Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Exp Brain Res ; 241(2): 365-382, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36534141

RESUMO

Neuromodulation via spinal stimulation has been investigated for improving motor function and reducing spasticity after spinal cord injury (SCI) in humans. Despite the reported heterogeneity of outcomes, few investigations have attempted to discern commonalities among individual responses to neuromodulation, especially the impact of stimulation frequencies. Here, we examined how exposure to continuous lumbosacral transcutaneous spinal stimulation (TSS) across a range of frequencies affects robotic torques and EMG patterns during stepping in a robotic gait orthosis on a motorized treadmill. We studied nine chronic motor-incomplete SCI individuals (8/1 AIS-C/D, 8 men) during robot-guided stepping with body-weight support without and with TSS applied at random frequencies between 1 and up to 100 Hz at a constant, individually selected stimulation intensity below the common motor threshold for posterior root reflexes. The hip and knee robotic torques needed to maintain the predefined stepping trajectory and EMG in eight bilateral leg muscles were recorded. We calculated the standardized mean difference between the stimulation conditions grouped into frequency bins and the no stimulation condition to determine changes in the normalized torques and the average EMG envelopes. We found heterogeneous changes in robotic torques across individuals. Agglomerative clustering of robotic torques identified four groups wherein the patterns of changes differed in magnitude and direction depending mainly on the stimulation frequency and stance/swing phase. On one end of the spectrum, the changes in robotic torques were greater with increasing stimulation frequencies (four participants), which coincided with a decrease in EMG, mainly due to the reduction of clonogenic motor output in the lower leg muscles. On the other end, we found an inverted u-shape change in torque over the mid-frequency range along with an increase in EMG, reflecting the augmentation of gait-related physiological (two participants) or pathophysiological (one participant) output. We conclude that TSS during robot-guided stepping reveals different frequency-dependent motor profiles among individuals with chronic motor incomplete SCI. This suggests the need for a better understanding and characterization of motor control profiles in SCI when applying TSS as a therapeutic intervention for improving gait.


Assuntos
Robótica , Traumatismos da Medula Espinal , Estimulação da Medula Espinal , Masculino , Humanos , Caminhada/fisiologia , Eletromiografia , Músculo Esquelético/fisiologia , Medula Espinal/fisiologia
2.
J Neurophysiol ; 122(2): 616-631, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31166824

RESUMO

The cutaneus trunci muscle (CTM) reflex produces a skin "shrug" in response to pinch on a rat's back through a three-part neural circuit: 1) A-fiber and C-fiber afferents in segmental dorsal cutaneous nerves (DCNs) from lumbar to cervical levels, 2) ascending propriospinal interneurons, and 3) the CTM motoneuron pool located at the cervicothoracic junction. We recorded neurograms from a CTM nerve branch in response to electrical stimulation. The pulse trains were delivered at multiple DCNs (T6-L1), on both sides of the midline, at two stimulus strengths (0.5 or 5 mA, to activate Aδ fibers or Aδ and C fibers, respectively) and four stimulation frequencies (1, 2, 5, or 10 Hz) for 20 s. We quantified both the temporal dynamics (i.e., latency, sensitization, habituation, and frequency dependence) and the spatial dynamics (spinal level) of the reflex. The evoked responses were time-windowed into Early, Mid, Late, and Ongoing phases, of which the Mid phase, between the Early (Aδ fiber mediated) and Late (C fiber mediated) phases, has not been previously identified. All phases of the response varied with stimulus strength, frequency, history, and DCN level/side stimulated. In addition, we observed nociceptive characteristics like C fiber-mediated sensitization (wind-up) and habituation. Finally, the range of latencies in the ipsilateral responses were not very large rostrocaudally, suggesting a myelinated neural path within the ipsilateral spinal cord for at least the A fiber-mediated Early-phase response. Overall, these results demonstrate that the CTM reflex shares the temporal dynamics in other nociceptive reflexes and exhibits spatial (segmental and lateral) dynamics not seen in those reflexes.NEW & NOTEWORTHY We have physiologically studied an intersegmental reflex exploring detailed temporal, stimulus strength-based, stimulation history-dependent, lateral and segmental quantification of the reflex responses to cutaneous nociceptive stimulations. We found several physiological features in this reflex pathway, e.g., wind-up, latency changes, and somatotopic differences. These physiological observations allow us to understand how the anatomy of this reflex may be organized. We have also identified a new phase of this reflex, termed the "mid" response.


Assuntos
Músculos do Dorso/fisiologia , Potenciais Evocados/fisiologia , Habituação Psicofisiológica/fisiologia , Fibras Nervosas Mielinizadas/fisiologia , Fibras Nervosas Amielínicas/fisiologia , Nociceptividade/fisiologia , Reflexo/fisiologia , Medula Espinal/fisiologia , Animais , Estimulação Elétrica , Feminino , Ratos , Ratos Long-Evans
3.
Spinal Cord ; 57(11): 909-923, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31337870

RESUMO

STUDY DESIGN: Narrative review. OBJECTIVES: To discuss how electrophysiology may contribute to future clinical trials in spinal cord injury (SCI) in terms of: (1) improvement of SCI diagnosis, patient stratification and determination of exclusion criteria; (2) the assessment of adverse events; and (3) detection of therapeutic effects following an intervention. METHODS: An international expert panel for electrophysiological measures in SCI searched and discussed the literature focused on the topic. RESULTS: Electrophysiology represents a valid method to detect, track, and quantify readouts of nerve functions including signal conduction, e.g., evoked potentials testing long spinal tracts, and neural processing, e.g., reflex testing. Furthermore, electrophysiological measures can predict functional outcomes and thereby guide rehabilitation programs and therapeutic interventions for clinical studies. CONCLUSION: Objective and quantitative measures of sensory, motor, and autonomic function based on electrophysiological techniques are promising tools to inform and improve future SCI trials. Complementing clinical outcome measures, electrophysiological recordings can improve the SCI diagnosis and patient stratification, as well as the detection of both beneficial and adverse events. Specifically composed electrophysiological measures can be used to characterize the topography and completeness of SCI and reveal neuronal integrity below the lesion, a prerequisite for the success of any interventional trial. Further validation of electrophysiological tools with regard to their validity, reliability, and sensitivity are needed in order to become routinely applied in clinical SCI trials.


Assuntos
Potencial Evocado Motor/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Traumatismos da Medula Espinal/diagnóstico , Traumatismos da Medula Espinal/fisiopatologia , Ensaios Clínicos como Assunto/métodos , Fenômenos Eletrofisiológicos/fisiologia , Humanos , Seleção de Pacientes , Recuperação de Função Fisiológica/fisiologia , Reflexo/fisiologia , Traumatismos da Medula Espinal/terapia
4.
Spinal Cord ; 57(6): 471-481, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30659286

RESUMO

STUDY DESIGN: Randomized dual center controlled clinical trial. OBJECTIVE: To determine and compare the cardiorespiratory impact of 3 months of aquatic and robotic therapy for individuals with chronic motor incomplete spinal cord injury (CMISCI). SETTINGS: Two rehabilitation specialty hospitals. METHODS: Thirty-one individuals with CMISCI with neurological level between C2-T12 at least 1 year post injury were randomized to either aquatic or robotic treadmill therapy for 36 sessions. Customized sessions lasted 40-45 min at 65-75% heart rate reserve intensity with peak oxygen consumption (peak VO2) measured during arm ergometry at baseline and post intervention. Additional peak robotic treadmill VO2 assessments were obtained before and after training for participants randomized to robotic intervention. RESULTS: Peak VO2 measured with arm ergometry was not significantly different with either aquatic intervention (8.1%, p = 0.14, n = 15) or robotic intervention (-0.7%, p = 0.31, n = 17). Peak VO2 measured with robotic treadmill ergometry demonstrated a statistical improvement (14.7%, p = 0.03, n = 17, two-tailed t-test) across the robotic intervention. Comparison between the two interventions demonstrated a trend favoring aquatic therapy for improving arm ergometry peak VO2 (ANOVA, p = 0.063). CONCLUSIONS: Neither 3-month exercise interventions statistically improved arm cycle ergometry peak VO2, our cardiorespiratory surrogate marker, although percent improvement was greater in the aquatic exercise condition. Robotic ergometry peak VO2 did improve for the robotic intervention, confirming previous work. These results suggest that either intervention may hold utility in improving cardiorespiratory fitness in CMISCI, but peak VO2 measurement technique appears critical in detecting effects. SPONSORSHIP: DOD CDMRP SCI Research Program Clinical Trial Award SC090147, FY 2009. This study is registered under ClinicalTrials.gov Identifier: NCT01407354.


Assuntos
Teste de Esforço/métodos , Terapia por Exercício/métodos , Consumo de Oxigênio/fisiologia , Robótica/métodos , Traumatismos da Medula Espinal/reabilitação , Esportes Aquáticos/fisiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Centros de Reabilitação , Traumatismos da Medula Espinal/diagnóstico , Traumatismos da Medula Espinal/metabolismo
5.
Neural Plast ; 2019: 6147878, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31827498

RESUMO

Electrical stimulations of dorsal cutaneous nerves (DCNs) at each lumbothoracic spinal level produce the bilateral cutaneus trunci muscle (CTM) reflex responses which consist of two temporal components: an early and late responses purportedly mediated by Aδ and C fibers, respectively. We have previously reported central projections of DCN A and C fibers and demonstrated that different projection patterns of those afferent types contributed to the somatotopic organization of CTM reflex responses. Unilateral hemisection spinal cord injury (SCI) was made at T10 spinal segments to investigate the plasticity of early and late CTM responses 6 weeks after injury. Both early and late responses were drastically increased in response to both ipsi- and contralateral DCN stimulations both above (T6 and T8) and below (T12 and L1) the levels of injury demonstrating that nociceptive hyperreflexia developed at 6 weeks following hemisection SCI. We also found that DCN A and C fibers centrally sprouted, expanded their projection areas, and increased synaptic terminations in both T7 and T13, which correlated with the size of hemisection injury. These data demonstrate that central sprouting of cutaneous afferents away from the site of injury is closely associated with enhanced responses of intraspinal signal processing potentially contributing to nociceptive hyperreflexia following SCI.


Assuntos
Músculo Esquelético/fisiopatologia , Reflexo Anormal/fisiologia , Reflexo/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Estimulação Elétrica/métodos , Feminino , Ratos Long-Evans , Pele/fisiopatologia , Medula Espinal/fisiopatologia
6.
Spinal Cord ; 56(7): 628-642, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29700477

RESUMO

STUDY DESIGN: This is a focused review article. OBJECTIVES: To identify important concepts in lower extremity (LE) assessment with a focus on locomotor outcomes and provide guidance on how existing outcome measurement tools may be best used to assess experimental therapies in spinal cord injury (SCI). The emphasis lies on LE outcomes in individuals with complete and incomplete SCI in Phase II-III trials. METHODS: This review includes a summary of topics discussed during a workshop focusing on LE function in SCI, conceptual discussion of corresponding outcome measures and additional focused literature review. RESULTS: There are a number of sensitive, accurate, and responsive outcome tools measuring both quantitative and qualitative aspects of LE function. However, in trials with individuals with very acute injuries, a baseline assessment of the primary (or secondary) LE outcome measure is often not feasible. CONCLUSION: There is no single outcome measure to assess all individuals with SCI that can be used to monitor changes in LE function regardless of severity and level of injury. Surrogate markers have to be used to assess LE function in individuals with severe SCI. However, it is generally agreed that a direct measurement of the performance for an appropriate functional activity supersedes any surrogate marker. LE assessments have to be refined so they can be used across all time points after SCI, regardless of the level or severity of spinal injury. SPONSORS: Craig H. Neilsen Foundation, Spinal Cord Outcomes Partnership Endeavor.


Assuntos
Ensaios Clínicos como Assunto/métodos , Extremidade Inferior/fisiopatologia , Avaliação de Resultados em Cuidados de Saúde , Traumatismos da Medula Espinal/terapia , Humanos , Traumatismos da Medula Espinal/patologia
7.
Spinal Cord ; 56(5): 414-425, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29284795

RESUMO

STUDY DESIGN: This is a focused review article. OBJECTIVES: This review presents important features of clinical outcomes assessments (COAs) in human spinal cord injury research. Considerations for COAs by trial phase and International Classification of Functioning, Disability and Health are presented as well as strengths and recommendations for upper extremity COAs for research. Clinical trial tools and designs to address recruitment challenges are identified. METHODS: The methods include a summary of topics discussed during a two-day workshop, conceptual discussion of upper extremity COAs and additional focused literature review. RESULTS: COAs must be appropriate to trial phase and particularly in mid-late-phase trials, should reflect recovery vs. compensation, as well as being clinically meaningful. The impact and extent of upper vs. lower motoneuron disease should be considered, as this may affect how an individual may respond to a given therapeutic. For trials with broad inclusion criteria, the content of COAs should cover all severities and levels of SCI. Specific measures to assess upper extremity function as well as more comprehensive COAs are under development. In addition to appropriate use of COAs, methods to increase recruitment, such as adaptive trial designs and prognostic modeling to prospectively stratify heterogeneous populations into appropriate cohorts should be considered. CONCLUSIONS: With an increasing number of clinical trials focusing on improving upper extremity function, it is essential to consider a range of factors when choosing a COA. SPONSORS: Craig H. Neilsen Foundation, Spinal Cord Outcomes Partnership Endeavor.


Assuntos
Ensaios Clínicos como Assunto/métodos , Avaliação de Resultados em Cuidados de Saúde/métodos , Traumatismos da Medula Espinal/diagnóstico , Traumatismos da Medula Espinal/terapia , Humanos
8.
Am J Occup Ther ; 71(3): 7103320010P1-7103320010P12, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28422639

RESUMO

Approximately 53 million Americans live with a disability. For decades, the National Institutes of Health (NIH) has been conducting and supporting research to discover new ways to minimize disability and enhance the quality of life of people with disabilities. After the passage of the Americans With Disabilities Act, NIH established the National Center for Medical Rehabilitation Research, with the goal of developing and implementing a rehabilitation research agenda. Currently, 17 institutes and centers at NIH invest more than $500 million per year in rehabilitation research. Recently, the director of NIH, Francis Collins, appointed a Blue Ribbon Panel to evaluate the status of rehabilitation research across institutes and centers. As a follow-up to the work of that panel, NIH recently organized a conference, "Rehabilitation Research at NIH: Moving the Field Forward." This report is a summary of the discussions and proposals that will help guide rehabilitation research at NIH in the near future.

10.
Semin Neurol ; 34(5): 524-33, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25520024

RESUMO

The rehabilitation of spinal cord injury (SCI) is a complicated process, but one in which new research is developing novel and increasingly promising methods of restorative neurology. Spinal cord injury medicine addresses not only the neurologic injury, but all the secondary complications in other organ systems whose regulation is disrupted after SCI. To some degree, the rehabilitation of SCI is focused on return to the community and functional goals are paramount, regardless of whether they can be achieved through some mechanism of compensation or due to a growing effort at engendering neurologic plasticity and recovery. The authors present a typical case of cervical incomplete SCI and discuss the medical complications and considerations for care during acute rehabilitation. They also review current methods of planning and executing rehabilitation, along with emerging methods that are leading to, in varying degrees, greater neurologic recovery. Finally, new approaches in SCI rehabilitation, namely neuromodulation, are discussed as efforts are made to further augment neural plasticity and recovery in SCI.


Assuntos
Vértebras Cervicais/lesões , Fraturas da Coluna Vertebral/diagnóstico , Fraturas da Coluna Vertebral/reabilitação , Adulto , Vértebras Cervicais/cirurgia , Humanos , Masculino , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/diagnóstico , Traumatismos da Medula Espinal/reabilitação , Fraturas da Coluna Vertebral/complicações
11.
J Spinal Cord Med ; 37(2): 202-11, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24090290

RESUMO

CONTEXT/OBJECTIVE: To examine the effects of transcutaneous spinal cord stimulation (tSCS) on lower-limb spasticity. DESIGN: Interventional pilot study to produce preliminary data. SETTING: Department of Physical Medicine and Rehabilitation, Wilhelminenspital, Vienna, Austria. PARTICIPANTS: Three subjects with chronic motor-incomplete spinal cord injury (SCI) who could walk ≥10 m. INTERVENTIONS: Two interconnected stimulating skin electrodes (Ø 5 cm) were placed paraspinally at the T11/T12 vertebral levels, and two rectangular electrodes (8 × 13 cm) on the abdomen for the reference. Biphasic 2 ms-width pulses were delivered at 50 Hz for 30 minutes at intensities producing paraesthesias but no motor responses in the lower limbs. OUTCOME MEASURES: The Wartenberg pendulum test and neurological recordings of surface-electromyography (EMG) were used to assess effects on exaggerated reflex excitability. Non-functional co-activation during volitional movement was evaluated. The timed 10-m walk test provided measures of clinical function. RESULTS: The index of spasticity derived from the pendulum test changed from 0.8 ± 0.4 pre- to 0.9 ± 0.3 post-stimulation, with an improvement in the subject with the lowest pre-stimulation index. Exaggerated reflex responsiveness was decreased after tSCS across all subjects, with the most profound effect on passive lower-limb movement (pre- to post-tSCS EMG ratio: 0.2 ± 0.1), as was non-functional co-activation during voluntary movement. Gait speed values increased in two subjects by 39%. CONCLUSION: These preliminary results suggest that tSCS, similar to epidurally delivered stimulation, may be used for spasticity control, without negatively impacting residual motor control in incomplete SCI. Further study in a larger population is warranted.


Assuntos
Espasticidade Muscular/terapia , Traumatismos da Medula Espinal/terapia , Estimulação Elétrica Nervosa Transcutânea , Adulto , Feminino , Humanos , Extremidade Inferior/inervação , Extremidade Inferior/fisiopatologia , Masculino , Projetos Piloto , Traumatismos da Medula Espinal/fisiopatologia
14.
J Spinal Cord Med ; 35(5): 305-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23031167

RESUMO

This article, based on the keynote address at the 5th National Spinal Cord Injury Conference in Toronto, addresses methods to neurophysiologically characterize patients after spinal cord injury and proposes how those methods could be used to individualize therapeutic interventions and monitor their efficacy over the course of neurorehabilitation.


Assuntos
Medicina Baseada em Evidências/métodos , Terapia por Exercício/métodos , Assistência Centrada no Paciente/métodos , Traumatismos da Medula Espinal/reabilitação , Vias Eferentes/fisiologia , Humanos , Neurofisiologia/métodos , Traumatismos da Medula Espinal/fisiopatologia
15.
Front Rehabil Sci ; 3: 789333, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188913

RESUMO

The goal of this study was to examine and compare the step cycle related modulation of the soleus H and posterior root muscle (PRM) reflexes in subjects with and without spinal cord injury. Ten subjects without neurological injury and fifteen subjects with spinal cord injury (SCI) underwent soleus H reflex and lower limb PRM reflex testing while standing and stepping in a robotic gait orthosis. Reflex amplitudes were evaluated during standing, mid stance and mid swing to determine if speed and/or injury altered step cycle related neuromodulation. H and PRM reflexes in the soleus underwent step cycle related modulation in injured and uninjured subjects though the degree of modulation differed between the two reflexes with the H reflex showing more step cycle related modulation. We found in the SCI group that both the soleus H and soleus PRM reflex amplitudes were higher relative to the non-injured group and modulated less during the step cycle. We also found that modulation of the soleus H reflex, but not soleus PRM reflex, correlated to the lower extremity motor scores in individuals with SCI. Our evidence suggests that the inability to provide appropriate step cycle related reflex modulation may be due to decreased supra-spinal regulation of motoneuron and spinal excitability and could be an indicator of the severity of injury as it relates to clinically measured lower extremity motor scores.

16.
Animal Model Exp Med ; 4(2): 77-86, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34179716

RESUMO

Occupational exposure to whole-body vibration is associated with the development of musculoskeletal, neurological, and other ailments. Low back pain and other spine disorders are prevalent among those exposed to whole-body vibration in occupational and military settings. Although standards for limiting exposure to whole-body vibration have been in place for decades, there is a lack of understanding of whole-body vibration-associated risks among safety and healthcare professionals. Consequently, disorders associated with whole-body vibration exposure remain prevalent in the workforce and military. The relationship between whole-body vibration and low back pain in humans has been established largely through cohort studies, for which vibration inputs that lead to symptoms are rarely, if ever, quantified. This gap in knowledge highlights the need for the development of relevant in vivo, ex vivo, and in vitro models to study such pathologies. The parameters of vibrational stimuli (eg, frequency and direction) play critical roles in such pathologies, but the specific cause-and-effect relationships between whole-body vibration and spinal pathologies remain mostly unknown. This paper provides a summary of whole-body vibration parameters; reviews in vivo, ex vivo, and in vitro models for spinal pathologies resulting from whole-body vibration; and offers suggestions to address the gaps in translating injury biomechanics data to inform clinical practice.


Assuntos
Dor Lombar , Exposição Ocupacional , Doenças da Coluna Vertebral , Humanos , Dor Lombar/etiologia , Exposição Ocupacional/efeitos adversos , Coluna Vertebral , Vibração/efeitos adversos
17.
Sci Rep ; 9(1): 19049, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31836817

RESUMO

Electrical stimulation to segmental dorsal cutaneous nerves (DCNs) activates a nociceptive sensorimotor reflex and the same afferent stimulation also evokes blood pressure (BP) and heart rate (HR) responses in rats. To investigate the relationship between those cardiovascular responses and the activation of nociceptive afferents, we analyzed BP and HR responses to electrical stimulations at each DCN from T6 to L1 at 0.5 mA to activate A-fiber alone or 5 mA to activate both A- and C-fibers at different frequencies. Evoked cardiovascular responses showed a decrease and then an increase in BP and an increase and then a plateau in HR. Segmentally, both cardiovascular responses tended to be larger when evoked from the more rostral DCNs. Stimulation frequency had a larger effect on cardiovascular responses than the rostrocaudal level of the DCN input. Stimulation strength showed a large effect on BP changes dependent on C-fibers whereas HR changes were dependent on A-fibers. Additional A-fiber activation by stimulating up to 4 adjacent DCNs concurrently, but only at 0.5 mA, affected HR but not BP. These data support that cutaneous nociceptive afferent subtypes preferentially contribute to different cardiovascular responses, A-fibers to HR and C-fibers to BP, with temporal (stimulation frequency) and spatial (rostrocaudal level) dynamics.


Assuntos
Sistema Cardiovascular/metabolismo , Nociceptividade/fisiologia , Reflexo/fisiologia , Pele/inervação , Medula Espinal/fisiologia , Animais , Pressão Sanguínea/fisiologia , Estimulação Elétrica , Feminino , Frequência Cardíaca/fisiologia , Músculos/fisiologia , Fibras Nervosas Mielinizadas/fisiologia , Ratos Long-Evans
18.
J Neurosci ; 27(16): 4460-71, 2007 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-17442831

RESUMO

Although recovery from spinal cord injury is generally meager, evidence suggests that step training can improve stepping performance, particularly after neonatal spinal injury. The location and nature of the changes in neural substrates underlying the behavioral improvements are not well understood. We examined the kinematics of stepping performance and cellular and synaptic electrophysiological parameters in ankle extensor motoneurons in nontrained and treadmill-trained rats, all receiving a complete spinal transection as neonates. For comparison, electrophysiological experiments included animals injured as young adults, which are far less responsive to training. Recovery of treadmill stepping was associated with significant changes in the cellular properties of motoneurons and their synaptic input from spinal white matter [ipsilateral ventrolateral funiculus (VLF)] and muscle spindle afferents. A strong correlation was found between the effectiveness of step training and the amplitude of both the action potential afterhyperpolarization and synaptic inputs to motoneurons (from peripheral nerve and VLF). These changes were absent if step training was unsuccessful, but other spinal projections, apparently inhibitory to step training, became evident. Greater plasticity of axonal projections after neonatal than after adult injury was suggested by anatomical demonstration of denser VLF projections to hindlimb motoneurons after neonatal injury. This finding confirmed electrophysiological measurements and provides a possible mechanism underlying the greater training susceptibility of animals injured as neonates. Thus, we have demonstrated an "age-at-injury"-related difference that may influence training effectiveness, that successful treadmill step training can alter electrophysiological parameters in the transected spinal cord, and that activation of different pathways may prevent functional improvement.


Assuntos
Atividade Motora , Neurônios Motores , Plasticidade Neuronal , Traumatismos da Medula Espinal/fisiopatologia , Transmissão Sináptica , Animais , Animais Recém-Nascidos , Fenômenos Biomecânicos , Feminino , Ratos , Ratos Sprague-Dawley , Tempo de Reação , Vértebras Torácicas
19.
J Neurosci ; 26(37): 9365-75, 2006 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-16971520

RESUMO

The mechanisms that trigger or contribute to loss of dopaminergic (DA) neurons in Parkinson's disease (PD) remain unclear and controversial. Elevated levels of tumor necrosis factor (TNF) in CSF and postmortem brains of PD patients and animal models of PD implicate this proinflammatory cytokine in the pathophysiology of the disease; but a role for TNF in mediating loss of DA neurons in PD has not been clearly demonstrated. Here, we report that neutralization of soluble TNF (solTNF) in vivo with the engineered dominant-negative TNF compound XENP345 (a PEGylated version of the TNF variant A145R/I97T) reduced by 50% the retrograde nigral degeneration induced by a striatal injection of the oxidative neurotoxin 6-hydroxydopamine (6-OHDA). XENP345 was neuroprotective only when infused into the nigra, not the striatum. XENP345/6-OHDA rats displayed attenuated amphetamine-induced rotational behavior, indicating preservation of striatal dopamine levels. Similar protective effects were observed with chronic in vivo coinfusion of XENP345 with bacterial lipopolysaccharide (LPS) into the substantia nigra, confirming a role for solTNF-dependent neuroinflammation in nigral degeneration. In embryonic rat midbrain neuron/glia cell cultures exposed to LPS, even delayed administration of XENP345 prevented selective degeneration of DA neurons despite sustained microglia activation and secretion of solTNF. XENP345 also attenuated 6-OHDA-induced DA neuron toxicity in vitro. Collectively, our data demonstrate a role for TNF in vitro and in vivo in two models of PD, and raise the possibility that delaying the progressive degeneration of the nigrostriatal pathway in humans is therapeutically feasible with agents capable of blocking solTNF in early stages of PD.


Assuntos
Dopamina/metabolismo , Degeneração Neural/tratamento farmacológico , Neurônios/efeitos dos fármacos , Transtornos Parkinsonianos/tratamento farmacológico , Substância Negra/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Anfetamina/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Gliose/tratamento farmacológico , Gliose/fisiopatologia , Gliose/prevenção & controle , Mediadores da Inflamação/antagonistas & inibidores , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Degeneração Neural/fisiopatologia , Degeneração Neural/prevenção & controle , Neurônios/metabolismo , Neurônios/patologia , Neurotoxinas/antagonistas & inibidores , Oxidopamina/antagonistas & inibidores , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/fisiopatologia , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Substância Negra/metabolismo , Substância Negra/fisiopatologia , Resultado do Tratamento , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
20.
J Comp Neurol ; 525(9): 2216-2234, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28295313

RESUMO

Stimulation of rat segmental dorsal cutaneous nerves (DCNs) evokes the nociceptive intersegmental cutaneus trunci muscle (CTM) reflex. The reflex consists of early and late responses, mediated by Aδ and C fibers, respectively, based on required stimulation strengths, and shows segmental differences in terms of amplitude and duration. We have now investigated whether the peripheral or central anatomy of nociceptive afferent subtypes in different DCNs also vary in a segmental manner. The numbers of different axon subtypes, determined by axon diameter, were analyzed across peripheral DCNs from T6 to L1. The central projections of T7 and T13 DCN afferents were traced using DCN injections of cholera toxin subunit B (CTB) for myelinated A fibers and isolectin B4 (IB4) for unmyelinated C fibers and both labels were quantified in the dorsal horns. Peripheral axon subtype numbers did not differ significantly across DCNs. Centrally, IB4+ , but not CTB+ , projection areas were different between T7 and T13, consistent with different segmental CTM neurogram responses. At both levels, A fibers projected to deeper layers of the dorsal horn than did C fibers. These termination sites are consistent with both mono- and polysynaptic connections between these afferents and the ascending propriospinal interneurons of the reflex. Also analyzed were the spatial distribution, the synaptic termination, and the glutamatergic transporter profiles of DCN A and C fibers and their relationship to calcitonin gene-related peptide (CGRP) staining in the dorsal horn.


Assuntos
Fibras Nervosas Mielinizadas/fisiologia , Fibras Nervosas Amielínicas/fisiologia , Nociceptividade/fisiologia , Reflexo/fisiologia , Pele/inervação , Medula Espinal/anatomia & histologia , Análise de Variância , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Toxina da Cólera/metabolismo , Feminino , Lectinas/metabolismo , Ratos , Ratos Long-Evans , Medula Espinal/fisiologia , Sinaptofisina/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa