Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Death Dis ; 13(6): 517, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654787

RESUMO

Circular RNAs (circRNAs) have been increasingly linked to cancer progression. However, the detailed biological functions of circRNAs in prostate cancer (PCa) remain unclear. Using high-throughput circRNA sequencing, we previously identified 18 urine extracellular vesicle circRNAs that were increased in patients with PCa compared with those with benign prostatic hyperplasia. Spearman correlation analysis of the expression levels of the 18 circRNAs between the tumor tissue and matched urine extracellular vesicles in 30 PCa patients showed that circSCAF8 had the highest R2 (R2 = 0.635, P < 0.001). The Cox proportional hazards regression model was used to estimate the effect of circSCAF8 on progression-free survival. The in vitro and in vivo functional experiments were implemented to investigate the effects of circSCAF8 on the phenotype of PCa. We found that the knockdown of circSCAF8 in PCa cells suppressed the proliferation, migration, and invasion ability, while overexpression of circSCAF8 had the opposite effects. Similar results were observed in vivo. In a cohort of 85 patients who had undergone radical prostatectomy, circSCAF8 expression in PCa tissues was a powerful predictor of progression-free survival (HR = 2.14, P = 0.022). Mechanistically, circSCAF8 can function by binding to both miR-140-3p and miR-335 to regulate LIF expression and activate the LIF-STAT3 pathway that leads to the growth and metastasis of PCa. Collectively, our findings demonstrate that circSCAF8 contributes to PCa progression through the circSCAF8-miR-140-3p/miR-335-LIF pathway.


Assuntos
MicroRNAs , Neoplasias da Próstata , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/patologia , RNA Circular/genética
2.
Biosci Rep ; 39(5)2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-30918105

RESUMO

Human breast cancer is a malignant form of tumor with a relatively high mortality rate. Although esophageal cancer-related gene 4 (ECRG4) is thought to be a possible potent tumor suppressor gene that acts to suppress breast cancer, its precise role in this disease is not understood. Herein, we assess the correlation between ECRG4 expression and DNA methylation, probing the potential epigenetic regulation of ECRG4 in breast cancer. We analyzed ECRG4 promoter methylation via methylation-specific PCR (MSPCR), bisulfite sequencing, and a promoter reporter assay in human breast cancer cell lines and samples. Gene expression was assessed by quantitative real-time PCR (qPCR), while protein levels were assessed by Western blotting. CCK8 assays were used to quantify cell growth; Esophageal cancer-related gene 4 wound healing assays were used to assess cellular migration, while flow cytometry was used to assess apoptosis and cell cycle progression. Apoptosome formation was validated via CO-IP and Western blotting. We found that human breast cancer samples exhibited increased methylation of the ECRG4 promoter and decreased ECRG4 expression. Remarkably, the down-regulation of ECRG4 was highly associated with promoter methylation, and its expression could be re-activated via 5-aza-2'-deoxycytidine treatment to induce demethylation. ECRG4 overexpression impaired breast cancer cell proliferation and migration, and led to G0/G1 cell cycle phase arrest. Moreover, ECRG4 induced the formation of the Cytc/Apaf-1/caspase-9 apoptosome and promoted breast cancer cell apoptosis. ECRG4 is silenced in human breast cancer cells and cell lines, likely owing to promoter hypermethylation. ECRG4 may act as a tumor suppressor, inhibiting proliferation and migration, inducing G0/G1 phase arrest and apoptosis via the mitochondrial apoptotic pathway.


Assuntos
Neoplasias da Mama/genética , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Regiões Promotoras Genéticas , Proteínas Supressoras de Tumor/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Apoptossomas/genética , Apoptossomas/metabolismo , Fator Apoptótico 1 Ativador de Proteases/genética , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Sequência de Bases , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caspase 9/genética , Caspase 9/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Decitabina/farmacologia , Epigênese Genética , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa