Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Chem Res Toxicol ; 35(11): 2059-2067, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36282523

RESUMO

DNA-protein cross-links (DPCs) are generated by internal factors such as cellular aldehydes that are generated during normal metabolism and external factors such as environmental mutagens. A nucleoside analog, 5-aza-2'-deoxycytidine (5-azadC), is randomly incorporated into the genome during DNA replication and binds DNA methyltransferase 1 (DNMT1) covalently to form DNMT1-DPCs without inducing DNA strand breaks. Despite the recent progress in understanding the mechanisms of DPCs repair, how DNMT1-DPCs are repaired is unclear. The metalloprotease SPRTN has been considered as the primary enzyme to degrade protein components of DPCs to initiate the repair of DPCs. In this study, we showed that SPRTN-deficient (SPRTN-/-) human TK6 cells displayed high sensitivity to 5-azadC, and the removal of 5-azadC-induced DNMT1-DPCs was significantly slower in SPRTN-/- cells than that in wild-type cells. We also showed that the ubiquitination-dependent proteasomal degradation, which was independent of the SPRTN-mediated processing, was also involved in the repair of DNMT1-DPCs. Unexpectedly, we found that cells that are double deficient in tyrosyl DNA phosphodiesterase 1 and 2 (TDP1-/-TDP2-/-) were also sensitive to 5-azadC, although the removal of 5-azadC-induced DNMT1-DPCs was not compromised significantly. Furthermore, the 5-azadC treatment induced a marked accumulation of chromosomal breaks in SPRTN-/- as well as TDP1-/-TDP2-/- cells compared to wild-type cells, strongly suggesting that the 5-azadC-induced cell death was attributed to chromosomal DNMT1-DPCs. We conclude that SPRTN protects cells from 5-azadC-induced DNMT1-DPCs, and SPRTN may play a direct proteolytic role against DNMT1-DPCs and TDP1/TDP2 also contributes to suppress genome instability caused by 5-azadC in TK6 cells.


Assuntos
Reparo do DNA , Instabilidade Genômica , Humanos , Decitabina/farmacologia , DNA/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo
2.
Nucleic Acids Res ; 45(17): 10079-10088, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28973450

RESUMO

Mitochondrial aprataxin (APTX) protects the mitochondrial genome from the consequence of ligase failure by removing the abortive ligation product, i.e. the 5'-adenylate (5'-AMP) group, during DNA replication and repair. In the absence of APTX activity, blocked base excision repair (BER) intermediates containing the 5'-AMP or 5'-adenylated-deoxyribose phosphate (5'-AMP-dRP) lesions may accumulate. In the current study, we examined DNA polymerase (pol) γ and pol ß as possible complementing enzymes in the case of APTX deficiency. The activities of pol ß lyase and FEN1 nucleotide excision were able to remove the 5'-AMP-dRP group in mitochondrial extracts from APTX-/- cells. However, the lyase activity of purified pol γ was weak against the 5'-AMP-dRP block in a model BER substrate, and this activity was not able to complement APTX deficiency in mitochondrial extracts from APTX-/-Pol ß-/- cells. FEN1 also failed to provide excision of the 5'-adenylated BER intermediate in mitochondrial extracts. These results illustrate the potential role of pol ß in complementing APTX deficiency in mitochondria.


Assuntos
DNA Polimerase beta/fisiologia , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/deficiência , Mitocôndrias/enzimologia , Proteínas Nucleares/deficiência , DNA/metabolismo , DNA Polimerase gama/fisiologia , Endonucleases Flap/fisiologia , Humanos , Técnicas In Vitro , Proteínas Recombinantes/metabolismo
3.
Chem Res Toxicol ; 30(2): 699-704, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-27943678

RESUMO

Tirapazamine (TPZ) is an anticancer drug with highly selective cytotoxicity toward hypoxic cells. TPZ is converted to a radical intermediate under hypoxic conditions, and this intermediate interacts with intracellular macromolecules, including DNA. TPZ has been reported to indirectly induce DNA double-strand breaks (DSBs) through the formation of various intermediate DNA lesions under hypoxic conditions. Although the topoisomerase II-DNA complex has been identified as one of these intermediates, other lesions have not yet been defined. In order to obtain a deeper understanding of the mechanisms responsible for the selective cytotoxicity of TPZ toward hypoxic cells, its cellular sensitivity was systematically examined with genetically isogenic DNA-repair-deficient mutant DT40 cell lines. Our results showed that tdp1-/-, tdp2-/-, parp1-/-, and aptx1-/- cells displayed hypersensitivity to TPZ only under hypoxic conditions. These results strongly suggest that the accumulation of the topoisomerase I-trapped DNA complex, topoisomerase II-trapped DNA complex, and abortive ligation products with 5'-AMP are the potential causes of TPZ-induced hypoxic cell death. Furthermore, our genetic analysis revealed that under normoxic conditions (as well as hypoxic conditions), TPZ exhibited significant cytotoxicity toward cell lines deficient in homologous recombination, nonhomologous end joining, base excision repair, and translesion synthesis. Ascorbic acid, a radical scavenger, suppressed TPZ-induced cytotoxicity toward normoxic cells. These results suggest the involvement of oxidative DNA damage and DSBs produced by reactive oxygen species generated from superoxide, a byproduct of the oxidation of TPZ radical intermediates in normoxic cells. Collectively, our results demonstrate that TPZ induces oxidative DNA damage under normoxic and hypoxic conditions and selectively introduces abortive topoisomerase-DNA complexes and unligatable DNA ends under hypoxic conditions.


Assuntos
Antineoplásicos/toxicidade , Dano ao DNA , DNA/efeitos dos fármacos , Triazinas/toxicidade , Animais , Linhagem Celular , Galinhas , Ensaio Cometa , Espécies Reativas de Oxigênio/metabolismo , Tirapazamina
4.
Genes Environ ; 43(1): 35, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34353368

RESUMO

BACKGROUND: Peroxiredoxin 1 (PRDX1) is a member of a ubiquitous family of thiol peroxidases that catalyze the reduction of peroxides, including hydrogen peroxide. It functions as an antioxidant enzyme, similar to catalase and glutathione peroxidase. PRDX1 was recently shown act as a sensor of reactive oxygen species (ROS) and play a role in ROS-dependent intracellular signaling pathways. To investigate its physiological functions, PRDX1 was conditionally disrupted in chicken DT40 cells in the present study. RESULTS: The depletion of PRDX1 resulted in cell death with increased levels of intracellular ROS. PRDX1-depleted cells did not show the accumulation of chromosomal breaks or sister chromatid exchange (SCE). These results suggest that cell death in PRDX1-depleted cells was not due to DNA damage. 2-Mercaptoethanol protected against cell death in PRDX1-depleted cells and also suppressed elevations in ROS. CONCLUSIONS: PRDX1 is essential in chicken DT40 cells and plays an important role in maintaining intracellular ROS homeostasis (or in the fine-tuning of cellular ROS levels). Cells deficient in PRDX1 may be used as an endogenously deregulated ROS model to elucidate the physiological roles of ROS in maintaining proper cell growth.

5.
J Radiat Res ; 61(6): 876-885, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32601693

RESUMO

Based on our previously published reports concerning the response of quiescent (Q) tumor cell populations to boron neutron capture therapy (BNCT), the heterogeneous microdistribution of 10B in tumors, which is influenced by the tumor microenvironment and the characteristics of the 10B delivery carriers, has been shown to limit the therapeutic effect of BNCT on local tumors. It was also clarified that the characteristics of 10B-carriers for BNCT and the type of combined treatment in BNCT can also affect the potential for distant lung metastases from treated local tumors. We reviewed the findings concerning the response of Q tumor cell populations to BNCT, mainly focusing on reports we have published so far, and we identified the mode of BNCT that currently offers the best therapeutic gain from the viewpoint of both controlling local tumor and suppressing the potential for distant lung metastasis. In addition, based on the finding that oxygenated Q tumor cells showed a large capacity to recover from DNA damage after cancer therapy, the interrelationship among the characteristics in Q tumor cell populations, tumor heterogeneity and cancer stemness was also discussed.


Assuntos
Terapia por Captura de Nêutron de Boro/métodos , Boro , Senescência Celular/efeitos da radiação , Dano ao DNA/efeitos da radiação , Isótopos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/secundário , Neoplasias/terapia , Células-Tronco Neoplásicas/efeitos da radiação , Animais , Apoptose , Boroidretos , Compostos de Boro/uso terapêutico , Humanos , Ligantes , Camundongos , Metástase Neoplásica , Transplante de Neoplasias , Oxigênio/química , Microambiente Tumoral
6.
PLoS One ; 15(6): e0234859, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32589683

RESUMO

Proteins are covalently trapped on DNA to form DNA-protein cross-links (DPCs) when cells are exposed to DNA-damaging agents. Aldehyde compounds produce common types of DPCs that contain proteins in an undisrupted DNA strand. Tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs topoisomerase 1 (TOPO1) that is trapped at the 3'-end of DNA. In the present study, we examined the contribution of TDP1 to the repair of formaldehyde-induced DPCs using a reverse genetic strategy with chicken DT40 cells. The results obtained showed that cells deficient in TDP1 were sensitive to formaldehyde. The removal of formaldehyde-induced DPCs was slower in tdp1-deficient cells than in wild type cells. We also found that formaldehyde did not produce trapped TOPO1, indicating that trapped TOPO1 was not a primary cytotoxic DNA lesion that was generated by formaldehyde and repaired by TDP1. The formaldehyde treatment resulted in the accumulation of chromosomal breakages that were more prominent in tdp1-deficient cells than in wild type cells. Therefore, TDP1 plays a critical role in the repair of formaldehyde-induced DPCs that are distinct from trapped TOPO1.


Assuntos
Reparo do DNA , DNA Topoisomerases Tipo I/metabolismo , DNA/metabolismo , Formaldeído/toxicidade , Diester Fosfórico Hidrolases/metabolismo , Animais , Linhagem Celular , Galinhas , Quebra Cromossômica/efeitos dos fármacos , DNA/química , Quebras de DNA/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , DNA Topoisomerases Tipo I/química , Decitabina/toxicidade , Mitomicina/toxicidade , Diester Fosfórico Hidrolases/genética
7.
Biochem Biophys Res Commun ; 379(2): 233-8, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19100713

RESUMO

Manganese-dependent superoxide dismutase (SOD2) serves as the primary defense against mitochondrial superoxide, and decreased SOD2 activity results in a range of pathologies. To investigate the events occurring soon after depletion of SOD2, we generated SOD2 gene knockout chicken DT40 cells complemented with a human SOD2 (hSOD2) cDNA, whose expression can be switched off by doxycycline (Dox). When SOD2 was depleted by the addition of Dox, the cells grew slightly slower and formed fewer colonies than cells expressing hSOD2. In addition, these cells showed a high sensitivity to paraquat, which produces superoxide, and died through apoptosis. In contrast to results obtained with mouse and DrosophilaSod2 mutants, we found no indication of an increase in DNA lesions due to depletion of SOD2.


Assuntos
Mitocôndrias/enzimologia , Superóxido Dismutase/genética , Animais , Apoptose/genética , Linhagem Celular , Sobrevivência Celular/genética , Galinhas , Dano ao DNA/genética , Técnicas de Inativação de Genes , Teste de Complementação Genética , Humanos , Camundongos , Mutação , Paraquat/farmacologia , Superóxidos/metabolismo
8.
Oncol Rep ; 21(5): 1307-12, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19360308

RESUMO

SCC VII tumor-bearing mice were continuously given 5-bromo-2'-deoxyuridine (BrdU) to label all intratumor proliferating (P) cells. They received hexamethylenetetramine (HMTA) either once intraperitoneally or continuously subcutaneously together with chemotherapy using intraperitoneally administered free doxorubicin (DXR) or intravenously injected pegylated liposomal doxorubicin (PLD). One hour after the free DXR loading or 24 h after the PLD loading, the response of intratumor quiescent (Q) cells was assessed in terms of the micronucleus frequency using immunofluorescence staining for BrdU. The response of the total (P + Q) tumor cell population was determined from the tumors not treated with BrdU. Encapsulation of DXR into pegylated liposomes significantly enhanced cytotoxicity, especially in Q cells. HMTA, especially when administered continuously, efficiently increased the sensitivity to DXR, particularly in Q cells. The increase in sensitivity on the continuous rather than single administration of HMTA was a little clearer in the total cell population than in Q cells. DXR's encapsulation into pegylated liposomes and combination with HMTA, particularly when administered continuously, apparently reduced the difference in sensitivity to free DXR between the total and Q cell populations. In terms of the tumor cell-killing effect as a whole, including Q cells, the encapsulation of DXR into pegylated liposomes and combination with HMTA, particularly through continuous administration, are very promising, taking into account that HMTA has been used clinically.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Doxorrubicina/análogos & derivados , Metenamina/farmacologia , Polietilenoglicóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/patologia , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Feminino , Metenamina/administração & dosagem , Camundongos , Camundongos Endogâmicos C3H , Polietilenoglicóis/administração & dosagem
9.
Mutat Res ; 671(1-2): 93-9, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19778542

RESUMO

Poly(ADP-ribose) polymerase-1 (PARP-1) is a base excision repair (BER) protein that binds to DNA single strand breaks (SSBs) and subsequently synthesizes and transfers poly(ADP-ribose) polymers to various nuclear proteins. Numerous biochemical studies have implicated PARP-1 as a modulator of BER; however, the role of PARP-1 in BER in living cells remains unclear partly due to lack of accurate quantitation of BER intermediates existing in cells. Since DT40 cells, chicken B lymphocytes, naturally lack PARP-2, DT40 cells allow for the investigation of the PARP-1 null phenotype without confounding by PARP-2. To test the hypothesis that PARP-1 is necessary for efficient BER during methylmethane sulfonate (MMS) exposure in vertebrate cells, intact DT40 cells and their isogenic PARP-1 null counterparts were challenged with different exposure scenarios for phenotypic characterization. With chronic exposure, PARP-1 null cells exhibited sensitivity to MMS but with an acute exposure did not accumulate base lesions or AP sites to a greater extent than wild-type cells. However, an increase in SSB content in PARP-1 null cell DNA, as indicated by glyoxal gel electrophoresis under neutral conditions, suggested the presence of BER intermediates. These data suggest that during exposure, PARP-1 impacts the stage of BER after excision of the deoxyribosephosphate moiety from the 5' end of DNA strand breaks by polymerase beta.


Assuntos
Quebras de DNA de Cadeia Simples , Metanossulfonato de Metila/toxicidade , Poli(ADP-Ribose) Polimerases/deficiência , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Galinhas , Humanos , Poli(ADP-Ribose) Polimerase-1 , Fatores de Transcrição/genética
10.
Int J Radiat Biol ; 95(12): 1708-1717, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31545117

RESUMO

Purpose: To evaluate the usefulness of combined treatment with both continuous administration of a hypoxic cytotoxin, tirapazamine (TPZ) and mild temperature hyperthermia (MTH) in boron neutron capture therapy (BNCT) in terms of local tumor response and lung metastatic potential, referring to the response of intratumor quiescent (Q) cells.Materials and methods: B16-BL6 melanoma tumor-bearing C57BL/6 mice were continuously given 5-bromo-2'-deoxyuridine (BrdU) to label all proliferating (P) cells. The tumors received reactor thermal neutron beam irradiation following the administration of a 10B-carrier (L-para-boronophenylalanine-10B (BPA) or sodium mercaptoundecahydrododecaborate-10B (BSH)) after single intraperitoneal injection of an acute hypoxia-releasing agent (nicotinamide), MTH (40 °C for 60 min), and 24-h continuous subcutaneous infusion of TPZ or combined treatment with both TPZ and MTH. Immediately after irradiation, cells from some tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q and total (=P + Q) tumor cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumor-bearing mice, 17 days after irradiation, macroscopic lung metastases were enumerated.Results: BPA-BNCT increased the sensitivity of the total tumor cell population more than BSH-BNCT. However, the sensitivity of Q cells treated with BPA was lower than that of BSH-treated Q cells. With or without a 10B-carrier, combination with continuously administered TPZ with or without MTH enhanced the sensitivity of the both total and Q cells, especially Q cells. Even without irradiation, nicotinamide treatment decreased the number of lung metastases. With irradiation, BPA-BNCT, especially in combination with combined treatment with both TPZ and MTH as well as nicotinamide treatment, showed the potential to reduce the number more than BSH-BNCT.Conclusion: BSH-BNCT combined with TPZ with or without MTH improved local tumor control, while BPA-BNCT in combination with both TPZ and MTH as well as nicotinamide is thought to reduce the number of lung metastases. It was elucidated that control of the chronic hypoxia-rich Q cell population in the primary solid tumor has the potential to impact the control of local tumors as a whole and that control of the acute hypoxia-rich total tumor cell population in the primary solid tumor has the potential to impact the control of lung metastases.


Assuntos
Terapia por Captura de Nêutron de Boro , Hipertermia Induzida , Neoplasias Pulmonares/secundário , Melanoma/patologia , Tirapazamina/farmacologia , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/efeitos da radiação , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Terapia Combinada , Melanoma/tratamento farmacológico , Melanoma/radioterapia , Camundongos , Tirapazamina/administração & dosagem , Tirapazamina/uso terapêutico , Resultado do Tratamento
11.
World J Oncol ; 10(3): 132-141, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31312280

RESUMO

BACKGROUND: The aim of the study was to examine the dependency of p53 status and the usefulness of mild hyperthermia (MHT) as an inhibitor of recovery from radiation-induced damage, referring to the response of quiescent (Q) tumor cell population. METHODS: Human head and neck squamous cell carcinoma cells transfected with mutant TP53 (SAS/mp53) or with neo vector (SAS/neo) were injected subcutaneously into left hind legs of nude mice. Tumor-bearing mice received 5-bromo-2'-deoxyuridine (BrdU) continuously to label all intratumor proliferating (P) cells. They received high dose-rate γ-ray irradiation (HDR) immediately followed by localized MHT (40 °C for 2 h), or caffeine or wortmannin administration, or low dose-rate γ-ray irradiation simultaneously with localized MHT or caffeine or wortmannin administration. Nine hours after the start of irradiation, the tumor cells were isolated and incubated with a cytokinesis blocker, and the micronucleus (MN) frequency in cells without BrdU labeling (= Q cells) was determined using immunofluorescence staining for BrdU. RESULTS: SAS/neo tumor cells, especially intratumor Q cell populations, showed a marked reduction in sensitivity due to the recovery from radiation-induced damage, compared with the total or Q tumor cells within SAS/mp53 tumors that showed little recovery capacity. The recovery from radiation-induced damage was thought to be a p53-dependent event. In both total and Q tumor cells within SAS/neo tumors, especially the latter, MHT efficiently suppressed the reduction in sensitivity caused by leaving an interval between HDR irradiation and the assay and decreasing the irradiation dose-rate, as well as the combination with wortmannin administration. CONCLUSIONS: From the viewpoint of solid tumor control as a whole, including intratumor Q-cell control, non-toxic MHT is useful for suppressing the recovery from radiation-induced damage, as well as wortmannin treatment combined with γ-ray irradiation.

12.
Int J Radiat Biol ; 95(5): 635-645, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30557082

RESUMO

PURPOSE: To examine the effect of a change in reactor power on the response of solid tumors, referring to impact on quiescent (Q) tumor cell population. MATERIALS AND METHODS: Tumor-bearing mice received 5-bromo-2'-deoxyuridine (BrdU) to label all proliferating (P) tumor cells, and were treated with boronophenylalanine-10B (BPA) or sodium mercaptododecaborate-10B (BSH). After reactor neutron beam irradiation at a power of 1 or 5 MW with an identical beam spectrum, cells from tumors were isolated and incubated with a cytokinesis blocker. The responses of BrdU-unlabeled Q and total (P + Q) tumor cells were assessed based on the frequencies of micronucleation using immunofluorescence staining for BrdU. RESULTS: After neutron irradiation with or without 10B-carrier, radio-sensitivity was reduced by decreasing reactor power in both cells, especially in Q cells and after irradiation with BPA. The values of relative and compound biological effectiveness were larger at a power of 5 MW and in Q cells than at a power of 1 MW and in total cells, respectively. The sensitivity difference between total and Q cells was widened when combined with 10B-carrier, especially with BPA, and through decreasing reactor power. CONCLUSION: 5 MW is more advantageous than 1 MW for boron neutron capture therapy.


Assuntos
Terapia por Captura de Nêutron de Boro , Eficiência Biológica Relativa , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Camundongos , Tolerância a Radiação
13.
DNA Repair (Amst) ; 6(6): 869-75, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17363341

RESUMO

DNA polymerase lambda (Pol lambda) is a DNA polymerase beta (Pol beta)-like enzyme with both DNA synthetic and 5'-deoxyribose-5'-phosphate lyase domains. Recent biochemical studies implicated Pol lambda as a backup enzyme to Pol beta in the mammalian base excision repair (BER) pathway. To examine the interrelationship between Pol lambda and Pol beta in BER of DNA damage in living cells, we disrupted the genes for both enzymes either singly or in combination in the chicken DT40 cell line and then characterized BER phenotypes. Disruption of the genes for both polymerases caused hypersensitivity to H(2)O(2)-induced cytotoxicity, whereas the effect of disruption of either polymerase alone was only modest. Similarly, BER capacity in cells after H(2)O(2) exposure was lower in Pol beta(-/-)/Pol lambda(-/-) cells than in Pol beta(-/-), wild-type, and Pol lambda(-/-) cells, which were equivalent. These results suggest that these polymerases can complement for one another in counteracting oxidative DNA damage. Similar results were obtained in assays for in vitro BER capacity using cell extracts. With MMS-induced cytotoxicity, there was no significant effect on either survival or BER capacity from Pol lambda gene disruption. A strong hypersensitivity and reduction in BER capacity was observed for Pol beta(-/-)/Pol lambda(-/-) and Pol beta(-/-) cells, suggesting that Pol beta had a dominant role in counteracting alkylation DNA damage in this cell system.


Assuntos
Dano ao DNA , DNA Polimerase beta/fisiologia , Reparo do DNA , Animais , Linhagem Celular , Sobrevivência Celular , Galinhas , Relação Dose-Resposta a Droga , Peróxido de Hidrogênio/farmacologia , Modelos Genéticos , NADP/metabolismo , Oxigênio/metabolismo , Plasmídeos/metabolismo
14.
J Clin Med Res ; 10(11): 815-821, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30344816

RESUMO

BACKGROUND: The aim of the study was to clarify the effect of p53 status of tumor cells on radio-sensitivity of solid tumors following γ-ray irradiation at various dose rates, referring to the response of intratumor quiescent (Q) cells. METHODS: Human head and neck squamous cell carcinoma cells transfected with mutant TP53 (SAS/mp53) or with neo vector (SAS/neo) were injected subcutaneously into hind legs of nude mice. Tumor bearing mice received 5-bromo-2'-deoxyuridine (BrdU) continuously to label all intratumor proliferating (P) cells. They received γ-rays at a high, middle or low dose rate. Immediately or 9 h after the high dose-rate irradiation (HDR, 2.5 Gy/min), or immediately after the middle (MDR, 0.039 Gy/min) or low (LDR, 0.00098 Gy/min) dose-rate irradiation, the tumor cells were isolated and incubated with a cytokinesis blocker, and the micronucleus (MN) frequency in cells without BrdU labeling (Q cells) was determined using immunofluorescence staining for BrdU. RESULTS: Following γ-ray irradiation, SAS/neo tumor cells, especially intratumor Q cells, showed a marked reduction in sensitivity due to the recovery from radiation-induced damage, compared with the total or Q cells within SAS/mp53 tumors that showed little repair capacity. The recovery capacities following γ-ray irradiation were greater in Q than total cell population and increased in the following order of 9 h after HDR < MDR < LDR. Thus, the difference in radio-sensitivity between the total (P + Q) and Q cells after γ-ray irradiation increased in the same order. CONCLUSION: To secure controlling solid tumors as a whole, difference in sensitivity between total and Q tumor cells especially in solid tumors irrespective of p53 status has to be suppressed as irradiation dose rate decreases, for instance, through employing combined method for enhancing the response of Q tumor cells.

15.
Int J Radiat Biol ; 94(1): 88-96, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29185833

RESUMO

PURPOSE: In the present study, we investigated whether the disruption of the Hif-1α gene affects the sensitivity of SCC VII cells to metformin and also if metformin functions as a radiosensitizer using murine squamous cell carcinoma (SCC VII) cells. MATERIALS AND METHODS: Cultured SCC VII and SCC VII Hif-1α-deficient cells were incubated with metformin under glucose-free and/or hypoxia-mimetic conditions and cell viabilities were measured. Tumor-bearing mice were continuously given 5-bromo-2'-deoxyuridine (BrdU) to label all proliferating cells. Tumor-bearing mice were then subjected to γ-ray irradiation after the metformin treatment. Immediately after irradiation, cells were isolated from some tumors and incubated with a cytokinesis blocker. The responses of quiescent and total (= proliferating + quiescent) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. RESULTS: The disruption of Hif-1α increased the sensitivity of SCC VII cells to metformin in glucose-free medium. Metformin-induced decreases in the percentage of dead cells in the presence of CoCl2 were partially reduced when Hif-1α was disrupted. In vivo, metformin increased the radiosensitivity of SCC VII Hif-1α-deficient cells. CONCLUSION: The combination of disruption of Hif-1α and metformin effectively enhanced the radiosensitivity of SCC VII cells.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Metformina/farmacologia , Animais , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Camundongos Endogâmicos C3H
16.
PLoS One ; 12(9): e0185141, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28926637

RESUMO

Metformin is a biguanide drug that is widely used in the treatment of diabetes. Epidemiological studies have indicated that metformin exhibits anti-cancer activity. However, the molecular mechanisms underlying this activity currently remain unclear. We hypothesized that metformin is cytotoxic in a tumor-specific environment such as glucose deprivation and/or low oxygen (O2) tension. We herein demonstrated that metformin was highly cytotoxic under glucose-depleted, but not hypoxic (2% O2) conditions. In order to elucidate the underlying mechanisms of this selective cytotoxicity, we treated exposed DNA repair-deficient chicken DT40 cells with metformin under glucose-depleted conditions and measured cellular sensitivity. Under glucose-depleted conditions, metformin specifically killed fancc and fancl cells that were deficient in FANCC and FANCL proteins, respectively, which are involved in DNA interstrand cross-link repair. An analysis of chromosomal aberrations in mitotic chromosome spreads revealed that a clinically relevant concentration of metformin induced DNA double-strand breaks (DSBs) in fancc and fancl cells under glucose-depleted conditions. In summary, metformin induced DNA damage under glucose-depleted conditions and selectively killed cells. This metformin-mediated selective toxicity may suppress the growth of malignant tumors that are intrinsically deprived of glucose.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Hipoglicemiantes/toxicidade , Metformina/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Galinhas , Aberrações Cromossômicas/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Glucose/química , Oxigênio/química , Oxigênio/metabolismo
17.
World J Oncol ; 8(5): 137-146, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29147450

RESUMO

BACKGROUND: The aim of the study was to examine the effect of tirapazamine (TPZ) on recovery from radiation-induced damage in pimonidazole-unlabeled quiescent (Q) tumor cells compared with that of metformin (Met) or mild temperature hyperthermia (MTH). METHODS: Proliferating (P) cells in EL4 tumors were labeled by continuous 5-bromo-2'-deoxyuridine (BrdU) administration. Tumors received γ-rays at 1 h after pimonidazole administration followed by Met or TPZ treatment or MTH. Twenty-four hours later, the responses of Q and total (P + Q) cells and those of the pimonidazole-unlabeled cells were assessed with micronucleation and apoptosis frequencies using immunofluorescence staining for BrdU and apoptosis frequency using immunofluorescence staining for pimonidazole, respectively. RESULTS: With γ-rays only, the pimonidazole-unlabeled cell fraction showed significantly enhanced radio-sensitivity compared with the whole cell fraction more remarkably in Q than total cells. However, a significantly greater decrease in radio-sensitivity in the pimonidazole-unlabeled than the whole cell fraction, evaluated using a delayed assay, was more clearly observed in Q than total cells. Post-irradiation MTH or Met treatment more clearly repressed the decrease in radio-sensitivity in the Q than total cells. Post-irradiation TPZ administration produced a large radio-sensitizing effect on both total and Q cells, especially on Q cells. In pimonidazole-unlabeled cell fractions in both total and Q cells, TPZ suppressed the reduction in sensitivity much more efficiently than MTH or Met without any radio-sensitizing effect. CONCLUSION: Post-irradiation TPZ administration has the potential to both suppress recovery from radiation-induced damage and enhance the radio-sensitivity both in total and Q tumor cells. Post-irradiation TPZ administration may be useful for controlling tumors.

18.
Int J Radiat Biol ; 92(4): 187-94, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26887694

RESUMO

Purpose To evaluate the effect of oxygen pressure during incubation with a (10)B-carrier on (10)B uptake capacity of cultured p53 wild-type and mutated tumor cells. Materials and methods Cultured human head and neck squamous cell carcinoma cell line transfected with mutant TP53 (SAS/mp53), or with a neo vector as a control (SAS/neo) was incubated with L-para-boronophenylalanine-(10)B (BPA) or sodium mercaptoundecahydrododecaborate-(10)B (BSH) as a (10)B-carrier at the (10)B concentration of 60 ppm for 24 h under aerobic (20.7% of oxygen) or hypoxic (0.28% of oxygen) conditions. Immediately after incubation, cultured tumor cells received reactor thermal neutron beams, and a cell survival assay was performed. (10)B concentration of cultured SAS/neo or SAS/mp53 cells incubated under aerobic or hypoxic conditions was determined with a thermal neutron guide tube. Results Hypoxic incubation significantly decreased (10)B concentration of cultured cells with a clearer tendency observed following BPA than BSH treatment in both SAS/neo and SAS/mp53 cells. Following neutron beam irradiation, SAS/mp53 cells showed significantly higher relative biological effectiveness values than SAS/neo cells because of the significantly lower radiosensitivity of SAS/mp53 to γ-rays than SAS/neo cells. Conclusion Oxygen pressure during incubation with a (10)B-carrier had a critical impact on (10)B uptake of cultured tumor cells.


Assuntos
Boro/farmacocinética , Boro/uso terapêutico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/radioterapia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/radioterapia , Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Terapia por Captura de Nêutron de Boro/métodos , Sobrevivência Celular/efeitos da radiação , Portadores de Fármacos/química , Humanos , Isótopos/farmacocinética , Isótopos/uso terapêutico , Mutação , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço
19.
J Radiat Res ; 46(2): 205-14, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15988139

RESUMO

The frequency of G:C-->C:G transversions significantly increases upon exposure of cells to ionizing radiation or reactive oxygen species. Transversions can be prevented by base excision repair, which removes the causative modified bases from DNA. Our previous studies revealed that MutY is responsible for removing guanine from 7,8-dihydro-8-oxoguanine/guanine mispairs (8-oxoG/G) and prevents the generation of G:C-->C:G transversions in E. coli. SpMYH, a homolog of E. coli MutY, had been identified and characterized in the fission yeast S. pombe. Purified SpMYH has adenine DNA glycosylase activity on A/8-oxoG and A/G mismatch-containing oligonucleotides. In this study, we examined whether SpMYH has a similar activity allowing it to remove G from 8-oxoG/G in DNA. The purified SpMYH tightly bound to duplex oligonucleotides containing 8-oxoG/G and removed the unmodified G from 8-oxoG/G as efficiently as A from 8-oxoG/A. The activity was absent in the cell extract prepared from an SpMYH-knockout strain of S. pombe. The expression of SpMYH markedly reduced the frequency of spontaneous G:C-->C:G transversions in the E. coli mutY mutant. These results demonstrate that SpMYH is involved in the repair of 8-oxoG/G, by which it prevents mutations induced by oxidative stress in S. pombe.


Assuntos
Pareamento Incorreto de Bases , Dano ao DNA , DNA Glicosilases/química , Reparo do DNA , DNA Bacteriano/química , Guanina/análogos & derivados , Guanina/química , Schizosaccharomyces/enzimologia , Composição de Bases , DNA Glicosilases/genética , DNA Bacteriano/genética , Schizosaccharomyces/genética
20.
World J Oncol ; 6(4): 398-409, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28983338

RESUMO

BACKGROUND: The aim of the study was to clarify the effect of p53 status of tumor cells on radiosensitivity of solid tumors following accelerated carbon-ion beam irradiation compared with γ-rays or reactor neutron beams, referring to the response of intratumor quiescent (Q) cells. METHODS: Human head and neck squamous cell carcinoma cells transfected with mutant TP53 (SAS/mp53) or with neo vector (SAS/neo) were injected subcutaneously into hind legs of nude mice. Tumor-bearing mice received 5-bromo-2'-deoxyuridine (BrdU) continuously to label all intratumor proliferating (P) cells. They received γ-rays or accelerated carbon-ion beams at a high or reduced dose-rate. Other tumor-bearing mice received reactor thermal or epithermal neutrons at a reduced dose-rate. Immediately or 9 hours after the high dose-rate irradiation (HDRI), or immediately after the reduced dose-rate irradiation (RDRI), the tumor cells were isolated and incubated with a cytokinesis blocker, and the micronucleus (MN) frequency in cells without BrdU labeling (Q cells) was determined using immunofluorescence staining for BrdU. RESULTS: The difference in radiosensitivity between the total (P + Q) and Q cells after γ-ray irradiation was markedly reduced with reactor neutron beams or carbon-ion beams, especially with a higher linear energy transfer (LET) value. Following γ-ray irradiation, SAS/neo tumor cells, especially intratumor Q cells, showed a marked reduction in sensitivity due to the recovery from radiation-induced damage, compared with the total or Q cells within SAS/mp53 tumors that showed little repair capacity. In both total and Q cells within both SAS/neo and SAS/mp53 tumors, carbon-ion beam irradiation, especially with a higher LET, showed little recovery capacity through leaving an interval between HDRI and the assay or decreasing the dose-rate. The recovery from radiation-induced damage after γ-ray irradiation was a p53-dependent event, but little recovery was found after carbon-ion beam irradiation. With RDRI, the radiosensitivity to reactor thermal and epithermal neutron beams was slightly higher than that to carbon-ion beams. CONCLUSION: For tumor control, including intratumor Q-cell control, accelerated carbon-ion beams, especially with a higher LET, and reactor thermal and epithermal neutron beams were very useful for suppressing the recovery from radiation-induced damage irrespective of p53 status of tumor cells.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa