dis ; 228(6): 723-733, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37279654

RESUMO

The emergence of novel variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the need to investigate alternative approaches to prevent infection and treat patients with coronavirus disease 2019. Here, we report the preclinical efficacy of NL-CVX1, a de novo decoy that blocks virus entry into cells by binding with nanomolar affinity and high specificity to the receptor-binding domain of the SARS-CoV-2 spike protein. Using a transgenic mouse model of SARS-CoV-2 infection, we showed that a single prophylactic intranasal dose of NL-CVX1 conferred complete protection from severe disease following SARS-CoV-2 infection. Multiple therapeutic administrations of NL-CVX1 also protected mice from succumbing to infection. Finally, we showed that infected mice treated with NL-CVX1 developed both anti-SARS-CoV-2 antibodies and memory T cells and were protected against reinfection a month after treatment. Overall, these observations suggest NL-CVX1 is a promising therapeutic candidate for preventing and treating severe SARS-CoV-2 infections.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/prevenção & controle , Camundongos Transgênicos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
8.
Chembiochem ; 24(8): e202300093, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36942862

RESUMO

This symposium is the third PSL (Paris Sciences & Lettres) Chemical Biology meeting (2016, 2019, 2023) held at Institut Curie. This initiative originally started at Institut de Chimie des Substances Naturelles (ICSN) in Gif-sur-Yvette (2013, 2014), under the directorship of Professor Max Malacria, with a strong focus on chemistry. It was then continued at the Institut Curie (2015) covering a larger scope, before becoming the official PSL Chemical Biology meeting. This latest edition was postponed twice for the reasons that we know. This has given us the opportunity to invite additional speakers of great standing. This year, Institut Curie hosted around 300 participants, including 220 on site and over 80 online. The pandemic has had, at least, the virtue of promoting online meetings, which we came to realize is not perfect but has its own merits. In particular, it enables those with restricted time and resources to take part in events and meetings, which can now accommodate unlimited participants. We apologize to all those who could not attend in person this time due to space limitation at Institut Curie.


Assuntos
Biologia , Humanos , Paris
9.
J Med Virol ; 95(6): e28846, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37282766

RESUMO

Since the first SARS-CoV-2 outbreak in late 2019, the SARS-CoV-2 genome has harbored multiple mutations, especially spike protein mutations. The currently fast-spreading Omicron variant that manifests without symptoms or with upper respiratory diseases has been recognized as a serious global public health problem. However, its pathological mechanism is largely unknown. In this work, rhesus macaques, hamsters, and BALB/C mice were employed as animal models to explore the pathogenesis of Omicron (B.1.1.529). Notably, Omicron (B.1.1.529) infected the nasal turbinates, tracheae, bronchi, and lungs of hamsters and BALB/C mice with higher viral loads than in those of rhesus macaques. Severe histopathological damage and inflammatory responses were observed in the lungs of Omicron (B.1.1.529)-infected animals. In addition, viral replication was found in multiple extrapulmonary organs. Results indicated that hamsters and BALB/c mice are potential animal models for studies on the development of drugs/vaccines and therapies for Omicron (B.1.1.529).


Assuntos
COVID-19 , SARS-CoV-2 , Camundongos , Animais , Cricetinae , Macaca mulatta , Camundongos Endogâmicos BALB C , Brônquios
10.
Eur Radiol ; 33(12): 8899-8911, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37470825

RESUMO

OBJECTIVE: This study aimed to evaluate the diagnostic performance of machine learning (ML)-based ultrasound (US) radiomics models for risk stratification of gallbladder (GB) masses. METHODS: We prospectively examined 640 pathologically confirmed GB masses obtained from 640 patients between August 2019 and October 2022 at four institutions. Radiomics features were extracted from grayscale US images and germane features were selected. Subsequently, 11 ML algorithms were separately used with the selected features to construct optimum US radiomics models for risk stratification of the GB masses. Furthermore, we compared the diagnostic performance of these models with the conventional US and contrast-enhanced US (CEUS) models. RESULTS: The optimal XGBoost-based US radiomics model for discriminating neoplastic from non-neoplastic GB lesions showed higher diagnostic performance in terms of areas under the curves (AUCs) than the conventional US model (0.822-0.853 vs. 0.642-0.706, p < 0.05) and potentially decreased unnecessary cholecystectomy rate in a speculative comparison with performing cholecystectomy for lesions sized over 10 mm (2.7-13.8% vs. 53.6-64.9%, p < 0.05) in the validation and test sets. The AUCs of the XGBoost-based US radiomics model for discriminating carcinomas from benign GB lesions were higher than the conventional US model (0.904-0.979 vs. 0.706-0.766, p < 0.05). The XGBoost-US radiomics model performed better than the CEUS model in discriminating GB carcinomas (AUC: 0.995 vs. 0.902, p = 0.011). CONCLUSIONS: The proposed ML-based US radiomics models possess the potential capacity for risk stratification of GB masses and may reduce the unnecessary cholecystectomy rate and use of CEUS. CLINICAL RELEVANCE STATEMENT: The machine learning-based ultrasound radiomics models have potential for risk stratification of gallbladder masses and may potentially reduce unnecessary cholecystectomies. KEY POINTS: • The XGBoost-based US radiomics models are useful for the risk stratification of GB masses. • The XGBoost-based US radiomics model is superior to the conventional US model for discriminating neoplastic from non-neoplastic GB lesions and may potentially decrease unnecessary cholecystectomy rate for lesions sized over 10 mm in comparison with the current consensus guideline. • The XGBoost-based US radiomics model could overmatch CEUS model in discriminating GB carcinomas from benign GB lesions.


Assuntos
Carcinoma , Doenças da Vesícula Biliar , Neoplasias da Vesícula Biliar , Humanos , Estudos Prospectivos , Meios de Contraste , Neoplasias da Vesícula Biliar/diagnóstico por imagem , Aprendizado de Máquina , Medição de Risco , Estudos Retrospectivos
11.
BMC Med Imaging ; 23(1): 26, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747143

RESUMO

PURPOSE: To verify whether radiomics techniques based on dual-modality ultrasound consisting of B-mode and superb microvascular imaging (SMI) can improve the accuracy of the differentiation between gallbladder neoplastic polyps and cholesterol polyps. METHODS: A total of 100 patients with 100 pathologically proven gallbladder polypoid lesions were enrolled in this retrospective study. Radiomics features on B-mode ultrasound and SMI of each lesion were extracted. Support vector machine was used to classify adenomas and cholesterol polyps of gallbladder for B-mode, SMI and dual-modality ultrasound, respectively, and the classification results were compared among the three groups. RESULTS: Six, eight and nine features were extracted for each lesion at B-mode ultrasound, SMI and dual-modality ultrasound, respectively. In dual-modality ultrasound model, the area under the receiver operating characteristic curve (AUC), classification accuracy, sensitivity, specificity, and Youden's index were 0.850 ± 0.090, 0.828 ± 0.097, 0.892 ± 0.144, 0.803 ± 0.149 and 0.695 ± 0.157, respectively. The AUC and Youden's index of the dual-modality model were higher than those of the B-mode model (p < 0.05). The AUC, accuracy, specificity and Youden's index of the dual-modality model were higher than those of the SMI model (p < 0.05). CONCLUSIONS: Radiomics analysis of the dual-modality ultrasound composed of B-mode and SMI can improve the accuracy of classification between gallbladder neoplastic polyps and cholesterol polyps.


Assuntos
Vesícula Biliar , Pólipos , Humanos , Projetos Piloto , Vesícula Biliar/diagnóstico por imagem , Vesícula Biliar/patologia , Diagnóstico Diferencial , Estudos Retrospectivos , Ultrassonografia/métodos , Pólipos/diagnóstico por imagem , Pólipos/patologia , Colesterol
12.
J Environ Manage ; 345: 118886, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37673008

RESUMO

Potassium ferrate (K2FeO4) has been extensively employed to promote short-chain fatty acids (SCFAs) production from anaerobic fermentation of waste activated sludge (WAS) because of its potent oxidizing property and formation of alkaline hydrolyzed products (potassium hydroxide, KOH and ferric hydroxide, Fe(OH)3). However, whether K2FeO4 actually works as dual functions of both an oxidizing agent and an alkalinity enhancer during the anaerobic fermentation process remains uncertain. This study aims to identify the contributions of hydrolyzed products of K2FeO4 on SCFAs production. The results showed that K2FeO4 did not execute dual functions of oxidization and alkalinity in promoting SCFAs production. The accumulation of SCFAs using K2FeO4 treatment (183 mg COD/g volatile suspended solids, VSS) was less than that using either KOH (192 mg COD/g VSS) or KOH & Fe(OH)3 (210 mg COD/g VSS). The mechanism analysis indicated that the synergistic effects caused by oxidization and alkalinity properties of K2FeO4 did not happen on solubilization, hydrolysis, and acidogenesis stages, and the inhibition effect caused by K2FeO4 on methanogenesis stage at the initial phase was more severe than that of its hydrolyzed products. It was also noted that the inhibition effects of K2FeO4 and its hydrolyzed products on the methanogenesis stage could be relieved during a longer sludge retention time, and the final methane yields using KOH or KOH & Fe(OH)3 treatment were higher than that using K2FeO4, further confirming that dual functions of K2FeO4 were not obtained. Therefore, K2FeO4 may not be an alternative strategy for enhancing the production of SCFAs from WAS compared to its alkaline hydrolyzed products. Regarding the strong oxidization property of K2FeO4, more attention could be turned to the fates of refractory organics in the anaerobic fermentation of WAS.


Assuntos
Compostos de Potássio , Esgotos , Ácidos Graxos Voláteis
13.
J Environ Manage ; 345: 118704, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37540982

RESUMO

Anaerobic digestion is widely employed for the treatment of waste activated sludge (WAS) due to its advantages like simultaneous energy recovery and sludge stabilization, promoting carbon-neutral operation of wastewater treatment plants. Natural zeolite, a low-cost and eco-friendly additive, has the potential to improve methane production from anaerobic digestion. This study investigated the effects of natural zeolite on anaerobic digestion when the substrate was WAS. It was found that methane production potential in response to natural zeolite was dosage-dependent. The optimal dosage was 0.1 g zeolite/g volatile suspended solids (VSS), with a methane yield of 181.89 ± 6.75 mL/g VSS, which increased by 20.1% compared to that of the control. Although the methane yields with other dosages of natural zeolite were higher than that of control, they were lesser than that with 0.1 g zeolite/g VSS. Natural zeolite affected transfer and conversion of proteins much more than polysaccharides in liquid phase and extracellular polymeric substances. In anaerobic digestion, natural zeolite had with little effects on WAS solubilization, while it improved hydrolysis, acidification, and methanogenesis. The dosages of natural zeolite did have significant effects on bacterial communities in biofilm rather than suspension, while the archaeal communities in biofilm and suspension were all greatly related to natural zeolite dosages. The developed biofilms promoted richness and functionality of microbial communities. The syntrophic metabolism relationships between methanogens and bacteria were improved, which was proved by selective enrichment of Methanosarcina, Syntrophomonas, and Petrimonas. The findings of this work provided some new solutions for promoting methane production from WAS, and the roles of natural zeolite in anaerobic digestion.


Assuntos
Esgotos , Zeolitas , Esgotos/química , Anaerobiose , Eliminação de Resíduos Líquidos , Bactérias/metabolismo , Metano , Biofilmes , Reatores Biológicos
14.
Arch Biochem Biophys ; 731: 109430, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36326546

RESUMO

Diabetic cardiovascular complication is a common systemic disease with high morbidity and mortality worldwide. We hypothesise that exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSCs-exos) can rescue these disorders and alleviate vascular remodeling in diabetes. Morphological, non-targeted metabolomics and 4D label-free proteomics techniques were used to analyze the aortas of db/m mice as normal control group (NCA), saline treated db/db mice (DMA), and hUCMSCs-exos treated db/db mice (DMTA), and to clarify the molecular mechanism of the protection of hUCMSCs-exos in vascular remodeling from a new point of view. The results showed that 74 metabolites were changed significantly in diabetic aortas, of which 15 were almost restored by hUCMSCs-exos. In proteomics, 30 potential targets such as Stromal cell-derived factor 2-like protein 1, Leukemia inhibitory factor receptor, Peroxisomal membrane protein and E3 ubiquitin-protein ligase MYCBP2 were detected. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway-based analysis showed that Central carbon metabolism in cancer and Galactose metabolism pathway were up-regulated to near normal by hUCMSCs-exos in metabolomics, with janus associated kinase-signal transducer and activator of transcription (JAK-STAT) pathway displayed in proteomics. According to bioinformatics and integrated analysis, these targeted molecules of hUCMSCs-exos to attenuate the vascular remodeling were mainly associated with regulation of energy metabolism, oxidative stress, inflammation, and cellular communications. This study provided a reference for the therapy of diabetes-induced cardiovascular complications.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Exossomos/metabolismo , Cordão Umbilical , Proteômica , Remodelação Vascular , Células-Tronco Mesenquimais/metabolismo , Aorta
15.
Environ Res ; 207: 112228, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34662574

RESUMO

Microalgal-bacterial symbiosis (MABS) system treating wastewater has attracted great concern because of its advantages of carbon dioxide reduction and biomass energy production. However, due to the low density and negative surface charge of microalgae cells, the sedimentation and harvesting performance of microalgae biomass has been one limitation for the application of MABS system on wastewater treatment. This study investigated the performance enhancement of microalgae harvesting and wastewater treatment contributed by calcium ions (i.e., Ca2+) in the MABS system. Results showed that a low Ca2+ loading (i.e., 0.1 mM) promoted both COD and nutrients removal, with growth rates of 11.95, 6.53 and 1.21% for COD, TN and TP compared to control, and chlorophyll a was increased by 64.15%. Differently, a high Ca2+ loading (i.e., 10 mM) caused removal reductions by improving the aggregation of microalgae, with reduction rates of 34.82, 3.50 and 10.30% for COD, NH4+-N and TP. Mechanism analysis indicated that redundant Ca2+ adsorbed on MABS aggregates and dissolved in wastewater decreased the dispersibility of microalgae cells by electrical neutralization and compressed double electric layer. Moreover, the presence of Ca2+ could improve extracellular secretions and promoted flocculation performance, with particle size increasing by 336.22%. The findings of this study may provide some solutions for the enhanced microalgae biomass harvest and nutrients removal from wastewater.


Assuntos
Microalgas , Biomassa , Cálcio , Clorofila A , Íons , Simbiose , Águas Residuárias
16.
Pharmacology ; 105(5-6): 339-348, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31722363

RESUMO

Depression is a progressive and chronic syndrome and commonly related to several neuropsychiatric comorbidities, of which depression is the most studied. Population-based studies have suggested a positive role of statins in ameliorating depression risk. However, the role of statins in the treatment of diabetes-related depression has not been well examined. Herein, we investigated the effects of lovastatin (LOV) on depressive phenotypes in streptozotocin-induced diabetic mice. The data suggested that the treatment of LOV at 10 or 20 mg/kg for 3 weeks markedly prevented diabetes-associated depressive behaviors reflected by better performance in the sucrose preference test, tail suspension test, and novelty-suppressed feeding test. The study further showed that these treatments improved the hippocampal neurogenesis as evidenced by increased bromodeoxyuridine-positive cells in the dentate gyrus with higher expression of mature brain-derived neurotrophic factor and increased phosphorylation of cAMP-response element-binding protein. As expected, diabetic mice treated with LOV showed significant improvement of hyperlipidemia rather than hyperglycemia. These results suggest that LOV may be employed as a drug for the treatment of diabetes-related depression.


Assuntos
Depressão/prevenção & controle , Diabetes Mellitus Experimental/complicações , Hipocampo/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Lovastatina/uso terapêutico , Neurogênese/efeitos dos fármacos , Animais , Antidepressivos , Comportamento Animal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Depressão/etiologia , Diabetes Mellitus Experimental/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Psicológico
17.
Clin Exp Hypertens ; 41(5): 474-480, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30183389

RESUMO

To assess the efficacy and safety of wet cupping in adults with hypertension, we conducted a systematic review and meta-analysis using 13 databases. Wet cupping alone or in combination with antihypertensive medication or acupuncture was used. Seven randomized trials were included, most not of high methodological quality. A few small studies suggested that wet cupping alone versus antihypertensive medication significantly reduced blood pressure and Traditional Chinese Medicine syndrome (hypertension-related symptoms). However based on current evidence, no firm conclusions can be drawn and no clinical recommendations made. Research projects included need validation. Studies indicate that wet cupping is a safe therapy.


Assuntos
Terapias Complementares/métodos , Hipertensão/terapia , Terapia por Acupuntura , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea , Terapias Complementares/efeitos adversos , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
18.
Proc Natl Acad Sci U S A ; 113(37): E5434-43, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27578867

RESUMO

Rapid clearance of adoptively transferred Cd47-null (Cd47(-/-)) cells in congeneic WT mice suggests a critical self-recognition mechanism, in which CD47 is the ubiquitous marker of self, and its interaction with macrophage signal regulatory protein α (SIRPα) triggers inhibitory signaling through SIRPα cytoplasmic immunoreceptor tyrosine-based inhibition motifs and tyrosine phosphatase SHP-1/2. However, instead of displaying self-destruction phenotypes, Cd47(-/-) mice manifest no, or only mild, macrophage phagocytosis toward self-cells except under the nonobese diabetic background. Studying our recently established Sirpα-KO (Sirpα(-/-)) mice, as well as Cd47(-/-) mice, we reveal additional activation and inhibitory mechanisms besides the CD47-SIRPα axis dominantly controlling macrophage behavior. Sirpα(-/-) mice and Cd47(-/-) mice, although being normally healthy, develop severe anemia and splenomegaly under chronic colitis, peritonitis, cytokine treatments, and CFA-/LPS-induced inflammation, owing to splenic macrophages phagocytizing self-red blood cells. Ex vivo phagocytosis assays confirmed general inactivity of macrophages from Sirpα(-/-) or Cd47(-/-) mice toward healthy self-cells, whereas they aggressively attack toward bacteria, zymosan, apoptotic, and immune complex-bound cells; however, treating these macrophages with IL-17, LPS, IL-6, IL-1ß, and TNFα, but not IFNγ, dramatically initiates potent phagocytosis toward self-cells, for which only the Cd47-Sirpα interaction restrains. Even for macrophages from WT mice, phagocytosis toward Cd47(-/-) cells does not occur without phagocytic activation. Mechanistic studies suggest a PKC-Syk-mediated signaling pathway, to which IL-10 conversely inhibits, is required for activating macrophage self-targeting, followed by phagocytosis independent of calreticulin Moreover, we identified spleen red pulp to be one specific tissue that provides stimuli constantly activating macrophage phagocytosis albeit lacking in Cd47(-/-) or Sirpα(-/-) mice.


Assuntos
Antígeno CD47/genética , Inflamação/genética , Interleucina-10/genética , Receptores Imunológicos/genética , Animais , Citocinas/biossíntese , Citocinas/genética , Endocitose/genética , Humanos , Inflamação/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Fagocitose/genética , Proteína Quinase C/genética , Transdução de Sinais/genética
19.
Entropy (Basel) ; 21(4)2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33267145

RESUMO

High-entropy alloy (HEA) offers great flexibility in materials design with 3-5 principal elements and a range of unique advantages such as good microstructure stability, mechanical strength over a broad range of temperatures and corrosion resistance, etc. Welding of high entropy alloy, as a key joining method, is an important emerging area with significant potential impact to future application-oriented research and technological developments in HEAs. The selection of feasible welding processes with optimized parameters is essential to enhance the applications of HEAs. However, the structure of the welded joints varies with material systems, welding methods and parameters. A systemic understanding of the structures and properties of the weldment is directly relevant to the application of HEAs as well as managing the effect of welding on situations such as corrosion that are known to be a service life limiting factor of welded structures in conditions such as marine environments. In this paper, key recent work on welding of HEAs is reviewed in detail focusing on the research of main HEA systems when applying different welding techniques. The experimental details including sample preparation, sample size (thickness) and welding conditions reflecting energy input are summarized and key issues are highlighted. The microstructures and properties of different welding zones, in particular the fusion zone (FZ) and the heat affected zones (HAZ), formed with different welding methods are compared and presented in details and the structure-property relationships are discussed. The work shows that the weldability of HEAs varies with the HEA composition groups and the welding method employed. Arc and laser welding of AlCoCrFeNi HEAs results in lower hardness in the FZ and HAZ and reduced overall strength. Friction stir welding results in higher hardness in the FZ and achieves comparable/higher strength of the welded joints in tensile tests. The welded HEAs are capable of maintaining a reasonable proportion of the ductility. The key structure changes including element distribution, the volume fraction of face centered cubic (FCC) and body centered cubic (BCC) phase as well as reported changes in the lattice constants are summarized and analyzed. Detailed mechanisms governing the mechanical properties including the grain size-property/hardness relationship in the form of Hall-Petch (H-P) effect for both bulk and welded structure of HEAs are compared. Finally, future challenges and main areas to research are highlighted.

20.
Anal Chem ; 89(9): 4994-5002, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28372359

RESUMO

Unique aggregation-induced emission (AIE) property has been found and widely applied in chemo/biosensors for thiolated gold nanoclusters and copper nanoclusters; however, little is known about this property of thiolate-protected silver nanoclusters. In this work, specific aggregation-induced emission enhancement (AIEE) of glutathione-capped silver nanoclusters (AgNCs) was verified via its solid-state luminescence and enhanced emission in poor solvent, three stimuli responsive nanoswitches were constructed based on its AIEE property, and a reliable and sensitive PPase assay was developed via ion-triggered luminescence switch. Glutathione-capped AgNCs from a facile one-pot synthesis were found to possess bright red luminescence and aggregation-induced emission enhancement property. This AIEE feature enables AgNCs in sensitive response to pH and temperature in a reversible way, allowing the two nanoswitches to precisely monitor the change of environmental pH and temperature. Complexation reactions among AgNCs, aluminum cation and PPi were also designed for an ion-triggered luminescence nanoswitch, which allows selective response to aluminum cation or PPi in luminescence. This ion-driven luminescence switch is further utilized to design a novel detection strategy for PPase activity through competitive coordination reactions. Our method illustrates a novel detection strategy mediated by complexation reaction between Al3+ and AgNCs avoiding the involvement of copper cations in the detection, and this developed assay performed well in detection of PPase level in fresh rat serum. This work confirms unique aggregation-induced emission enhancement property of glutathione-capped AgNCs, constructs multiple luminescence switches based on its multistimuli responsive behaviors, and demonstrates an example of Al3+-mediated detection strategy for PPase assay.


Assuntos
Ensaios Enzimáticos/métodos , Glutationa/química , Pirofosfatase Inorgânica/sangue , Medições Luminescentes/métodos , Nanoestruturas/química , Prata/química , Alumínio/química , Animais , Difosfatos/química , Concentração de Íons de Hidrogênio , Ratos , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa