Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

País de afiliação
Intervalo de ano de publicação
1.
Parasite Immunol ; 45(9): e13004, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37475490

RESUMO

This retrospective cohort study analysed extracellular vesicles (EVs) and microRNAs (miRNAs) excreted in canine sera from dogs with canine visceral leishmaniasis (CanVL). A total of 56 canine sera were divided into Group I (28, from healthy dogs) and Group II (28, from the same dogs, but already with CanVL). CanVL was determined by clinical and laboratory diagnoses. Canine sera were ultra-centrifuged to recover EVs (Can-EVs). Analyses by transmission electron microscopy, nanoparticle tracking analysis (NTA), sodium dodecyl sulfate-poli-acrylammide gel eletroforesis (SDS-PAGE) and, Immunoblot confirmed the presence of (i) microvesicles/exosomes and (ii) the tetraspanins CD63 and CD9. EVs secreted by Leishmania (Leishmania) infantum-EVs were reactive against sera from dogs with CanVL (performed by ELISA and Immunoblot). NTA analyses exhibited that concentrations of Can-EVs from dogs with CanVL (7.78 × 1010 Can-EVs/mL) were higher (p < .0001) than the non-infected dogs (mean: 1.47 × 1010 Can-EVs/mL). These results suggested that concentrations of Can-EVs were able to distinguish dogs with CanVL from healthy dogs. The relative expressions of 11 miRNAs species (miR-21-5p, miR-146a-5p, miR-125b-5p, miR-144-3p, miR-194-5p, miR-346, miR-29c-3p, miR-155-5p, miR-24-3p, miR-181a-5p, and miR-9-5p) were estimated in purified miRNAs of 30 canine sera. Dogs with CanVL up-expressed miR-21-5p and miR-146a-5p when compared with healthy dogs. The other miRNA species were poorly or not expressed in canine sera. In conclusion, this study suggests that CanVL induces changes in size and concentration of Can-EVs, as well as, the up-expression of miR-21-5p and miR-146a-5p in infected dogs.


Assuntos
Exossomos , Vesículas Extracelulares , Leishmaniose Visceral , MicroRNAs , Cães , Animais , Leishmaniose Visceral/veterinária , Leishmaniose Visceral/metabolismo , Estudos Retrospectivos , MicroRNAs/genética
2.
Proc Natl Acad Sci U S A ; 116(6): 2300-2305, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30670660

RESUMO

Endothelial heterogeneity has important implications in health and disease. Molecular markers selectively expressed in the vasculature of different organs and tissues are currently being explored in targeted therapies with promising results in preclinical and clinical studies. Noteworthy is the role that combinatorial approaches such as phage display have had in identifying such markers by using phage as nanoparticles and surrogates for billions of different peptides, screening noninvasively the vascular lumen for binding sites. Here, we show that a new peptide motif that emerged from such combinatorial screening of the vasculature binds selectively to blood vessels in the brain in vivo but not to vessels in other organs. Peptides containing a conserved motif in which amino acids Phenylalanine-Arginine-Tryptophan (FRW) predominate could be visualized by transmission electron microscopy bound to the junctions between endothelial cells in all areas of the brain, including the optic nerve, but not in other barrier-containing tissues, such as intestines and testis. Remarkably, peptides containing the motif do not bind to vessels in the retina, implying an important molecular difference between these two vascular barriers. Furthermore, the peptide allows for in vivo imaging, demonstrating that new tools for studying and imaging the brain are likely to emerge from this motif.


Assuntos
Motivos de Aminoácidos , Encéfalo/metabolismo , Circulação Cerebrovascular/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Ligantes , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/irrigação sanguínea , Técnicas de Visualização da Superfície Celular , Endotélio Vascular/ultraestrutura , Feminino , Imunofluorescência , Camundongos , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica
3.
Drug Dev Res ; 83(2): 285-295, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-32767443

RESUMO

Leishmaniasis remains an important neglected tropical infection caused by the protozoan Leishmania and affects 12 million people in 98 countries. The treatment is limited with severe adverse effects. In the search for new therapies, the drug repositioning and combination therapy have been successfully applied to neglected diseases. The aim of the present study was to evaluate the in vitro and in vivo anti-Leishmania (Leishmania) amazonensis potential of triclosan, an approved topical antimicrobial agent used for surgical procedures. in vitro phenotypic studies of drug-treated parasites were performed to evaluate the lethal action of triclosan, accompanied by an isobolographic ex-vivo analysis with the association of triclosan and miltefosine. The results showed that triclosan has activity against L. (L.) amazonensis intracellular amastigotes, with a 50% inhibitory concentration of 16 µM. By using fluorescent probes and transmission electron microscopy, a pore-forming activity of triclosan toward the parasite plasma membrane was demonstrated, leading to depolarization of the mitochondrial membrane potential and reduction of the reactive oxygen species levels in the extracellular promastigotes. The in vitro interaction between triclosan and miltefosine in the combination therapy assay was classified as additive against intracellular amastigotes. Leishmania-infected mice were treated with topical triclosan (1% base cream for 14 consecutive days), and showed 89% reduction in the parasite burden. The obtained results contribute to the investigation of new alternatives for the treatment of cutaneous leishmaniasis and suggest that the coadministration of triclosan and miltefosine should be investigated in animal models.


Assuntos
Antiprotozoários , Leishmania , Leishmaniose Cutânea , Triclosan , Animais , Antiprotozoários/uso terapêutico , Reposicionamento de Medicamentos , Humanos , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Triclosan/farmacologia
4.
J Med Virol ; 93(9): 5603-5607, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33851749

RESUMO

It has been estimated that individuals with COVID-19 can shed replication-competent virus up to a maximum of 20 days after initiation of symptoms. The majority of studies that addressed this situation involved hospitalized individuals and those with severe disease. Studies to address the possible presence of SARS-CoV-2 during the different phases of COVID-19 disease in mildly infected individuals, and utilization of viral culture techniques to identify replication-competent viruses, have been limited. This report describes two patients with mild forms of the disease who shed replication-competent virus for 24 and 37 days, respectively, after symptom onset.


Assuntos
COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/crescimento & desenvolvimento , Cultura de Vírus , Animais , Chlorocebus aethiops , Feminino , Humanos , Pessoa de Meia-Idade , SARS-CoV-2/patogenicidade , Células Vero/ultraestrutura , Células Vero/virologia , Carga Viral , Eliminação de Partículas Virais
5.
Parasite Immunol ; 43(9): e12869, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34028833

RESUMO

This study characterized extracellular vesicles (EVs) of sera from mice infected with Toxoplasma gondii or immunized with EVs derived T gondii. EVs were purified of sera from four groups (5 A/Sn mice/group). EV-IM: Mice immunized with T gondii-released EVs; ACT: mice in acute infection; CHR: mice in chronic infection; and NI: normal mice. EVs were purified by ultracentrifugation. Concentration of serum-derived EVs from NI group was smaller than EV-IM, ACT and CHR groups. Most of the EVs from ACT and CHR groups were microvesicles, and they were bigger than the NI group. The same results were shown by Transmission Electron Microscopy. The presence of exosomes was shown in immunoblotting by tetraspanin (CD63 and CD9) evidence. Splenocytes of EV-IM, CHR and NI groups were stimulated with T. gondii derived EVs. EV-IM and CHR groups up-expressed IFN-γ; TNF-α and IL-17, when compared with the NI group. IL-10 was up-expressed only in the EV-IM group. EV-IM, ACT and CHR groups expressed more miR-155-5p, miR-29c-3p and miR-125b-5p than the NI group. Host-T gondii interaction can occur, also, via EVs. miRNAs participate in the modulation of cellular immune response against T gondii. These data give subsidies to propose the differentiation between infect or noninfect hosts by concentration of EVs.


Assuntos
Exossomos , Vesículas Extracelulares , MicroRNAs , Toxoplasma , Toxoplasmose , Animais , Camundongos
6.
Int J Mol Sci ; 21(18)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961842

RESUMO

The current standard treatment for leishmaniasis has remained the same for over 100 years, despite inducing several adverse effects and increasing cases of resistance. In this study we evaluated the in vitro antileishmanial activity of 1,4-disubstituted-1,2,3 triazole compounds and carried out in silico predictive study of their pharmacokinetic and toxicity properties. Ten compounds were analyzed, with compound 6 notably presenting IC50: 14.64 ± 4.392 µM against promastigotes, IC50: 17.78 ± 3.257 µM against intracellular amastigotes, CC50: 547.88 ± 3.256 µM against BALB/c peritoneal macrophages, and 30.81-fold selectivity for the parasite over the cells. It also resulted in a remarkable decrease in all the parameters of in vitro infection. Ultrastructural analysis revealed lipid corpuscles, a nucleus with discontinuity of the nuclear membrane, a change in nuclear chromatin, and kinetoplast swelling with breakdown of the mitochondrial cristae and electron-density loss induced by 1,4-disubstituted-1,2,3-triazole treatment. In addition, compound 6 enhanced 2.3-fold the nitrite levels in the Leishmania-stimulated macrophages. In silico pharmacokinetic prediction of compound 6 revealed that it is not recommended for topical formulation cutaneous leishmaniasis treatment, however the other properties exhibited results that were similar or even better than miltefosine, making it a good candidate for further in vivo studies against Leishmania parasites.


Assuntos
Leishmania mexicana/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Macrófagos Peritoneais/efeitos dos fármacos , Triazóis/farmacocinética , Animais , Células Cultivadas , Simulação por Computador , Feminino , Concentração Inibidora 50 , Leishmania mexicana/ultraestrutura , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Nitritos/análise , Triazóis/química , Triazóis/farmacologia , Triazóis/toxicidade
7.
Molecules ; 25(23)2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33291367

RESUMO

The dioctadecyldimethylammonium bromide (DODAB) is a double-chained cationic lipid with potent bactericide and fungistatic activities; however, its toxicity on protozoan parasites is still unknown. Here, we show the antileishmanial activity of DODAB nano-sized cationic bilayer fragments on stationary-phase promastigotes and amastigotes of Leishmania amazonensis, the causative agent of cutaneous leishmaniasis. Upon treatment with DODAB, we analyzed the parasite surface zeta-potential, parasite viability, cellular structural modifications, and intracellular proliferation. The DODAB cytotoxic effect was dose-dependent, with a median effective concentration (EC50) of 25 µM for both life-cycle stages, comparable to the reported data for bacteria and fungi. The treatment with DODAB changed the membrane zeta-potential from negative to positive, compromised the parasite's morphology, affected the cell size regulation, caused a loss of intracellular organelles, and probably dysregulated the plasma membrane permeability without membrane disruption. Moreover, the parasites that survived after treatment induced small parasitophorous vacuoles and failed to proliferate inside macrophages. In conclusion, DODAB displayed antileishmanial activity, and it remains to be elucidated how DODAB acts on the protozoan membrane. Understanding this mechanism can provide insights into the development of new parasite-control strategies.


Assuntos
Antiprotozoários/química , Antiprotozoários/farmacologia , Cátions/química , Leishmania mexicana/efeitos dos fármacos , Nanopartículas/química , Compostos de Amônio Quaternário/química , Animais , Leishmaniose Cutânea/tratamento farmacológico , Estágios do Ciclo de Vida/efeitos dos fármacos , Lipídeos/química , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL
8.
Molecules ; 24(14)2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295880

RESUMO

The difficulties encountered and the numerous side effects present in the treatment of cutaneous leishmaniasis have encouraged the research for new compounds that can complement or replace existing treatment. The growing scientific interest in the study of plants, which are already used in folk remedies, has led our group to test Endlicheria bracteolata essential oil against Leishmania amazonensis. Several species of the Lauraceae family, or their compounds, have relevant antiprotozoal activities Therefore, the biological potential on L. amazonensis forms from the essential oil of Endlicheria bracteolata leaves was verified for the first time in that work. The antileishmanial activity was evaluated against promastigotes and intracellular amastigotes, and cytotoxicity were performed with J774.G8, which were incubated with different concentrations of E. bracteolata essential oil. Transmission electron microscopy and flow cytometry were performed with E. bracteolata essential oil IC50. Promastigote forms showed E. bracteolata essential oil IC50 of 7.945 ± 1.285 µg/mL (24 h) and 6.186 ± 1.226 µg/mL (48 h), while for intracellular amastigote forms it was 3.546 ± 1.184 µg/mL (24 h). The CC50 was 15.14 ± 0.090 µg/mL showing that E. bracteolata essential oil is less toxic to macrophages than to parasites. Transmission electron microscopy showed that E. bracteolata essential oil treatment is capable of inducing mitochondrial damage to promastigote and intracellular amastigote forms, while flow cytometry showed ΔÑ°m disruption in treated parasites. These results could bring about new possibilities to develop products based on E. bracteolata essential oil to treat cutaneous leishmaniasis, especially for people who cannot receive the conventional therapy.


Assuntos
Antiprotozoários/farmacologia , Leishmania mexicana/química , Leishmania/efeitos dos fármacos , Óleos Voláteis/farmacologia , Animais , Antiprotozoários/química , Cromatografia Gasosa-Espectrometria de Massas , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Macrófagos/patologia , Macrófagos/ultraestrutura , Camundongos , Óleos Voláteis/química , Testes de Sensibilidade Parasitária
9.
Molecules ; 25(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861910

RESUMO

In the search for new compounds with antileishmanial activity, we synthesized a triazole hybrid analogue of the neolignans grandisin and machilin G (LASQUIM 25), which was previously found highly active against both promastigotes and intracellular amastigote forms of Leishmania amazonensis. In this work, we investigated the leishmanicidal effects of LASQUIM 25 to identify the mechanisms involved in the cell death of L. amazonensis promastigotes. Transmission electron microscopy (TEM) analysis showed marked effects of LASQUIM 25 (IC50 = 7.2 µM) on the morphology of promastigote forms, notably on mitochondria. The direct action of the triazole derivative on the parasite was noticed over time from 2 h to 48 h, and cells displayed several ultrastructural alterations characteristic of apoptotic cells. Also, flow cytometric analysis (FACS) after TMRE staining detected changes in mitochondrial membrane potential after LASQUIM 25 treatment (64.83% labeling versus 83.38% labeling in nontreated cells). On the other hand, FACS after PI staining in 24 h-treatment showed a slight alteration in the integrity of the cell membrane, a necrotic event (16.76% necrotic cells versus 3.19% staining in live parasites). An abnormal secretion of lipids was observed, suggesting an exocytic activity. Another striking finding was the presence of autophagy-related lysosome-like vacuoles, suggesting an autophagic cell death that may arise as consequence of mitochondrial stress. Taken together, these results suggest that LASQUIM 25 leishmanicidal mechanisms involve some degree of mitochondrial dysregulation, already evidenced by the treatment with the IC50 of this compound. This effect may be due to the presence of a methylenedioxy group originated from machilin G, whose toxicity has been associated with the capacity to generate electrophilic intermediates.


Assuntos
Antiprotozoários , Leishmania mexicana/metabolismo , Lignanas , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Triazóis , Animais , Antiprotozoários/química , Antiprotozoários/farmacologia , Lignanas/química , Lignanas/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Triazóis/química , Triazóis/farmacologia
10.
Parasite Immunol ; 40(9): e12571, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29974519

RESUMO

This study established a protocol to purify Toxoplasma gondii tachyzoite microvesicles and exosomes, called as extracellular vesicles (EVs). In addition, the investigations were conducted to determine the kinetic of EV release by tachyzoites and whether EV proteins are able to modulate the host immune response. The particle size and concentration released by tachyzoites in culture medium at different incubation-period were characterized by nanoparticle tracking analysis. Tachyzoites (1 × 106 ) released around 4.37 ± 0.81 × 108 EVs/mL/h, with size varying between 138.2 and 171.9 nm. EVs released into the medium were purified by gel-exclusion chromatography and screened by ELISA, using a pool of human positive sera for toxoplasmosis. EV-fractions contained high concentration of proteins, and EVs were analyzed by scanning and transmission electron microscopies. Tachyzoites released EVs into the culture medium throughout all membrane surface, and these vesicles contain small RNAs/miRNA. Pooled sera from chronically infected human or mice (infected with 2 different T. gondii strains) recognized distinct EV electrophoretic patterns in immunoblotting. T. gondii EVs significantly induced IL-10, TNF-α and iNOS in murine macrophages. In conclusion, this study shows that T. gondii secrete/excrete EVs (microvesicles and exosomes) contain miRNA and they were immunologically recognized by host immune response.


Assuntos
Vesículas Extracelulares/imunologia , Toxoplasma/imunologia , Toxoplasmose/parasitologia , Animais , Ensaio de Imunoadsorção Enzimática , Exossomos/imunologia , Exossomos/parasitologia , Vesículas Extracelulares/parasitologia , Humanos , Immunoblotting , Interleucina-10/genética , Interleucina-10/imunologia , Macrófagos/imunologia , Macrófagos/parasitologia , Camundongos , Toxoplasma/genética , Toxoplasmose/genética , Toxoplasmose/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
11.
Molecules ; 22(5)2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28441357

RESUMO

Leishmaniases are neglected infectious diseases caused by parasites of the 'protozoan' genus Leishmania. Depending on the parasite species, different clinical forms are known as cutaneous, muco-cutaneous, and the visceral leishmaniasis (VL). VL is particularly fatal and the therapy presents limitations. In the search for new anti-leishmanial hit compounds, seven natural sesquiterpene lactones were evaluated against promastigotes and intracellular amastigotes of Leishmania (Leishmania) infantum, a pathogen causing VL. The pseudoguaianolides mexicanin I and helenalin acetate demonstrated the highest selectivity and potency against intracellular amastigotes. In addition, promastigotes treated with helenalin acetate were subject to an ultrastructural and biochemical investigation. The lethal action of the compound was investigated by fluorescence-activated cell sorting and related techniques to detect alterations in reactive oxygen species (ROS) content, plasma membrane permeability, and mitochondrial membrane potential. Helenalin acetate significantly reduced the mitochondrial membrane potential and the mitochondrial structural damage was also confirmed by transmission electron microscopy, displaying an intense organelle swelling. No alteration of plasma membrane permeability or ROS content could be detected. Additionally, helenalin acetate significantly increased the production of nitric oxide in peritoneal macrophages, probably potentiating the activity against the intracellular amastigotes. Helenalin acetate could hence be a useful anti-leishmanial scaffold for further optimization studies.


Assuntos
Antiprotozoários/farmacologia , Leishmania infantum/efeitos dos fármacos , Animais , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Furanos/farmacologia , Concentração Inibidora 50 , Lactonas/farmacologia , Leishmania infantum/ultraestrutura , Leishmaniose Visceral/tratamento farmacológico , Macrófagos Peritoneais/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Sesquiterpenos/farmacologia , Sesquiterpenos de Germacrano/farmacologia , Sesquiterpenos de Guaiano , Sesterterpenos
12.
Cell Immunol ; 300: 18-25, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26632272

RESUMO

Myeloperoxidase (MPO) is an important enzyme in the front-line protection against microorganisms. In peripheral blood, it is accepted that MPO is only produced by myeloid-lineage cells. Thus, MPO presence is unexpected in lymphocytes. We showed recently that B1-lymphocytes from mice have MPO. Here, we showed that subsets of human peripheral B, CD4(+) and CD8(+) T lymphocytes express MPO. The content of MPO in lymphocytes was very low compared to neutrophils/monocytes with a preferential distribution in the nucleus and perinuclear region. Also, we performed a MPO mRNA expression analysis from human blood cells derived from microarray raw data publicly available, showing that MPO is modulated in infectious disease. MPO was increased in CD4(+) T lymphocytes from HIV chronic infection and in CD8(+) T lymphocytes from HCV-positive patients. Our study points out MPO as a multifunctional protein due to its subcellular localization and expression modulation in lymphocytes indicating alternative unknown functions for MPO in lymphocytes.


Assuntos
Linfócitos B/enzimologia , Linfócitos T CD4-Positivos/enzimologia , Linfócitos T CD8-Positivos/enzimologia , Peroxidase/biossíntese , Linfócitos B/imunologia , Western Blotting , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Separação Celular , Citometria de Fluxo , Infecções por HIV/enzimologia , Infecções por HIV/imunologia , Hepatite C/enzimologia , Hepatite C/imunologia , Humanos , Imunofenotipagem , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Análise de Sequência com Séries de Oligonucleotídeos , Peroxidase/imunologia , Reação em Cadeia da Polimerase em Tempo Real
13.
Nitric Oxide ; 58: 51-8, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27328771

RESUMO

Leishmaniasis is a complex disease that is considered a serious public health problem. Due to the absence of an effective vaccine and debilitating chemotherapy better therapies are urgently needed. This situation has stimulated the search for alternative treatments such as the use of herbal medicines. Several studies conducted with Morinda citrifolia Linn. have shown various biological activities such as antitumor, immunomodulation and antileishmanial activity, however its mechanisms of action are still unknown. This study aimed to analyze the activity of M. citrifolia fruit juice against Leishmania amazonensis and its action on peritoneal macrophages from BALB/c infected with L. amazonensis. Activity against the promastigote forms showed IC50 at 275.3 µg/mL. Transmission electron microscopy was used to evaluate the ultrastructural alterations in the promastigotes treated with the juice and the results showed cytoplasmic vacuolization, lipid inclusion and increased activity of exocytosis. The juice treatment presented an IC50 at 208.4 µg/mL against intracellular amastigotes and led to an increased nitrite production in infected and non-infected macrophages. When macrophages were pre-treated with iNOS inhibitors, aminoguanidine or 1400W, the intracellular amastigotes increased, demonstrating the important role of NO production in M. citrifolia fruit activity. In conclusion, our results reveal that treatment with M. citrifolia fruit juice can increase NO production in peritoneal macrophages and this ability has an important role in the killing of L. amazonensis intracellular amastigotes.


Assuntos
Sucos de Frutas e Vegetais , Leishmania/efeitos dos fármacos , Macrófagos Peritoneais/parasitologia , Morinda/química , Óxido Nítrico/biossíntese , Preparações de Plantas/farmacologia , Tripanossomicidas/farmacologia , Amidinas/farmacologia , Anfotericina B/farmacologia , Animais , Benzilaminas/farmacologia , Feminino , Guanidinas/farmacologia , Leishmania/metabolismo , Leishmania/ultraestrutura , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/genética , RNA Mensageiro/metabolismo
14.
Exp Parasitol ; 148: 66-72, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25448354

RESUMO

Current treatments for leishmaniasis present some difficulties due to their toxicity, the use of the intravenous route for administration and therapy duration, which may lead to treatment discontinuation. The aim of this study is to investigate new treatment alternatives to improve patients well being. Therefore, we evaluated the inhibitory effect of (-)α-bisabolol, a sesquiterpene alcohol found in various essential oils of different plant species, against the promastigotes and intracellular amastigotes forms of Leishmania amazonensis, as well as the cytotoxic, morphological and ultrastructural alterations of treated cells. Promastigotes forms of L. amazonensis were incubated with (-)α-bisabolol to determine the antileishmanial activity of this compound. The cytotoxicity effect was evaluated by testing against J774.G8 cells. After these tests, the infected and uninfected cells with L. amazonensis were used to determine if the (-)α-bisabolol was able to kill intracellular parasites and to cause some morphological changes in the cells. The (-)α-bisabolol compound showed significant antileishmanial activity against promastigotes with a 50% effective concentration of 8.07 µg/ml (24 h) and 4.26 µg/ml (48 h). Against intracellular amastigotes the IC50 (inhibitory concentration) of (-)α-bisabolol (24 h) was 4.15 µg/ml. The (-)α-bisabolol also showed a cytotoxic effect against the macrophage strain J774.G8. The value of 50% cytotoxic concentration was 14.82 µg/ml showing that (-)α-bisabolol is less toxic to macrophages than to the parasite. Ultrastructural studies of treated promastigotes and amastigotes showed several alterations, such as loss of cytoplasmic organelles, including the nucleus, and the presence of lipid inclusions. This study showed that (-)α-bisabolol has promising antileishmanial properties, as it can act against the promastigote forms and is able to penetrate the cell, and is also active against the amastigote forms. About 69% of the promastigotes forms suffered mitochondrial membrane damage after treatment with IC50 of (-)α-bisabolol, suggesting inhibition of the metabolic activity of parasites. These results open new prospects for research that can contribute to the development of products based on essential oils or isolated compounds from plants for the treatment of cutaneous leishmaniasis.


Assuntos
Antiprotozoários/farmacologia , Leishmania mexicana/efeitos dos fármacos , Sesquiterpenos/farmacologia , Animais , Antiprotozoários/toxicidade , Linhagem Celular , Citometria de Fluxo , Humanos , Concentração Inibidora 50 , Leishmania mexicana/crescimento & desenvolvimento , Leishmania mexicana/ultraestrutura , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Sesquiterpenos Monocíclicos , Sesquiterpenos/toxicidade
15.
Microb Pathog ; 77: 100-4, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25448131

RESUMO

The periodontopathogen Porphyromonas gingivalis is represented by a spectrum of phenotypes ranging from commensals to pathogenic lineages. Capsule and fimbriae are considered key virulence factors in this specie, involved in colonization and host defenses evasion. Since these virulence traits may not be expressed by certain strains, we aimed to test the hypothesis that certain clusters or genotypes of P. gingivalis correlate with the production of capsule and fimbriae. Sixteen P. gingivalis isolates were evaluated. Capsule (K) was detected by optical microscopy of negatively stained cells. The presence of fimbriae (F) was determined by TEM. Genotypes were determined by NotI macrorestriction fragments analysis through Pulsed-Field Gel Electrophoresis (PFGE) and Multi-locus sequence typing (MLST) based on seven house-keeping genes. The phenotypes included F(+)K(+) (n = 4), F(-)K(+) (n = 5), F(+)K(-) (n = 5) and F(-)K(-) (n = 2). The analysis of whole genome macrorestriction fragments revealed 14 different clusters. MLST data also revealed extensive genetic diversity; however, PFGE and MLST profiles showed evident differences. There was no association between P. gingivalis clusters and encapsulated and/or fimbriated phenotypes. Genotyping methods were not able to discriminate isolates according to the production of virulence factors such as capsule and major fimbriae, indicating that recombination played a key role in the expression of capsule and fimbriae in P. gingivalis.


Assuntos
Cápsulas Bacterianas , Fímbrias Bacterianas/ultraestrutura , Variação Genética , Porphyromonas gingivalis/genética , Propriedades de Superfície , DNA Bacteriano/química , DNA Bacteriano/genética , Eletroforese em Gel de Campo Pulsado , Genótipo , Microscopia , Tipagem de Sequências Multilocus , Fenótipo , Porphyromonas gingivalis/química , Porphyromonas gingivalis/classificação , Porphyromonas gingivalis/ultraestrutura
16.
Microorganisms ; 12(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38399674

RESUMO

Visceral leishmaniasis (VL) is a chronic systemic disease. In Brazil this infection is caused by Leishmania (Leishmania) infantum. Extracellular vesicles (EVs) released by Leishmania species have different functions like the modulation of host immune systems and inflammatory responses, among others. This study evaluated the participation of EVs from L. (L.) infantum (Leish-EVs) in recognition of the humoral and cellular immune response of hosts with VL. Promastigotes were cultivated in 199 medium and, in the log phase of growth, they were centrifuged, washed, resus-pended in RPMI medium, and incubated for 2 to 24 h, at 25 °C or 37 °C to release Leish-EVs. This dynamic was evaluated using transmission (TEM) and scanning (SEM) electron microscopies, as well as nanoparticle tracking analysis (NTA). The results suggested that parasite penetration in mammal macrophages requires more Leish-EVs than those living in insect vectors, since promastigotes incubated at 37 °C released more Leish-EVs than those incubated at 25 °C. Infected THP-1 cells produced high EV concentration (THP-1 cells-EVs) when compared with those from the control group. The same results were obtained when THP-1 cells were treated with Leish-EVs or a crude Leishmania antigen. These data indicated that host-EV concentrations could be used to distinguish infected from uninfected hosts. THP-1 cells treated with Leish-EVs expressed more IL-12 than control THP-1 cells, but were unable to express IFN-γ. These same cells highly expressed IL-10, which inhibited TNF-α and IL-6. Equally, THP-1 cells treated with Leish-EVs up-expressed miR-21-5p and miR-146a-5p. In conclusion, THP-1 cells treated with Leish-EVs highly expressed miR-21-5p and miR-146a-5p and caused the dysregulation of IL-10. Indirectly, these results suggest that high expression of these miRNAs species is caused by Leish-EVs. Consequently, this molecular via can contribute to immunosuppression causing enhanced immunopathology in infected hosts.

17.
J Immunol Res ; 2024: 6817965, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962578

RESUMO

Therapeutic vaccines based on monocyte-derived dendritic cells have been shown to be promising strategies and may act as complementary treatments for viral infections, cancers, and, more recently, autoimmune diseases. Alpha-type-1-polarized dendritic cells (aDC1s) have been shown to induce type-1 immunity with a high capacity to produce interleukin-12p70 (IL-12p70). In the clinical use of cell-based therapeutics, injectable solutions can affect the morphology, immunophenotypic profile, and viability of cells before delivery and their survival after injection. In this sense, preparing a cell suspension that maintains the quality of aDC1s is essential to ensure effective immunotherapy. In the present study, monocytes were differentiated into aDC1s in the presence of IL-4 and GM-CSF. On day 5, the cells were matured by the addition of a cytokine cocktail consisting of IFN-α, IFN-γ, IL-1ß, TNF-α, and Poly I:C. After 48 hr, mature aDC1s were harvested and suspended in two different solutions: normal saline and Ringer's lactate. The maintenance of cells in suspension was evaluated after 4, 6, and 8 hr of storage. Cell viability, immunophenotyping, and apoptosis analyses were performed by flow cytometry. Cellular morphology was observed by electron microscopy, and the production of IL-12p70 by aDC1s was evaluated by ELISA. Compared with normal saline, Ringer's lactate solution was more effective at maintaining DC viability for up to 8 hr of incubation at 4 or 22°C.


Assuntos
Diferenciação Celular , Sobrevivência Celular , Células Dendríticas , Imunoterapia , Interleucina-12 , Monócitos , Células Dendríticas/imunologia , Humanos , Monócitos/imunologia , Imunoterapia/métodos , Sobrevivência Celular/efeitos dos fármacos , Interleucina-12/metabolismo , Imunofenotipagem , Citocinas/metabolismo , Células Cultivadas , Apoptose , Injeções
18.
Cell Immunol ; 281(1): 27-30, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23434459

RESUMO

Generation of hypochlorous acid (HOCl), an important microbicidal agent, is considered to be the main function of myeloperoxidase (MPO), an enzyme present in phagocytes. High amounts of MPO are present in neutrophil azurophilic granules, which are mobilized into the phagolysosome vacuole during phagocytosis. MPO is also present in monocytes and macrophages, although to a lesser degree than in neutrophils. In the present study, we investigated the distribution of MPO in murine peritoneal cells using flow cytometry, confocal microscopy (CM) and transmission electron microscopy (TEM). MPO was observed in macrophages, and surprisingly, we detected MPO in B lymphocytes, specifically in B1-a. MPO was present in cytoplasmic granules, vesicles, mitochondria and the nucleus of murine peritoneal cells. Together, these findings suggest that, in addition to its known microbicidal activity, MPO has a myriad of other unanticipated cellular functions.


Assuntos
Líquido Ascítico/citologia , Linfócitos B , Macrófagos , Cavidade Peritoneal/citologia , Peroxidase/metabolismo , Animais , Linfócitos B/enzimologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Núcleo Celular/metabolismo , Grânulos Citoplasmáticos/metabolismo , Vesículas Citoplasmáticas/metabolismo , Citometria de Fluxo , Ácido Hipocloroso/metabolismo , Macrófagos/enzimologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Microscopia Confocal , Mitocôndrias/metabolismo , Neutrófilos/enzimologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Peroxidase/imunologia
19.
Biology (Basel) ; 12(7)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37508328

RESUMO

Chagas disease is a severe infectious and parasitic disease caused by the protozoan Trypanosoma cruzi and considered a public health problem. Chemotherapeutics are still the main means of control and treatment of the disease, however with some limitations. As an alternative treatment, plants have been pointed out due to their proven pharmacological properties. Many studies carried out with Terminalia catappa have shown several biological activities, but its effect against T. cruzi is still unknown. The objective of this work is to evaluate the therapeutic potential of extracts and fractions obtained from T. catappa on the parasite T. cruzi, in addition to analyzing its antioxidant activity. T. catappa ethyl acetate fraction were produced and submitted the chemical characterization by Liquid Chromatography Coupled to Mass Spectrometry (LC-MS). From all T. catappa extracts and fractions evaluated, the ethyl acetate and the aqueous fraction displayed the best antioxidant activity by the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging method (IC50 of 7.77 ± 1.61 and 5.26 ± 1.26 µg/mL respectively), and by ferric ion reducing (FRAP) method (687.61 ± 0.26 and 1009.32 ± 0.13 µM of Trolox equivalent/mg extract, respectively). The ethyl acetate fraction showed remarkable T. cruzi inhibitory activity with IC50 of 8.86 ± 1.13, 24.91 ± 1.15 and 85.01 ± 1.21 µg/mL against epimastigotes, trypomastigotes and intracellular amastigotes, respectively, and showed no cytotoxicity for Vero cells (CC50 > 1000 µg/mL). The treatment of epimastigotes with the ethyl acetate fraction led to drastic ultrastructural changes such as the loss of cytoplasm organelles, cell disorganization, nucleus damage and the loss of integrity of the parasite. This effect could be due to secondary compounds present in this extract, such as luteolin, kaempferol, quercetin, ellagic acid and derivatives. The ethyl acetate fraction obtained from T. catappa leaves can be an effective alternative in the treatment and control of Chagas disease, and material for further investigations.

20.
Pharmaceutics ; 15(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37765261

RESUMO

Leishmaniasis is a complex disease caused by infection with different Leishmania parasites. The number of medications used for its treatment is still limited and the discovery of new drugs is a valuable approach. In this context, here we describe the in vitro leishmanicidal activity and the in silico interaction between trypanothione reductase (TryR) and (-)-5-demethoxygrandisin B from the leaves of Virola surinamensis (Rol.) Warb. The compound (-)-5-demethoxygrandisin B was isolated from V. surinamensis leaves, a plant found in the Brazilian Amazon, and it was characterized as (7R,8S,7'R,8'S)-3,4,5,3',4'-pentamethoxy-7,7'-epoxylignan. In vitro antileishmanial activity was examined against Leishmania amazonensis, covering both promastigote and intracellular amastigote phases. Cytotoxicity and nitrite production were gauged using BALB/c peritoneal macrophages. Moreover, transmission electron microscopy was applied to probe ultrastructural alterations, and flow cytometry assessed the shifts in the mitochondrial membrane potential. In silico methods such as molecular docking and molecular dynamics assessed the interaction between the most stable configuration of (-)-5-demethoxygrandisin B and TryR from L. infantum (PDB ID 2JK6). As a result, the (-)-5-demethoxygrandisin B was active against promastigote (IC50 7.0 µM) and intracellular amastigote (IC50 26.04 µM) forms of L. amazonensis, with acceptable selectivity indexes. (-)-5-demethoxygrandisin B caused ultrastructural changes in promastigotes, including mitochondrial swelling, altered kDNA patterns, vacuoles, vesicular structures, autophagosomes, and enlarged flagellar pockets. It reduced the mitochondria membrane potential and formed bonds with important residues in the TryR enzyme. The molecular dynamics simulations showed stability and favorable interaction with TryR. The compound targets L. amazonensis mitochondria via TryR enzyme inhibition.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa