Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroinflammation ; 19(1): 252, 2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36210459

RESUMO

BACKGROUND: Despite widespread searches, there are currently no validated biofluid markers for the detection of subclinical neuroinflammation in multiple sclerosis (MS). The dynamic nature of human metabolism in response to changes in homeostasis, as measured by metabolomics, may allow early identification of clinically silent neuroinflammation. Using the delayed-type hypersensitivity (DTH) MS rat model, we investigated the serum and cerebrospinal fluid (CSF) metabolomics profiles and neurofilament-light chain (NfL) levels, as a putative marker of neuroaxonal damage, arising from focal, clinically silent neuroinflammatory brain lesions and their discriminatory abilities to distinguish DTH animals from controls. METHODS: 1H nuclear magnetic resonance (NMR) spectroscopy metabolomics and NfL measurements were performed on serum and CSF at days 12, 28 and 60 after DTH lesion initiation. Supervised multivariate analyses were used to determine metabolomics differences between DTH animals and controls. Immunohistochemistry was used to assess the extent of neuroinflammation and tissue damage. RESULTS: Serum and CSF metabolomics perturbations were detectable in DTH animals (vs. controls) at all time points, with the greatest change occurring at the earliest time point (day 12) when the neuroinflammatory response was most intense (mean predictive accuracy [SD]-serum: 80.6 [10.7]%, p < 0.0001; CSF: 69.3 [13.5]%, p < 0.0001). The top discriminatory metabolites at day 12 (serum: allantoin, cytidine; CSF: glutamine, glucose) were all reduced in DTH animals compared to controls, and correlated with histological markers of neuroinflammation, particularly astrogliosis (Pearson coefficient, r-allantoin: r = - 0.562, p = 0.004; glutamine: r = - 0.528, p = 0.008). Serum and CSF NfL levels did not distinguish DTH animals from controls at day 12, rather, significant differences were observed at day 28 (mean [SEM]-serum: 38.5 [4.8] vs. 17.4 [2.6] pg/mL, p = 0.002; CSF: 1312.0 [379.1] vs. 475.8 [74.7] pg/mL, p = 0.027). Neither serum nor CSF NfL levels correlated with markers of neuroinflammation; serum NfL did, however, correlate strongly with axonal loss (r = 0.641, p = 0.001), but CSF NfL did not (p = 0.137). CONCLUSIONS: While NfL levels were elevated later in the pathogenesis of the DTH lesion, serum and CSF metabolomics were able to detect early, clinically silent neuroinflammation and are likely to present sensitive biomarkers for the assessment of subclinical disease activity in patients.


Assuntos
Esclerose Múltipla , Alantoína , Animais , Biomarcadores , Citidina , Modelos Animais de Doenças , Glucose , Glutamina , Humanos , Filamentos Intermediários , Esclerose Múltipla/líquido cefalorraquidiano , Proteínas de Neurofilamentos , Ratos
2.
J Infect Dis ; 214(2): 300-10, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27056953

RESUMO

BACKGROUND: The relevance of antibodies (Abs) in the defense against Mycobacterium tuberculosis infection remains uncertain. We investigated the role of Abs to the mycobacterial capsular polysaccharide arabinomannan (AM) and its oligosaccharide (OS) fragments in humans. METHODS: Sera obtained from 29 healthy adults before and after primary or secondary bacillus Calmette-Guerin (BCG) vaccination were assessed for Ab responses to AM via enzyme-linked immunosorbent assays, and to AM OS epitopes via novel glycan microarrays. Effects of prevaccination and postvaccination sera on BCG phagocytosis and intracellular survival were assessed in human macrophages. RESULTS: Immunoglobulin G (IgG) responses to AM increased significantly 4-8 weeks after vaccination (P < .01), and sera were able to opsonize BCG and M. tuberculosis grown in both the absence and the presence of detergent. Phagocytosis and intracellular growth inhibition were significantly enhanced when BCG was opsonized with postvaccination sera (P < .01), and these enhancements correlated significantly with IgG titers to AM (P < .05), particularly with reactivity to 3 AM OS epitopes (P < .05). Furthermore, increased phagolysosomal fusion was observed with postvaccination sera. CONCLUSIONS: Our results provide further evidence for a role of Ab-mediated immunity to tuberculosis and suggest that IgG to AM, especially to some of its OS epitopes, could contribute to the defense against mycobacterial infection in humans.


Assuntos
Anticorpos Antibacterianos/imunologia , Mananas/imunologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/imunologia , Proteínas Opsonizantes/imunologia , Fagocitose , Adulto , Anticorpos Antibacterianos/metabolismo , Vacina BCG/administração & dosagem , Vacina BCG/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Mananas/metabolismo , Análise em Microsséries , Viabilidade Microbiana , Mycobacterium tuberculosis/fisiologia , Proteínas Opsonizantes/metabolismo , Ligação Proteica
3.
BMC Infect Dis ; 16: 412, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27519524

RESUMO

BACKGROUND: In the absence of a validated animal model and/or an immune correlate which predict vaccine-mediated protection, large-scale clinical trials are currently the only option to prove efficacy of new tuberculosis candidate vaccines. Tools to facilitate testing of new tuberculosis (TB) vaccines are therefore urgently needed. METHODS: We present here an optimized ex vivo mycobacterial growth inhibition assay (MGIA) using a murine Mycobacterium tuberculosis infection model. This assay assesses the combined ability of host immune cells to inhibit mycobacterial growth in response to vaccination. C57BL/6 mice were immunized with Bacillus Calmette-Guérin (BCG) and growth inhibition of mycobacteria by splenocytes was assessed. Mice were also challenged with Mycobacterium tuberculosis Erdman, and bacterial burden was assessed in lungs and spleen. RESULTS: Using the growth inhibition assay, we find a reduction in BCG CFU of 0.3-0.8 log10 after co-culture with murine splenocytes from BCG vaccinated versus naïve C57BL/6 mice. BCG vaccination in our hands led to a reduction in bacterial burden after challenge with Mycobacterium tuberculosis of approx. 0.7 log10 CFU in lung and approx. 1 log10 CFU in spleen. This effect was also seen when using Mycobacterium smegmatis as the target of growth inhibition. An increase in mycobacterial numbers was found when splenocytes from interferon gamma-deficient mice were used, compared to wild type controls, indicating that immune mechanisms may also be investigated using this assay. CONCLUSIONS: We believe that the ex vivo mycobacterial growth inhibition assay could be a useful tool to help assess vaccine efficacy in future, alongside other established methods. It could also be a valuable tool for determination of underlying immune mechanisms.


Assuntos
Vacina BCG/imunologia , Contagem de Colônia Microbiana/métodos , Vacinas contra a Tuberculose/farmacologia , Tuberculose/prevenção & controle , Animais , Vacina BCG/farmacologia , Técnicas de Cocultura , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Interferon gama/genética , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mycobacterium bovis/imunologia , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/imunologia , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Baço/citologia , Baço/imunologia , Baço/microbiologia , Tuberculose/imunologia , Vacinas contra a Tuberculose/imunologia , Vacinação
4.
J Infect Dis ; 209(8): 1259-68, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24273174

RESUMO

BACKGROUND: A new vaccine is urgently needed to combat tuberculosis. However, without a correlate of protection, selection of the vaccines to take forward into large-scale efficacy trials is difficult. Use of bacille Calmette-Guérin (BCG) as a surrogate for human Mycobacterium tuberculosis challenge is a novel model that could aid selection. METHODS: Healthy adults were assigned to groups A and B (BCG-naive) or groups C and D (BCG-vaccinated). Groups B and D received candidate tuberculosis vaccine MVA85A. Participants were challenged with intradermal BCG 4 weeks after those who received MVA85A. Skin biopsies of the challenge site were taken 2 weeks post challenge and BCG load quantified by culture and quantitative polymerase chain reaction (qPCR). RESULTS: Volunteers with a history of BCG showed some degree of protective immunity to challenge, having lower BCG loads compared with volunteers without prior BCG, regardless of MVA85A status. There was a significant inverse correlation between antimycobacterial immunity at peak response after MVA85A and BCG load detected by qPCR. CONCLUSION: Our results support previous findings that this BCG challenge model is able to detect differences in antimycobacterial immunity induced by vaccination and could aid in the selection of candidate tuberculosis vaccines for field efficacy testing.


Assuntos
Vacina BCG/administração & dosagem , Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Tuberculose/imunologia , Tuberculose/prevenção & controle , Adolescente , Adulto , Vacina BCG/genética , DNA Bacteriano/análise , ELISPOT , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Pele/microbiologia , Teste Tuberculínico , Vacinas contra a Tuberculose/genética , Vacinas de DNA , Adulto Jovem
5.
BMC Infect Dis ; 14: 314, 2014 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24912498

RESUMO

BACKGROUND: Tuberculosis (TB) remains a global health problem, with vaccination likely to be a necessary part of a successful control strategy. Results of the first Phase 2b efficacy trial of a candidate vaccine, MVA85A, evaluated in BCG-vaccinated infants were published last year. Although no improvement in efficacy above BCG alone was seen, cryopreserved samples from this trial provide an opportunity to study the immune response to vaccination in this population. METHODS: We investigated blood samples taken before vaccination (baseline) and one and 28 days post-vaccination with MVA85A or placebo (Candin). The IFN-γ ELISpot assay was performed at baseline and on day 28 to quantify the adaptive response to Ag85A peptides. Gene expression analysis was performed at all three timepoints to identify early gene signatures predictive of the magnitude of the subsequent adaptive T cell response using the significance analysis of microarrays (SAM) statistical package and gene set enrichment analysis. RESULTS: One day post-MVA85A, there is an induction of inflammatory pathways compared to placebo samples. Modules associated with myeloid cells and inflammation pre- and one day post-MVA85A correlate with a higher IFN-γ ELISpot response post-vaccination. By contrast, previous work done in UK adults shows early inflammation in this population is not associated with a strong T cell response but that induction of regulatory pathways inversely correlates with the magnitude of the T cell response. This may be indicative of important mechanistic differences in how T cell responses develop in these two populations following vaccination with MVA85A. CONCLUSION: The results suggest the capacity of MVA85A to induce a strong innate response is key to the initiation of an adaptive immune response in South African infants but induction of regulatory pathways may be more important in UK adults. Understanding differences in immune response to vaccination between populations is likely to be an important aspect of developing successful vaccines and vaccination strategies. TRIAL REGISTRATION: ClinicalTrials.gov number NCT00953927.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/genética , Células Mieloides/fisiologia , Linfócitos T/imunologia , Vacinas contra a Tuberculose/uso terapêutico , Adulto , ELISPOT , Humanos , Lactente , Recém-Nascido , Células Mieloides/imunologia , África do Sul , Linfócitos T/fisiologia , Tuberculose/imunologia , Tuberculose/prevenção & controle , Reino Unido , Vacinação , Vacinas de DNA
6.
BMC Infect Dis ; 14: 660, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25466778

RESUMO

BACKGROUND: There is an urgent need for improved vaccines to protect against tuberculosis. The currently available vaccine Bacille Calmette-Guerin (BCG) has varying immunogenicity and efficacy across different populations for reasons not clearly understood. MVA85A is a modified vaccinia virus expressing antigen 85A from Mycobacterium tuberculosis which has been in clinical development since 2002 as a candidate vaccine to boost BCG-induced protection. A recent efficacy trial in South African infants failed to demonstrate enhancement of protection over BCG alone. The immunogenicity was lower than that seen in UK trials. The enzyme Indoleamine 2,3-dioxygenase (IDO) catalyses the first and rate-limiting step in the breakdown of the essential amino acid tryptophan. T cells are dependent on tryptophan and IDO activity suppresses T-cell proliferation and function. METHODS: Using samples collected during phase I trials with MVA85A across the UK and South Africa we have investigated the relationship between vaccine immunogenicity and IDO using IFN-γ ELISPOT, qPCR and liquid chromatography mass spectrometry. RESULTS: We demonstrate an IFN-γ dependent increase in IDO mRNA expression in peripheral blood mononuclear cells (PBMC) following MVA85A vaccination in UK subjects. IDO mRNA correlates positively with the IFN-γ ELISPOT response indicating that vaccine specific induction of IDO in PBMC is unlikely to limit the development of vaccine specific immunity. IDO activity in the serum of volunteers from the UK and South Africa was also assessed. There was no change in serum IDO activity following MVA85A vaccination. However, we observed higher baseline IDO activity in South African volunteers when compared to UK volunteers. In both UK and South African serum samples, baseline IDO activity negatively correlated with vaccine-specific IFN-γ responses, suggesting that IDO activity may impair the generation of a CD4+ T cell memory response. CONCLUSIONS: Baseline IDO activity was higher in South African volunteers when compared to UK volunteers, which may represent a potential mechanism for the observed variation in vaccine immunogenicity in South African and UK populations and may have important implications for future vaccination strategies. TRIAL REGISTRATION: Trials are registered at ClinicalTrials.gov; UK cohort NCT00427830, UK LTBI cohort NCT00456183, South African cohort NCT00460590, South African LTBI cohort NCT00480558.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/efeitos dos fármacos , Interferon gama/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Mycobacterium tuberculosis/imunologia , RNA Mensageiro/metabolismo , Vacinas contra a Tuberculose/farmacologia , Tuberculose/prevenção & controle , Adulto , Vacina BCG , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , ELISPOT , Feminino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/sangue , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Leucócitos Mononucleares/metabolismo , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , África do Sul , Reino Unido , Vacinação , Vacinas de DNA , Adulto Jovem
7.
Front Immunol ; 15: 1355983, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380319

RESUMO

Introduction: First described by Wallis et al. in 2001 for the assessment of TB drugs, the direct mycobacterial growth inhibition assay (MGIA) offers a tractable ex vivo tool measuring the combined influences of host immunity, strain virulence and intervention effects. Over the past 13 years, we have led efforts to adapt the direct MGIA for the assessment of TB vaccines including optimisation, harmonisation and validation of BCG vaccine-induced responses as a benchmark, as well as assay transfer to institutes worldwide. Methods: We have performed a systematic review on the primary published literature describing the development and applications of the direct MGIA from 2001 to June 2023 in accordance with the PRISMA reporting guidelines. Results: We describe 63 studies in which the direct MGIA has been applied across species for the evaluation of TB drugs and novel TB vaccine candidates, the study of clinical cohorts including those with comorbidities, and to further understanding of potential immune correlates of protection from TB. We provide a comprehensive update on progress of the assay since its conception and critically evaluate current findings and evidence supporting its utility, highlighting priorities for future directions. Discussion: While further standardisation and validation work is required, significant advancements have been made in the past two decades. The direct MGIA provides a potentially valuable tool for the early evaluation of TB drug and vaccine candidates, clinical cohorts, and immune mechanisms of mycobacterial control. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023423491.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Vacina BCG , Tuberculose/microbiologia , Vacinas contra a Tuberculose
8.
Tuberculosis (Edinb) ; 146: 102494, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38367368

RESUMO

Human tuberculosis (TB) is caused by various members of the Mycobacterium tuberculosis (Mtb) complex. Differences in host response to infection have been reported, illustrative of a need to evaluate efficacy of novel vaccine candidates against multiple strains in preclinical studies. We previously showed that the murine lung and spleen direct mycobacterial growth inhibition assay (MGIA) can be used to assess control of ex vivo mycobacterial growth by host cells. The number of mice required for the assay is significantly lower than in vivo studies, facilitating testing of multiple strains and/or the incorporation of other cellular analyses. Here, we provide proof-of-concept that the murine MGIA can be applied to evaluate vaccine-induced protection against multiple Mtb clinical isolates. Using an ancient and modern strain of the Mtb complex, we demonstrate that ex vivo bacillus Calmette-Guérin (BCG)-mediated mycobacterial growth inhibition recapitulates protection observed in the lung and spleen following in vivo infection of mice. Further, we provide the first report of cellular and transcriptional correlates of BCG-induced growth inhibition in the lung MGIA. The ex vivo MGIA represents a promising platform to gain early insight into vaccine performance against a collection of Mtb strains and improve preclinical evaluation of TB vaccine candidates.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose , Camundongos , Humanos , Animais , Vacina BCG , Ensaios de Triagem em Larga Escala , Tuberculose/microbiologia
9.
Tuberculosis (Edinb) ; 148: 102533, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38878478

RESUMO

Tuberculosis (TB) is an infectious disease with the burden concentrated in low- and middle-income countries. Systemic lupus erythematosus (SLE) is an autoimmune disease associated with widespread inflammation that is prevalent in some TB endemic areas including East Africa and parts of Southeast Asia. SLE patients are known to be at higher risk of becoming infected with M. tb, developing TB disease. However, the immune mechanisms underlying this susceptibility are not well understood, particularly in the absence of immunosuppressive drugs. We present a pilot study in which we have evaluated intracellular cytokine responses and ex vivo ability to control mycobacterial growth using peripheral blood mononuclear cells (PBMC) collected from SLE patients before and during SLE treatment. After six months of treatment, SLE patients had the highest frequencies of CD8+ T cells, NK cells and NKT cells producing IFN-γ and/or TNF-α. This group also showed superior control of mycobacterial growth, and proinflammatory cytokine-producing NK and NKT cells correlated with mycobacterial growth inhibition at the individual patient level. These findings contribute to a better understanding of autoimmune profiles associated with control of mycobacterial growth in SLE patients, which may inform intervention strategies to reduce risk of TB disease in this population.

10.
Front Immunol ; 15: 1387454, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799468

RESUMO

Introduction: Mycobacteria are known to exert a range of heterologous effects on the immune system. The mycobacteria-based Freund's Complete Adjuvant is a potent non-specific stimulator of the immune response used in immunization protocols promoting antibody production, and Mycobacterium bovis Bacille Calmette Guérin (BCG) vaccination has been linked with decreased morbidity and mortality beyond the specific protection it provides against tuberculosis (TB) in some populations and age groups. The role of heterologous antibodies in this phenomenon, if any, remains unclear and under-studied. Methods: We set out to evaluate antibody responses to a range of unrelated pathogens following infection with Mycobacterium tuberculosis (M.tb) and vaccination with BCG or a candidate TB vaccine, MTBVAC, in non-human primates. Results: We demonstrate a significant increase in the titer of antibodies against SARS-CoV-2, cytomegalovirus, Epstein-Barr virus, tetanus toxoid, and respiratory syncytial virus antigens following low-dose aerosol infection with M.tb. The magnitude of some of these responses correlated with TB disease severity. However, vaccination with BCG administered by the intradermal, intravenous or aerosol routes, or intradermal delivery of MTBVAC, did not increase antibody responses against unrelated pathogens. Discussion: Our findings suggest that it is unlikely that heterologous antibodies contribute to the non-specific effects of these vaccines. The apparent dysregulation of B cell responses associated with TB disease warrants further investigation, with potential implications for risk of B cell cancers and novel therapeutic strategies.


Assuntos
Vacina BCG , Mycobacterium tuberculosis , Tuberculose , Vacinação , Animais , Vacina BCG/imunologia , Vacina BCG/administração & dosagem , Tuberculose/imunologia , Tuberculose/prevenção & controle , Mycobacterium tuberculosis/imunologia , Anticorpos Antibacterianos/imunologia , Anticorpos Antibacterianos/sangue , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Vacinas contra a Tuberculose/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Feminino , Macaca mulatta , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Imunidade Heteróloga , Masculino
11.
Lancet Infect Dis ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38621405

RESUMO

BACKGROUND: Mycobacterium tuberculosis is the main causative agent of tuberculosis. BCG, the only licensed vaccine, provides inadequate protection against pulmonary tuberculosis. Controlled human infection models are useful tools for vaccine development. We aimed to determine a safe dose of aerosol-inhaled live-attenuated Mycobacterium bovis BCG as a surrogate for M tuberculosis infection, then compare the safety and tolerability of infection models established using aerosol-inhaled and intradermally administered BCG. METHODS: This phase 1 controlled human infection trial was conducted at two clinical research facilities in the UK. Healthy, immunocompetent adults aged 18-50 years, who were both M tuberculosis-naive and BCG-naive and had no history of asthma or other respiratory diseases, were eligible for the trial. Participants were initially enrolled into group 1 (receiving the BCG Danish strain); the trial was subsequently paused because of a worldwide shortage of BCG Danish and, after protocol amendment, was restarted using the BCG Bulgaria strain (group 2). After a dose-escalation study, during which participants were sequentially allocated to receive either 1 × 103, 1 × 104, 1 × 105, 1 × 106, or 1 × 107 colony-forming units (CFU) of aerosol BCG, the maximum tolerated dose was selected for the randomised controlled trial. Participants in this trial were randomly assigned (9:12), by variable block randomisation and using sequentially numbered sealed envelopes, to receive aerosol BCG (1 × 107 CFU) and intradermal saline or intradermal BCG (1 × 106 CFU) and aerosol saline. Participants were masked to treatment allocation until day 14. The primary outcome was to compare the safety of a controlled human infection model based on aerosol-inhaled BCG versus one based on intradermally administered BCG, and the secondary outcome was to evaluate BCG recovery in the airways of participants who received aerosol BCG or skin biopsies of participants who received intradermal BCG. BCG was detected by culture and by PCR. The trial is registered at ClinicalTrials.gov, NCT02709278, and is complete. FINDINGS: Participants were assessed for eligibility between April 7, 2016, and Sept 29, 2018. For group 1, 15 participants were screened, of whom 13 were enrolled and ten completed the study; for group 2, 60 were screened and 33 enrolled, all of whom completed the study. Doses up to 1 × 107 CFU aerosol-inhaled BCG were sufficiently well tolerated. No significant difference was observed in the frequency of adverse events between aerosol and intradermal groups (median percentage of solicited adverse events per participant, post-aerosol vs post-intradermal BCG: systemic 7% [IQR 2-11] vs 4% [1-13], p=0·62; respiratory 7% [1-19] vs 4% [1-9], p=0·56). More severe systemic adverse events occurred in the 2 weeks after aerosol BCG (15 [12%] of 122 reported systemic adverse events) than after intradermal BCG (one [1%] of 94; difference 11% [95% CI 5-17]; p=0·0013), but no difference was observed in the severity of respiratory adverse events (two [1%] of 144 vs zero [0%] of 97; 1% [-1 to 3]; p=0·52). All adverse events after aerosol BCG resolved spontaneously. One serious adverse event was reported-a participant in group 2 was admitted to hospital to receive analgesia for a pre-existing ovarian cyst, which was deemed unrelated to BCG infection. On day 14, BCG was cultured from bronchoalveolar lavage samples after aerosol infection and from skin biopsy samples after intradermal infection. INTERPRETATION: This first-in-human aerosol BCG controlled human infection model was sufficiently well tolerated. Further work will evaluate the utility of this model in assessing vaccine efficacy and identifying potential correlates of protection. FUNDING: Bill & Melinda Gates Foundation, Wellcome Trust, National Institute for Health Research Oxford Biomedical Research Centre, Thames Valley Clinical Research Network, and TBVAC2020.

12.
Lancet Microbe ; 5(7): 655-668, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38703782

RESUMO

BACKGROUND: A SARS-CoV-2 controlled human infection model (CHIM) has been successfully established in seronegative individuals using a dose of 1×101 50% tissue culture infectious dose (TCID50) pre-alpha SARS-CoV-2 virus. Given the increasing prevalence of seropositivity to SARS-CoV-2, a CHIM that could be used for vaccine development will need to induce infection in those with pre-existing immunity. Our aim was to find a dose of pre-alpha SARS-CoV-2 virus that induced infection in previously infected individuals. METHODS: Healthy, UK volunteers aged 18-30 years, with proven (quantitative RT-PCR or lateral flow antigen test) previous SARS-CoV-2 infection (with or without vaccination) were inoculated intranasally in a stepwise dose escalation CHIM with either 1×101, 1×102, 1×10³, 1×104, or 1×105 TCID50 SARS-CoV-2/human/GBR/484861/2020, the same virus used in the seronegative CHIM. Post-inoculation, volunteers were quarantined in functionally negative pressure rooms (Oxford, UK) for 14 days and until 12-hourly combined oropharyngeal-nasal swabs were negative for viable virus by focus-forming assay. Outpatient follow-up continued for 12 months post-enrolment, with additional visits for those who developed community-acquired SARS-CoV-2 infection. The primary objective was to identify a safe, well tolerated dose that induced infection (defined as two consecutive SARS-CoV-2 positive PCRs starting 24 h after inoculation) in 50% of seropositive volunteers. This study is registered with ClinicalTrials.gov (NCT04864548); enrolment and follow-up to 12 months post-enrolment are complete. FINDINGS: Recruitment commenced on May 6, 2021, with the last volunteer enrolled into the dose escalation cohort on Nov 24, 2022. 36 volunteers were enrolled, with four to eight volunteers inoculated in each dosing group from 1×101 to 1×105 TCID50 SARS-CoV-2. All volunteers have completed quarantine, with follow-up to 12 months complete. Despite dose escalation to 1×105 TCID50, we were unable to induce sustained infection in any volunteers. Five (14%) of 36 volunteers were considered to have transient infection, based on the kinetic of their PCR-positive swabs. Transiently infected volunteers had significantly lower baseline mucosal and systemic SARS-CoV-2-specific antibody titres and significantly lower peripheral IFNγ responses against a CD8+ T-cell SARS-CoV-2 peptide pool than uninfected volunteers. 14 (39%) of 36 volunteers subsequently developed breakthrough infection with the omicron variant after discharge from quarantine. Most adverse events reported by volunteers in quarantine were mild, with fatigue (16 [44%]) and stuffy nose (16 [44%]) being the most common. There were no serious adverse events. INTERPRETATION: Our study demonstrates potent protective immunity induced by homologous vaccination and homologous or heterologous previous SARS-CoV-2 infection. The community breakthrough infections seen with the omicron variant supports the use of newer variants to establish a model with sufficient rate of infection for use in vaccine and therapeutic development. FUNDING: Wellcome Trust and Department for Health and Social Care.


Assuntos
Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Humanos , Adulto , SARS-CoV-2/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Masculino , Adulto Jovem , Reino Unido/epidemiologia , Feminino , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Adolescente , Voluntários Saudáveis , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/efeitos adversos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Vacinação/métodos
13.
J Infect Public Health ; 16(8): 1322-1331, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37343504

RESUMO

BACKGROUND: Research concerned with attitudes towards COVID-19 vaccination in upper middle-income countries such as Bosnia and Herzegovina (B&H) is scarce. Currently, B&H has the lowest number of fully vaccinated adults in Europe, and the highest cumulative number of COVID-19 deaths and SARS-CoV-2 infected individuals. The aim of our study was to examine the factors associated with COVID-19 vaccination status in B&H. METHODS: An online survey among 1304 B&H adults was conducted in October 2021 evaluating vaccine acceptance, together with socio-demographic variables, attitudes and beliefs related to COVID-19 vaccination. RESULTS: The results from a binary logistic regression indicate that those who believed that the COVID-19 vaccine was effective were 45 times more likely to be vaccinated compared to those who did not. We also show that those who had received childhood immunisations were 41 times more likely to be vaccinated against COVID-19 compared to those who had never been previously immunised. Other significant factors were related to respondents' trust in government institutions and healthcare policymakers as well as trust in public healthcare workers. CONCLUSION: We suggest that future vaccination campaigns should be aimed at educating the public regarding the importance and safety of vaccines, together with strengthening trust in the public health system.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Humanos , Criança , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Imunização
14.
Front Immunol ; 13: 977525, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275731

RESUMO

Vaccination, as a public health measure, offers effective protection of populations against infectious diseases. Optimising vaccination efficacy, particularly for higher-risk individuals, like the elderly whose immunocompromised state can prevent the development of robust vaccine responses, is vital. It is now clear that 24-hour circadian rhythms, which govern virtually all aspects of physiology, can generate oscillations in immunological responses. Consequently, vaccine efficacy may depend critically on the time of day of administration(s), including for Covid-19, current vaccines, and any future diseases or pandemics. Published clinical vaccine trials exploring diurnal immune variations suggest this approach could represent a powerful adjunct strategy for optimising immunisation, but important questions remain to be addressed. This review explores the latest insights into diurnal immune variation and the outcomes of circadian timing of vaccination or 'chronovaccination'.


Assuntos
COVID-19 , Vacinas , Humanos , Idoso , Ritmo Circadiano , COVID-19/prevenção & controle , Vacinação
15.
Nat Commun ; 13(1): 6594, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329009

RESUMO

Tuberculosis vaccine development is hindered by the lack of validated immune correlates of protection. Exploring immune correlates of risk of disease and/or infection in prospective samples can inform this field. We investigate whether previously identified immune correlates of risk of TB disease also associate with increased risk of M.tb infection in BCG-vaccinated South African infants, who became infected with M.tb during 2-3 years of follow-up. M.tb infection is defined by conversion to positive reactivity in the QuantiFERON test. We demonstrate that inflammation and immune activation are associated with risk of M.tb infection. Ag85A-specific IgG is elevated in infants that were subsequently infected with M.tb, and this is coupled with upregulated gene expression of immunoglobulin-associated genes and type-I interferon. Plasma levels of IFN-[Formula: see text]2, TNF-[Formula: see text], CXCL10 (IP-10) and complement C2 are also higher in infants that were subsequently infected with M.tb.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Lactente , Humanos , Vacina BCG , Antígenos de Bactérias , Estudos Prospectivos , Interferon gama , Tuberculose/microbiologia , Inflamação , Mycobacterium tuberculosis/genética
16.
Sci Rep ; 12(1): 7808, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35552463

RESUMO

Bacille Calmette-Guérin (BCG), the only currently licenced tuberculosis vaccine, may exert beneficial non-specific effects (NSE) in reducing infant mortality. We conducted a randomised controlled clinical study in healthy UK adults to evaluate potential NSE using functional in-vitro growth inhibition assays (GIAs) as a surrogate of protection from four bacteria implicated in infant mortality. Volunteers were randomised to receive BCG intradermally (n = 27) or to be unvaccinated (n = 8) and were followed up for 84 days; laboratory staff were blinded until completion of the final visit. Using GIAs based on peripheral blood mononuclear cells, we observed a significant reduction in the growth of the Gram-negative bacteria Escherichia coli and Klebsiella pneumonia following BCG vaccination, but no effect for the Gram-positive bacteria Staphylococcus aureus and Streptococcus agalactiae. There was a modest association between S. aureus nasal carriage and growth of S. aureus in the GIA. Our findings support a causal link between BCG vaccination and improved ability to control growth of heterologous bacteria. Unbiased assays such as GIAs are potentially useful tools for the assessment of non-specific as well as specific effects of TB vaccines. This study was funded by the Bill and Melinda Gates Foundation and registered with ClinicalTrials.gov (NCT02380508, 05/03/2015; completed).


Assuntos
Vacina BCG , Vacinas contra a Tuberculose , Adulto , Humanos , Lactente , Leucócitos Mononucleares , Staphylococcus aureus , Vacinação
17.
Vaccines (Basel) ; 9(4)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921593

RESUMO

This review critically assesses the body of research about Measles-Mumps-and-Rubella (MMR) vaccine attitudes and uptake in the United Kingdom (UK) over the past 10 years. We searched PubMed and Scopus, with terms aimed at capturing relevant literature on attitudes about, and uptake of, the MMR vaccine. Two researchers screened for abstract eligibility and after de-duplication 934 studies were selected. After screening, 40 references were included for full-text review and thematic synthesis by three researchers. We were interested in the methodologies employed and grouped findings by whether studies concerned: (1) Uptake and Demographics; (2) Beliefs and Attitudes; (3) Healthcare Worker Focus; (4) Experimental and Psychometric Intervention; and (5) Mixed Methods. We identified group and individual level determinants for attitudes, operating directly and indirectly, which influence vaccine uptake. We found that access issues, often ignored within the public "anti-vax" debate, remain highly pertinent. Finally, a consistent theme was the effect of misinformation or lack of knowledge and trust in healthcare, often stemming from the Wakefield controversy. Future immunisation campaigns for children, including for COVID-19, should consider both access and attitudinal aspects of vaccination, and incorporate a range of methodologies to assess progress, taking into account socio-economic variables and the needs of disadvantaged groups.

18.
NPJ Vaccines ; 6(1): 3, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397986

RESUMO

We present a non-human primate mycobacterial growth inhibition assay (MGIA) using in vitro blood or cell co-culture with the aim of refining and expediting early tuberculosis vaccine testing. We have taken steps to optimise the assay using cryopreserved peripheral blood mononuclear cells, transfer it to end-user institutes, and assess technical and biological validity. Increasing cell concentration or mycobacterial input and co-culturing in static 48-well plates compared with rotating tubes improved intra-assay repeatability and sensitivity. Standardisation and harmonisation efforts resulted in high consistency agreements, with repeatability and intermediate precision <10% coefficient of variation (CV) and inter-site reproducibility <20% CV; although some systematic differences were observed. As proof-of-concept, we demonstrated ability to detect a BCG vaccine-induced improvement in growth inhibition in macaque samples, and a correlation between MGIA outcome and measures of protection from in vivo disease development following challenge with either intradermal BCG or aerosol/endobronchial Mycobacterium tuberculosis (M.tb) at a group and individual animal level.

19.
F1000Res ; 10: 257, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33976866

RESUMO

The only currently available approach to early efficacy testing of tuberculosis (TB) vaccine candidates is in vivo preclinical challenge models. These typically include mice, guinea pigs and non-human primates (NHPs), which must be exposed to virulent M.tb in a 'challenge' experiment following vaccination in order to evaluate protective efficacy. This procedure results in disease development and is classified as 'Moderate' in severity under EU legislation and UK ASPA licensure. Furthermore, experiments are relatively long and animals must be maintained in high containment level facilities, making them relatively costly. We describe an in vitro protocol for the direct mycobacterial growth inhibition assay (MGIA) for use in the macaque model of TB vaccine development with the aim of overcoming some of these limitations. Importantly, using an in vitro assay in place of in vivo M.tb challenge represents a significant refinement to the existing procedure for early vaccine efficacy testing. Peripheral blood mononuclear cell and autologous serum samples collected from vaccinated and unvaccinated control animals are co-cultured with mycobacteria in a 48-well plate format for 96 hours. Adherent monocytes are then lysed to release intracellular mycobacteria which is quantified using the BACTEC MGIT system and colony-forming units determined relative to an inoculum control and stock standard curve. We discuss related optimisation and characterisation experiments, and review evidence that the direct NHP MGIA provides a biologically relevant model of vaccine-induced protection. The potential end-users of the NHP MGIA are academic and industry organisations that conduct the assessment of TB vaccine candidates and associated protective immunity using the NHP model. This approach aims to provide a method for high-throughput down-selection of vaccine candidates going forward to in vivo efficacy testing, thus expediting the development of a more efficacious TB vaccine and offering potential refinement and reduction to the use of NHPs for this purpose.


Assuntos
Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose , Animais , Cobaias , Leucócitos Mononucleares , Camundongos , Primatas , Tuberculose/prevenção & controle
20.
Sci Rep ; 11(1): 12274, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112845

RESUMO

This study describes the use of cynomolgus macaques of Chinese origin (CCM) to evaluate the efficacy and immunogenicity of the BCG vaccine against high dose aerosol Mycobacterium tuberculosis challenge. Progressive disease developed in three of the unvaccinated animals within 10 weeks of challenge, whereas all six vaccinated animals controlled disease for 26 weeks. Three unvaccinated animals limited disease progression, highlighting the intrinsic ability of this macaque species to control disease in comparison to macaques of other species and genotypes. Low levels of IFNγ were induced by BCG vaccination in CCM suggesting that IFNγ alone does not provide a sufficiently sensitive biomarker of vaccination in this model. An early response after challenge, together with the natural bias towards terminal effector memory T-cell populations and the contribution of monocytes appears to enhance the ability of CCM to naturally control infection. The high dose aerosol challenge model of CCM has value for examination of the host immune system to characterise control of infection which would influence future vaccine design. Although it may not be the preferred platform for the assessment of prophylactic vaccine candidates, the model could be well suited for testing post-exposure vaccination strategies and drug evaluation studies.


Assuntos
Vacina BCG/administração & dosagem , Vacina BCG/imunologia , Interações Hospedeiro-Patógeno/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/prevenção & controle , Administração por Inalação , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Imunidade Humoral , Imunização , Memória Imunológica , Macaca , Masculino , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa