Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(9): 107672, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39128723

RESUMO

The ubiquitin-proteasome system (UPS), which involves E3 ligases and deubiquitinates (DUBs), is critical for protein homeostasis. The epigenetic reader ZMYND8 (zinc finger MYND-type containing 8) has emerged as an oncoprotein, and its protein levels are elevated in various types of cancer, including breast cancer. However, the mechanism by which ZMYND8 protein levels are increased in cancer remains elusive. Although ZMYND8 has been reported to be regulated by the E3 ligase FBXW7, it is still unknown whether ZMYND8 could be modulated by DUBs. Here, we identified USP7 (ubiquitin carboxyl-terminal hydrolase 7) as a bona fide DUB for ZMYND8. Mechanically, USP7 directly binds to the PBP (PHD-BRD-PWWP) domain of ZMYND8 via its TRAF (tumor necrosis factor receptor-associated factor) domain and UBL (ubiquitin-like) domain and removes F-box and WD repeat domain containing 7 (FBXW7)-catalyzed poly-ubiquitin chains on lysine residue 1034 (K1034) within ZMYND8, thereby stabilizing ZMYND8 and stimulating the transcription of ZMYND8 target genes ZEB1 (zinc finger E-box binding homeobox 1) and VEGFA (Vascular Endothelial Growth Factor A). Consequently, USP7 enhances the capacity of breast cancer cells for migration and invasion through antagonizing FBXW7-mediated ZMYND8 degradation. Importantly, the protein levels of USP7 positively correlates with those of ZMYND8 in breast cancer tissues. These findings delineate an important layer of migration and invasion regulation by the USP7-ZMYND8 axis in breast cancer cells.

2.
Cardiovasc Diabetol ; 23(1): 331, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39252021

RESUMO

BACKGROUND: Visceral adipose tissue in individuals with obesity is an independent cardiovascular risk indicator. However, it remains unclear whether adipose tissue influences common cardiovascular diseases, such as atherosclerosis, through its secreted exosomes. METHODS: The exosomes secreted by adipose tissue from diet-induced obesity mice were isolated to examine their impact on the progression of atherosclerosis and the associated mechanism. Endothelial apoptosis and the proliferation and migration of vascular smooth muscle cells (VSMCs) within the atherosclerotic plaque were evaluated. Statistical significance was analyzed using GraphPad Prism 9.0 with appropriate statistical tests. RESULTS: We demonstrate that adipose tissue-derived exosomes (AT-EX) exacerbate atherosclerosis progression by promoting endothelial apoptosis, proliferation, and migration of VSMCs within the plaque in vivo. MicroRNA-132/212 (miR-132/212) was detected within AT-EX cargo. Mechanistically, miR-132/212-enriched AT-EX exacerbates palmitate acid-induced endothelial apoptosis via targeting G protein subunit alpha 12 and enhances platelet-derived growth factor type BB-induced VSMC proliferation and migration by targeting phosphatase and tensin homolog in vitro. Importantly, melatonin decreases exosomal miR-132/212 levels, thereby mitigating the pro-atherosclerotic impact of AT-EX. CONCLUSION: These data uncover the pathological mechanism by which adipose tissue-derived exosomes regulate the progression of atherosclerosis and identify miR-132/212 as potential diagnostic and therapeutic targets for atherosclerosis.


Assuntos
Apoptose , Aterosclerose , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Progressão da Doença , Exossomos , Camundongos Endogâmicos C57BL , MicroRNAs , Músculo Liso Vascular , Miócitos de Músculo Liso , Placa Aterosclerótica , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Exossomos/metabolismo , Exossomos/patologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/genética , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Masculino , Transdução de Sinais , Células Cultivadas , Obesidade/metabolismo , Obesidade/patologia , Camundongos Knockout para ApoE , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais/efeitos dos fármacos , Doenças da Aorta/patologia , Doenças da Aorta/metabolismo , Doenças da Aorta/genética , Becaplermina/farmacologia , Becaplermina/metabolismo , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/patologia , Camundongos , Humanos
3.
Environ Sci Technol ; 58(13): 5856-5865, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38516968

RESUMO

Measuring the quantum yield and reactivity of triplet-state dissolved organic matter (3DOM*) is essential for assessing the impact of DOM on aquatic photochemical processes. However, current 3DOM* quantification methods require multiple fitting steps and rely on steady-state approximations under stringent application criteria, which may introduce certain inaccuracies in the estimation of DOM photoreactivity parameters. Here, we developed a global kinetic model to simulate the reaction kinetics of the hv/DOM system using four DOM types and 2,4,6-trimethylphenol as the probe for 3DOM*. Analyses of residuals and the root-mean-square error validated the exceptional precision of the new model compared to conventional methods. 3DOM* in the global kinetic model consistently displayed a lower quantum yield and higher reactivity than those in local regression models, indicating that the generation and reactivity of 3DOM* have often been overestimated and underestimated, respectively. The global kinetic model derives parameters by simultaneously fitting probe degradation kinetics under different conditions and considers the temporally increasing concentrations of the involved reactive species. It minimizes error propagation and offers insights into the interactions of different species, thereby providing advantages in accuracy, robustness, and interpretability. This study significantly advances the understanding of 3DOM* behavior and provides a valuable kinetic model for aquatic photochemistry research.


Assuntos
Matéria Orgânica Dissolvida , Processos Fotoquímicos , Fotoquímica , Fotólise
4.
J Nanobiotechnology ; 22(1): 361, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38910236

RESUMO

Recently, environmental temperature has been shown to regulate bone homeostasis. However, the mechanisms by which cold exposure affects bone mass remain unclear. In our present study, we observed that exposure to cold temperature (CT) decreased bone mass and quality in mice. Furthermore, a transplant of exosomes derived from the plasma of mice exposed to cold temperature (CT-EXO) can also impair the osteogenic differentiation of BMSCs and decrease bone mass by inhibiting autophagic activity. Rapamycin, a potent inducer of autophagy, can reverse cold exposure or CT-EXO-induced bone loss. Microarray sequencing revealed that cold exposure increases the miR-25-3p level in CT-EXO. Mechanistic studies showed that miR-25-3p can inhibit the osteogenic differentiation and autophagic activity of BMSCs. It is shown that inhibition of exosomes release or downregulation of miR-25-3p level can suppress CT-induced bone loss. This study identifies that CT-EXO mediates CT-induced osteoporotic effects through miR-25-3p by inhibiting autophagy via targeting SATB2, presenting a novel mechanism underlying the effect of cold temperature on bone mass.


Assuntos
Autofagia , Temperatura Baixa , Exossomos , Camundongos Endogâmicos C57BL , MicroRNAs , Osteogênese , Animais , Autofagia/efeitos dos fármacos , Camundongos , Exossomos/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Osteogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteoporose/patologia , Diferenciação Celular/efeitos dos fármacos , Osso e Ossos/metabolismo , Feminino , Densidade Óssea , Sirolimo/farmacologia
5.
J Pediatr Nurs ; 75: 31-40, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38101309

RESUMO

PROBLEM: Most rare diseases occur in childhood and are difficult to diagnose and treat. The caregivers are faced with the challenge of providing care to the children afflicted with these rare diseases, resulting in a significant burden of care and an altered family dynamic. ELIGIBILITY CRITERIA: A meta-synthesis review was conducted to explore the caregivers' experience of children with rare diseases using eight electronic databases PubMed, Web of Science, the Cochrane Library, EMBASE, VIP database, Wan Fang, Chinese BioMedical Literature Database, and China National Knowledge Infrastructure from each database's inception to October 5, 2023. SAMPLE: 4207 records were identified and 20 eligible studies were included. RESULTS: Three themes emerged: (1) Life is changed by "rare"; (2) many unmet needs; (3) Strive to adapt and grow. CONCLUSIONS: Caregivers of children with rare diseases are full of stress and challenges in the process of caring for them, and their lives have changed greatly due to "rare". Appropriate measures need to be taken to reduce the burden on caregivers. IMPLICATIONS: According to the findings, both the medical and health systems, as well as society, should pay attention to the care load and unmet requirements of carers of children with rare diseases, and offer them with practical supportive services. Finally, it can improve the quality of life for caregivers and families of children with rare diseases, as well as stimulate the development of rare diseases.


Assuntos
Cuidadores , Qualidade de Vida , Criança , Humanos , Pesquisa Qualitativa , Doenças Raras
6.
Anal Bioanal Chem ; 415(9): 1733-1740, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36840810

RESUMO

ω-Transaminases (ω-TAs) are widely available for the production of chiral amines and unnatural amino acids. Herein, a rapid spectrophotometric method was developed for screening ω-TAs based on the colored products that can be generated from transamination reactions between aliphatic α-diketones and amino donors catalyzed by ω-TAs. The possible mechanism of the formation of the colored product was investigated according to LC-Q-TOF-MS analysis. Among seven diketones, 2,3-butanedione was selected as the most suitable amino acceptor for colorimetric screening of ω-TAs with high efficiency, high sensitivity, and low background interference. Meanwhile, the absorbance of the colored product generated by 2,3-butanedione catalyzed by ω-TAs in this method was linearly correlated with the results by HPLC analysis. This method was also confirmed to effectively screen ω-TA mutants with high activity towards isopropylamine.


Assuntos
Ensaios de Triagem em Larga Escala , Transaminases , Transaminases/química , Transaminases/metabolismo , Colorimetria , Diacetil , Aminoácidos , Aminas , Cetonas
7.
J Nanobiotechnology ; 21(1): 315, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667298

RESUMO

Vascular calcification often occurs in patients with chronic renal failure (CRF), which significantly increases the incidence of cardiovascular events in CRF patients. Our previous studies identified the crosstalk between the endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), and the paracrine effect of VSMCs, which regulate the calcification of VSMCs. Herein, we aim to investigate the effects of exosomes secreted by high phosphorus (HPi) -induced adventitial fibroblasts (AFs) on the calcification of VSMCs and the underlying mechanism, which will further elucidate the important role of AFs in high phosphorus vascular wall microenvironment. The conditioned medium of HPi-induced AFs promotes the calcification of VSMCs, which is partially abrogated by GW4869, a blocker of exosomes biogenesis or release. Exosomes secreted by high phosphorus-induced AFs (AFsHPi-Exos) show similar effects on VSMCs. miR-21-5p is enriched in AFsHPi-Exos, and miR-21-5p enhances osteoblast-like differentiation of VSMCs by downregulating cysteine-rich motor neuron 1 (Crim1) expression. AFsHPi-Exos and exosomes secreted by AFs with overexpression of miR-21-5p (AFsmiR21M-Exos) significantly accelerate vascular calcification in CRF mice. In general, AFsHPi-Exos promote the calcification of VSMCs and vascular calcification by delivering miR-21-5p to VSMCs and subsequently inhibiting the expression of Crim1. Combined with our previous studies, the present experiment supports the theory of vascular wall microenvironment.


Assuntos
Exossomos , MicroRNAs , Calcificação Vascular , Animais , Camundongos , Células Endoteliais , Fibroblastos , Fósforo , MicroRNAs/genética , Receptores de Proteínas Morfogenéticas Ósseas
8.
J Nanobiotechnology ; 21(1): 226, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37461031

RESUMO

Medial arterial calcification (MAC), a systemic vascular disease different from atherosclerosis, is associated with an increased incidence of cardiovascular events. Several studies have demonstrated that ambient temperature is one of the most important factors affecting cardiovascular events. However, there has been limited research on the effect of different ambient temperatures on MAC. In the present study, we showed that cold temperature exposure (CT) in mice slowed down the formation of vitamin D (VD)-induced vascular calcification compared with room temperature exposure (RT). To investigate the mechanism involved, we isolated plasma-derived exosomes from mice subjected to CT or RT for 30 days (CT-Exo or RT-Exo, respectively). Compared with RT-Exo, CT-Exo remarkably alleviated the calcification/senescence formation of vascular smooth muscle cells (VSMCs) and promoted autophagy by activating the phosphorylation of AMP-activated protein kinase (p-AMPK) and inhibiting phosphorylation of mammalian target of rapamycin (p-mTOR). At the same time, CT-Exo promoted autophagy in ß-glycerophosphate (ß-GP)-induced VSMCs. The number of autophagosomes and the expression of autophagy-related proteins ATG5 and LC3B increased, while the expression of p62 decreased. Based on a microRNA chip microarray assay and real-time polymerase chain reaction, miR-320a-3p was highly enriched in CT-Exo as well as thoracic aortic vessels in CT mice. miR-320a-3p downregulation in CT-Exo using AntagomiR-320a-3p inhibited autophagy and blunted its anti-calcification protective effect on VSMCs. Moreover, we identified that programmed cell death 4 (PDCD4) is a target of miR-320a-3p, and silencing PDCD4 increased autophagy and decreased calcification in VSMCs. Treatment with CT-Exo alleviated the formation of MAC in VD-treated mice, while these effects were partially reversed by GW4869. Furthermore, the anti-arterial calcification protective effects of CT-Exo were largely abolished by AntagomiR-320a-3p in VD-induced mice. In summary, we have highlighted that prolonged cold may be a good way to reduce the incidence of MAC. Specifically, miR-320a-3p from CT-Exo could protect against the initiation and progression of MAC via the AMPK/mTOR autophagy pathway.


Assuntos
Aterosclerose , MicroRNAs , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Antagomirs , Serina-Treonina Quinases TOR , Autofagia , MicroRNAs/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
9.
Graefes Arch Clin Exp Ophthalmol ; 261(10): 2729-2741, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36862203

RESUMO

Optical coherence tomography (OCT) is a revolutionary in vivo imaging technology that presents real-time information on ocular structures. Angiography based on OCT, known as optical coherence tomography angiography (OCTA), is a noninvasive and time-saving technique originally utilized for visualizing retinal vasculature. As devices and built-in systems have evolved, high-resolution images with depth-resolved analysis have assisted ophthalmologists in accurately localizing pathology and monitoring disease progression. With the aforementioned advantages, application of OCTA has extended from the posterior to anterior segment. This nascent adaptation showed good delineation of the vasculature in the cornea, conjunctiva, sclera, and iris. Thus, neovascularization of the avascular cornea and hyperemia or ischemic changes involving the conjunctiva, sclera, and iris has become prospective applications for AS-OCTA. Although traditional dye-based angiography is regarded as the gold standard in demonstrating vasculature in the anterior segment, AS-OCTA is expected to be a comparable but more patient-friendly alternative. In its initial stage, AS-OCTA has exhibited great potential in pathology diagnosis, therapeutic evaluation, presurgical planning, and prognosis assessments in anterior segment disorders. In this review of AS-OCTA, we aim to summarize scanning protocols, relevant parameters, and clinical applications as well as limitations and future directions. We are sanguine about its wide application in the future with the development of technology and refinement in built-in systems.


Assuntos
Angiografia , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Vasos Retinianos , Iris/irrigação sanguínea , Córnea , Angiofluoresceinografia/métodos
10.
Molecules ; 28(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37049746

RESUMO

As a substitute for banned brominated flame retardants (BFRs), the use of organophosphate esters (OPEs) increased year by year with the increase in industrial production and living demand. It was inevitable that OPEs would be discharged into wastewater in excess, which posed a great threat to the health of human beings and aquatic organisms. In the past few decades, people used various methods to remove refractory OPEs. This paper reviewed the photocatalysis method, the adsorption method with wide applicability, and the biological method mainly relying on enzymolysis and hydrolysis to degrade OPEs in water. All three of these methods had the advantages of high removal efficiency and environmental protection for various organic pollutants. The degradation efficiency of OPEs, degradation mechanisms, and conversion products of OPEs by three methods were discussed and summarized. Finally, the development prospects and challenges of OPEs' degradation technology were discussed.


Assuntos
Retardadores de Chama , Água , Humanos , Retardadores de Chama/análise , Adsorção , Organofosfatos , Ésteres , Monitoramento Ambiental , China
11.
Environ Sci Technol ; 56(12): 8885-8896, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35658453

RESUMO

The critical challenges of using electromembrane processes [e.g., electrodialysis and flow-electrode capacitive deionization (FCDI)] to recycle resources (e.g., water, salts, and organic compounds) from wastewater are the fractionation of dissolved ionic matter, the removal/recovery of organic components during desalination, and membrane antifouling. This study realized the simultaneous fractionation, desalination, and dye removal/recovery (FDR) treatment of dye/salt mixtures through a simple but effective approach, that is, using a carbon cloth-modified FCDI (CC-FCDI) unit, in which the carbon cloth layer was attached to the surface of each ion-exchange membrane (IEM). The IEMs and carbon-based flow-electrodes were responsible for the fractionation and desalination of dye and salt ions, while the carbon cloth layers contributed to the active membrane antifouling and dye removal/recovery by the electrosorption mechanism. Attributed to such features, the CC-FCDI unit accomplished the effective FDR treatment of dye/salt mixtures with wide ranges of salt and dye concentrations (5-20 g L-1 NaCl and 200-800 ppm methylene blue) and different dye components (cationic and anionic dyes) under various applied voltages (1.2-3.2 V). Moreover, the active membrane antifouling by virtue of the carbon cloth facilitated the excellent and sustainable FDR performance of CC-FCDI. The removal/recovery of dyes from the carbon cloth strongly depends on the characteristics of dye molecules, the surface properties of the carbon cloth, and the local pH at the IEM/CC interfaces. This study sheds light on the strategies of using multifunctional layer-modified FCDI units to reclaim resources from various high-salinity organic wastewater.


Assuntos
Cloreto de Sódio , Purificação da Água , Adsorção , Carbono/química , Corantes , Eletrodos , Íons , Cloreto de Sódio na Dieta , Águas Residuárias
12.
Environ Sci Technol ; 54(9): 5853-5863, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32271562

RESUMO

Since flow-electrodes do not have a maximum allowable charge capacity, a high salt removal rate in flow-electrode capacitive deionization (FCDI) can be achieved theoretically by simply increasing the applied voltage. However, present attempts to run FCDI at high voltages are unsatisfactory because of the instability of the module occurring in the overlimiting current regimes. To implement FCDI in the overlimiting current regimes (namely, OLC-FCDI), in this work, we analyzed the voltage-current (V-I) characteristics of several FCDI units. We confirmed that a continuous, rapid, and stable desalination performance of OLC-FCDI can be attained when the employed FCDI unit possesses a linear V-I characteristic (only one ohmic regime), which is distinct from the three V-I regimes in electrodialysis (ohmic, limiting current, and water splitting regimes) and the two in membrane capacitive deionization (ohmic and water splitting regimes). Notably, the linearV-I characteristic of FCDI requires continuous charge percolation near the boundaries of ion-exchange membranes. Effective methods include increasing the carbon content in the flow-electrodes and introducing electrical (carbon cloth) or ionic (ion-exchange resins) conductive intermediates in the solution compartment, which result in corresponding upgraded FCDI units exhibiting extremely high salt removal rates (>100 mg m-2 s-1), good cycling stability, and rapid seawater desalination performance under typical OLC-FCDI operation condition (27-40 g L-1 NaCl, 500 mA). This study can guide future research of FCDI in terms of flow-electrode preparation and device configuration optimization.


Assuntos
Purificação da Água , Água , Eletrodos , Troca Iônica , Cloreto de Sódio
14.
Mol Cancer ; 17(1): 109, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30064416

RESUMO

Malignant ovarian tumors bear the highest mortality rate among all gynecological cancers. Both late tumor diagnosis and tolerance to available chemical therapy increase patient mortality. Therefore, it is both urgent and important to identify biomarkers facilitating early identification and novel agents preventing recurrence. Accumulating evidence demonstrates that epigenetic aberrations (particularly histone modifications) are crucial in tumor initiation and development. Histone acetylation and methylation are respectively regulated by acetyltransferases-deacetylases and methyltransferases-demethylases, both of which are implicated in ovarian cancer pathogenesis. In this review, we summarize the most recent discoveries pertaining to ovarian cancer development arising from the imbalance of histone acetylation and methylation, and provide insight into novel therapeutic interventions for the treatment of ovarian carcinoma.


Assuntos
Histonas/metabolismo , Neoplasias Ovarianas/metabolismo , Acetilação , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Metilação , Neoplasias Ovarianas/genética
16.
Chemosphere ; 363: 142960, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39079588

RESUMO

Despite the emergence of hydrogels as ideal candidates for preparing the superhydrophilic materials for emulsion separation, their structural stability and swelling still hinder their long-term use, mainly due to structure defects after swelling. Herein, differing from the common modification, the eco-friendly poly 2-hydroxyethyl methacrylate (pHEMA) hydrogel foam was designed and synthesized via a one-step strategy by using the high internal phase emulsion (HIPE) template method, which endowed it with a highly interpenetrated porous structure. Unlike the normal swellable hydrogels such as poly(N-isoproplyacrylamide) (PNIPAM) hydrogel, or modified hydrogel coatings, the pHEMA hydrogel foam displayed stable structure and underwater superoleophobicity after 20 d of immersion in water. The pHEMA hydrogel foam could separate different kinds of highly surfactant-stabilized oil-in-water (O/W) emulsions with a high separation efficiency of 99.3% for liquid paraffin emulsion obtained solely under gravity-driven. Additionally, it exhibited excellent antifouling performance and long-term acid/alkali tolerance over 100 h without decrease in emulsion separation efficiency (98.0%, oil/water ratio of 99:1) and permeation flux (over 2000 L·m-2·h-1) attributed to its stable bulky structure. Moreover, the pHEMA hydrogel foam demonstrated high cell viability of 96.87% and 95.96% after culturing the 3T3 clone A31 cells in the pHEMA hydrogel foam for 24 h and 48 h, respectively, indicating good biocompatibility. Hence, our work provides a new design to develop an eco-friendly bulk hydrogel foam that achieves stable structure and performance for emulsion separation.


Assuntos
Emulsões , Hidrogéis , Poli-Hidroxietil Metacrilato , Poli-Hidroxietil Metacrilato/química , Emulsões/química , Hidrogéis/química , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Água/química , Animais , Porosidade , Tensoativos/química
17.
Heliyon ; 10(11): e32331, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38947484

RESUMO

The correlation between sports participation and psychological well-being is well-documented, revealing a complex interplay influenced by competition level and cultural context. This is particularly relevant in Korea, where the university sports culture significantly impacts student life. This study evaluates how competitive versus non-competitive sports affect Korean university students' psychological well-being using a quantitative approach with SmartPLS 4 for multi-group analysis. Findings reveal that competitive sports significantly enhance mental toughness and stress management through structured coping mechanisms and robust social support, improving coping strategy effectiveness by 34 % compared to non-competitive sports. Conversely, participants in non-competitive sports experience greater general well-being with a 40 % higher use of informal support. These insights suggest that university sports programs could benefit from targeted interventions incorporating specific coping strategies and social support frameworks tailored to the competitive context. This research underscores the need for precise stress management techniques and resilience-building exercises in sports curricula to optimize psychological well-being across different sports environments in Korean universities.

18.
J Mater Chem B ; 12(10): 2559-2570, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38362614

RESUMO

Pathologic myopia has seriously jeopardized the visual health of adolescents in the past decades. The progression of high myopia is associated with a decrease in collagen aggregation and thinning of the sclera, which ultimately leads to longer eye axis length and image formation in front of the retina. Herein, we report a fibroblast-loaded hydrogel as a posterior scleral reinforcement (PSR) surgery implant for the prevention of myopia progression. The fibroblast-loaded gelatin methacrylate (GelMA)-poly(ethylene glycol) diacrylate (PEGDA) hydrogel was prepared through bioprinting with digital light processing (DLP). The introduction of the PEGDA component endowed the GelMA-PEGDA hydrogel with a high compression modulus for PRS surgery. The encapsulated fibroblasts could consistently maintain a high survival rate during 7 days of in vitro incubation, and could normally secrete collagen type I. Eventually, both the hydrogel and fibroblast-loaded hydrogel demonstrated an effective shortening of the myopic eye axis length in a guinea pig model of visual deprivation over three weeks after implantation, and the sclera thickness of myopic guinea pigs became significantly thicker after 4 weeks, verifying the success of sclera remodeling and showing that myopic progression was effectively controlled. In particular, the fibroblast-loaded hydrogel demonstrated the best therapeutic effect through the synergistic effect of cell therapy and PSR surgery.


Assuntos
Miopia , Esclera , Animais , Cobaias , Modelos Animais de Doenças , Esclera/patologia , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Miopia/tratamento farmacológico , Miopia/prevenção & controle , Miopia/patologia , Fibroblastos/patologia , Impressão Tridimensional
19.
Int J Nanomedicine ; 19: 7963-7981, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39130689

RESUMO

Introduction: Traditional cancer treatment strategies often have severe toxic side effects and poor therapeutic efficacy. To address the long-standing problems related to overcoming the complexity of tumors, we develop a novel nanozyme based on the in situ oxidation of 2D Ti3C2 structure to perform simultaneous phototherapy and sonodynamic therapy on tumors. Ti3C2 nanozymes exhibit multi-enzyme activity, including intrinsic peroxidase (POD) activities, which can react with H2O2 in the tumor microenvironment. This new material can construct Ti3C2/TiO2 heterostructures in vivo. Methods: Photothermal (PTT), sonodynamic (SDT) effects, and photoacoustic (PA) image-guided synergy therapy can be achieved. Finally, anticancer immune responses occur with this nanozyme. In vivo experiments revealed that the Ti3C2/TiO2 heterostructure inhibited tumor growth. Results: Complementarily, our results showed that the Ti3C2/TiO2 heterostructure enhanced the immunogenic activity of tumors by recruiting cytotoxic T cells, thereby enhancing the tumor ablation effect. Mechanistic studies consistently indicated that Reactive Oxygen Species (ROS) regulates apoptosis of HCC cells by modulating NRF2/OSGIN1 signaling both in vitro and in vivo. As a result, Ti3C2 nanozyme effectively inhibited tumor through its synergistic ability to modulate ROS and enhance immune infiltration of cytotoxic T cells in the tumor microenvironment. Discussion: These findings open up new avenues for enhancing 2D Ti3C2 nanosheets and suggest a new way to develop more effective sonosensitizers for the treatment of cancer.


Assuntos
Titânio , Terapia por Ultrassom , Titânio/química , Titânio/farmacologia , Animais , Camundongos , Humanos , Terapia por Ultrassom/métodos , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral/efeitos dos fármacos , Fototerapia/métodos , Camundongos Endogâmicos BALB C , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/tratamento farmacológico , Técnicas Fotoacústicas/métodos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Eur J Med Chem ; 279: 116827, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39288596

RESUMO

Anaplastic lymphoma kinase (ALK) fusion genes promote a variety of human malignancies. Although several ALK inhibitors have significantly improved disease prognosis in patients with ALK positive cancers, the persistent emergence of acquired drug-resistant mutations remain the major problem in clinic treatment. Adoption of new therapeutic strategies such as proteolysis targeting chimera (PROTAC) to overcome drug resistance in BTK/AR-related cancers have shown promising prospect. Herein, we reported the integrate ALK PROTACs through overall optimization of linker, revealed that subtle structural differences can lead to significant activity difference, indicating the key role of conformation of PROTACs in inducing the formation of E3-PROTAC-target protein ternary complexes. A series of rigid ALK PROTACs were developed through conjugation of Ceritinib and thalidomide, orally bioavailable PROTAC 4B (F = 14.22 %) was obtained by overall optimization of molecular properties. 4B effectively induced long lasting degradation of ALK fusion proteins and strong repression of downstream pathway in Karpas 299 cells (DC50 = 119.33 nM, Dmax = 97.1 %) and showed comparable anti-proliferative activity to Ceritinib (IC50 = 3.11 ± 0.08 nM vs IC50 = 1.31 ± 0.43 nM). Furthermore, 4B significantly inhibited the growth of Karpas 299 xenografts in vivo with TGI of 49.5 % and showed superior anti-proliferative activity against G1202R mutation to Ceritinib (IC50 = 52.82 nM vs IC50 = 109.5 nM). Overall, 4B is expected to be a potential treatment for ALK-driven malignancies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa