Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell ; 186(14): 3033-3048.e20, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37327784

RESUMO

The intestinal epithelial cells (IECs) constitute the primary barrier between host cells and numerous foreign antigens; it is unclear how IECs induce the protective immunity against pathogens while maintaining the immune tolerance to food. Here, we found IECs accumulate a less recognized 13-kD N-terminal fragment of GSDMD that is cleaved by caspase-3/7 in response to dietary antigens. Unlike the 30-kD GSDMD cleavage fragment that executes pyroptosis, the IEC-accumulated GSDMD cleavage fragment translocates to the nucleus and induces the transcription of CIITA and MHCII molecules, which in turn induces the Tr1 cells in upper small intestine. Mice treated with a caspase-3/7 inhibitor, mice with GSDMD mutation resistant to caspase-3/7 cleavage, mice with MHCII deficiency in IECs, and mice with Tr1 deficiency all displayed a disrupted food tolerance phenotype. Our study supports that differential cleavage of GSDMD can be understood as a regulatory hub controlling immunity versus tolerance in the small intestine.


Assuntos
Gasderminas , Proteínas de Neoplasias , Camundongos , Animais , Caspase 3/metabolismo , Proteínas de Neoplasias/metabolismo , Piroptose , Intestino Delgado/metabolismo , Tolerância Imunológica
2.
Nat Immunol ; 20(12): 1681-1691, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31636462

RESUMO

Much attention has focused on commensal bacteria in health and disease, but the role of commensal viruses is understudied. Although metagenomic analysis shows that the intestine of healthy humans and animals harbors various commensal viruses and the dysbiosis of these viruses can be associated with inflammatory diseases, there is still a lack of causal data and underlying mechanisms to understand the physiological role of commensal viruses in intestinal homeostasis. In the present study, we show that commensal viruses are essential for the homeostasis of intestinal intraepithelial lymphocytes (IELs). Mechanistically, the cytosolic viral RNA-sensing receptor RIG-I in antigen-presenting cells can recognize commensal viruses and maintain IELs via a type I interferon-independent, but MAVS-IRF1-IL-15 axis-dependent, manner. The recovery of IELs by interleukin-15 administration reverses the susceptibility of commensal virus-depleted mice to dextran sulfate sodium-induced colitis. Collectively, our results indicate that commensal viruses maintain the IELs and consequently sustain intestinal homeostasis via noncanonical RIG-I signaling.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Infecções por Caliciviridae/imunologia , Colite/imunologia , Proteína DEAD-box 58/metabolismo , Intestinos/imunologia , Linfócitos Intraepiteliais/imunologia , Norovirus/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Infecções por Caliciviridae/virologia , Células Cultivadas , Colite/induzido quimicamente , Colite/virologia , Proteína DEAD-box 58/genética , Sulfato de Dextrana , Suscetibilidade a Doenças , Homeostase , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Interleucina-15/metabolismo , Intestinos/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Simbiose/imunologia
3.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33483420

RESUMO

RNA helicases play roles in various essential biological processes such as RNA splicing and editing. Recent in vitro studies show that RNA helicases are involved in immune responses toward viruses, serving as viral RNA sensors or immune signaling adaptors. However, there is still a lack of in vivo data to support the tissue- or cell-specific function of RNA helicases owing to the lethality of mice with complete knockout of RNA helicases; further, there is a lack of evidence about the antibacterial role of helicases. Here, we investigated the in vivo role of Dhx15 in intestinal antibacterial responses by generating mice that were intestinal epithelial cell (IEC)-specific deficient for Dhx15 (Dhx15 f/f Villin1-cre, Dhx15ΔIEC). These mice are susceptible to infection with enteric bacteria Citrobacter rodentium (C. rod), owing to impaired α-defensin production by Paneth cells. Moreover, mice with Paneth cell-specific depletion of Dhx15 (Dhx15 f/f Defensinα6-cre, Dhx15ΔPaneth) are more susceptible to DSS (dextran sodium sulfate)-induced colitis, which phenocopy Dhx15ΔIEC mice, due to the dysbiosis of the intestinal microbiota. In humans, reduced protein levels of Dhx15 are found in ulcerative colitis (UC) patients. Taken together, our findings identify a key regulator of Wnt-induced α-defensins in Paneth cells and offer insights into its role in the antimicrobial response as well as intestinal inflammation.


Assuntos
Colite/imunologia , Defensinas/genética , Infecções por Enterobacteriaceae/imunologia , Celulas de Paneth/imunologia , RNA Helicases/genética , Via de Sinalização Wnt , Animais , Citrobacter rodentium/imunologia , Citrobacter rodentium/patogenicidade , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Defensinas/imunologia , Sulfato de Dextrana/administração & dosagem , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/patologia , Microbioma Gastrointestinal/imunologia , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/imunologia , Celulas de Paneth/microbiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , RNA Helicases/imunologia
4.
J Virol ; 92(21)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30111563

RESUMO

Hepatitis C virus (HCV) infection is a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV can be sensed by host innate immunity to induce expression of interferons (IFNs) and a number of antiviral effectors. In this study, we found HCV infection induced the expression of neuralized E3 ubiquitin protein ligase 3 (NEURL3), a putative E3 ligase, in a manner that requires the involvement of innate immune sensing but is independent of the IFN action. Furthermore, we showed that NEURL3 inhibited HCV infection while it had little effect on other RNA viruses, including Zika virus (ZIKV), dengue virus (DENV), and vesicular stomatitis virus (VSV). Mechanistic studies demonstrated that NEURL3 inhibited HCV assembly by directly binding HCV envelope glycoprotein E1 to interfere with the E1/E2 heterodimerization, an important prerequisite for virion morphogenesis. Finally, we showed that knockout of NEURL3 significantly enhanced HCV infection. In summary, we identified NEURL3 as a novel inducible antiviral host factor that suppresses HCV assembly. Our results not only shed new insight into how host innate immunity acts against HCV but also revealed a new important biological function for NEURL3.IMPORTANCE The exact biological function of NEURL3, a putative E3 ligase, remains largely unknown. In this study, we found that NEURL3 could be upregulated upon HCV infection in a manner dependent on pattern recognition receptor-mediated innate immune response. NEURL3 inhibits HCV assembly by directly binding viral E1 envelope glycoprotein to disrupt its interaction with E2, an action that requires its Neuralized homology repeat (NHR) domain but not the RING domain. Furthermore, we found that NEURL3 has a pangenotypic anti-HCV activity and interacts with E1 of genotypes 2a, 1b, 3a, and 6a but does not inhibit other closely related RNA viruses, such as ZIKV, DENV, and VSV. To our knowledge, our study is the first report to demonstrate that NEURL3 functions as an antiviral host factor. Our results not only shed new insight into how host innate immunity acts against HCV, but also revealed a new important biological function for NEURL3.


Assuntos
Antivirais/farmacologia , Hepatite C/prevenção & controle , Imunidade Inata/imunologia , Infecções por Vírus de RNA/virologia , Ubiquitina-Proteína Ligases/farmacologia , Proteínas do Envelope Viral/antagonistas & inibidores , Vírus da Dengue/efeitos dos fármacos , Células HEK293 , Hepacivirus/classificação , Hepacivirus/genética , Hepacivirus/imunologia , Hepatite C/imunologia , Hepatite C/virologia , Humanos , Infecções por Vírus de RNA/tratamento farmacológico , Infecções por Vírus de RNA/imunologia , Vírus de RNA/imunologia , Vírus da Estomatite Vesicular Indiana/efeitos dos fármacos , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Montagem de Vírus , Zika virus/efeitos dos fármacos
5.
J Virol ; 91(22)2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28878087

RESUMO

Ebola virus (EBOV) causes severe hemorrhagic fever in humans and other primates with a high case fatality rate. No approved drug or vaccine of EBOV is available, which necessitates better understanding of the virus life cycle. Studies on EBOV have been hampered because experimentations involving live virus are restricted to biosafety level 4 (BSL4) laboratories. The EBOV minigenome system has provided researchers with the opportunity to study EBOV under BSL2 conditions. Here, we developed a novel EBOV minigenome replicon which, to our knowledge, is the first EBOV cell culture system that can stably replicate and transcribe the EBOV minigenome. The minigenomic RNA harboring a Gaussia luciferase and hygromycin-resistant marker can replicate for months in a helper cell stably expressing viral nucleoprotein (NP), viral protein 35 (VP35), VP30, and L proteins. Quantification of viral RNA (vRNA), cRNA, and mRNA levels of the EBOV minigenome demonstrated that the stable EBOV replicon had much-more-active minigenome replication than previously developed transient-transfection-based EBOV minigenome systems, which recapitulate viral primary transcription more than genome replication. Interestingly, minigenome replication in the stable EBOV replicon cells was insensitive to interferon treatment or RNA interference. Moreover, RNase digestion of the replicon cell lysates revealed the remarkably stable nature of the EBOV minigenomic vRNA ribonucleoprotein complex, which may help improve understanding of EBOV persistence in convalescent patients.IMPORTANCE The scope and severity of the recent Ebola outbreak in Western Africa justified a more comprehensive investigation of the causative risk group 4 agent Ebola virus (EBOV). Study of EBOV replication and antiviral development can be facilitated by developing a cell culture system that allows experimentation under biosafety level 2 conditions. Here, we developed a novel stable EBOV minigenome replicon which, to our knowledge, is the first EBOV cell culture system that can stably replicate and transcribe the EBOV minigenome. The replicon system had more-active genome replication than previously developed transient-transfection-based EBOV minigenome systems, providing a convenient surrogate system to study EBOV replication. Furthermore, self-replicating minigenomic vRNA in the replicon cells displayed strong stability in response to interferon treatment, RNA silencing, and RNase digestion, which may provide an explanation for the persistence of EBOV in survivors.

6.
J Infect Dis ; 215(12): 1824-1831, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28398489

RESUMO

Background: The global control of hepatitis C virus (HCV) infection remains a great burden, owing to the high prices and potential drug resistance of the new direct-acting antivirals (DAAs), as well as the risk of reinfection in DAA-cured patients. Thus, a prophylactic vaccine for HCV is of great importance. We previously reported that a single recombinant soluble E2 (sE2) vaccine produced in insect cells was able to induce broadly neutralizing antibodies (NAbs) and prevent HCV infection in mice. Here the sE2 vaccine was evaluated in non-human primates. Methods: Rhesus macaques were immunized with sE2 vaccine in combination with different adjuvants. Vaccine-induced NAbs in antisera were tested for neutralization activities against a panel of cell culture-derived HCV (HCVcc), while T-cell responses were evaluated in splenocytes, peripheral blood mononuclear cells, and hepatic lymphocytes. Results: sE2 is able to elicit NAbs against HCVcc harboring structural proteins from multiple HCV genotypes in rhesus macaques. Moreover, sE2-immunized macaques developed systemic and intrahepatic memory T cells specific for E2. A significant correlation between the sE2-specific immunoglobulin G titers and neutralization spectrum was observed, highlighting the essential role of sE2 immunogenicity on achieving broad NAbs. Conclusions: sE2 is a promising HCV vaccine candidate that warrants further preclinical and clinical development.


Assuntos
Anticorpos Neutralizantes/imunologia , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/sangue , Linfócitos T/imunologia , Vacinas contra Hepatite Viral/imunologia , Adjuvantes Imunológicos/uso terapêutico , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Genótipo , Hepacivirus/genética , Hepatite C/prevenção & controle , Hepatite C/virologia , Humanos , Imunização , Leucócitos Mononucleares/imunologia , Fígado/imunologia , Fígado/virologia , Macaca mulatta , Masculino
7.
J Virol ; 90(23): 10486-10498, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27630242

RESUMO

Hepatitis C virus (HCV) infection is a global health problem for which no vaccine is available. HCV has a highly heterogeneous RNA genome and can be classified into seven genotypes. Due to the high genetic and resultant antigenic variation among the genotypes, inducing antibodies capable of neutralizing most of the HCV genotypes by experimental vaccination has been challenging. Previous efforts focused on priming humoral immune responses with recombinant HCV envelope E2 protein produced in mammalian cells. Here, we report that a soluble form of HCV E2 (sE2) produced in insect cells possesses different glycosylation patterns and is more immunogenic, as evidenced by the induction of higher titers of broadly neutralizing antibodies (bNAbs) against cell culture-derived HCV (HCVcc) harboring structural proteins from a diverse array of HCV genotypes. We affirm that continuous and discontinuous epitopes of well-characterized bNAbs are conserved, suggesting that sE2 produced in insect cells is properly folded. In a genetically humanized mouse model, active immunization with sE2 efficiently protected against challenge with a heterologous HCV genotype. These data not only demonstrate that sE2 is a promising HCV vaccine candidate, but also highlight the importance of glycosylation patterns in developing subunit viral vaccines. IMPORTANCE: A prophylactic vaccine with high efficacy and low cost is urgently needed for global control of HCV infection. Induction of broadly neutralizing antibodies against most HCV genotypes has been challenging due to the antigenic diversity of the HCV genome. Here, we refined a high-yield subunit HCV vaccine that elicited broadly neutralizing antibody responses in preclinical trials. We found that soluble HCV E2 protein (sE2) produced in insect cells is distinctly glycosylated and is more immunogenic than sE2 produced in mammalian cells, suggesting that glycosylation patterns should be taken into consideration in efforts to generate antibody-based recombinant vaccines against HCV. We further showed that sE2 vaccination confers protection against HCV infection in a genetically humanized mouse model. Thus, our work identified a promising broadly protective HCV vaccine candidate that should be considered for further preclinical and clinical development.


Assuntos
Anticorpos Neutralizantes/biossíntese , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/biossíntese , Vacinas contra Hepatite Viral/imunologia , Animais , Especificidade de Anticorpos , Linhagem Celular , Drosophila , Feminino , Glicosilação , Hepacivirus/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Deleção de Sequência , Solubilidade , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/imunologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/química , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/imunologia
8.
J Virol ; 89(13): 6805-16, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25903345

RESUMO

UNLABELLED: Hepatitis C virus (HCV), a single-stranded positive-sense RNA virus of the Flaviviridae family, causes chronic liver diseases, including hepatitis, cirrhosis, and cancer. HCV infection is critically dependent on host lipid metabolism, which contributes to all stages of the viral life cycle, including virus entry, replication, assembly, and release. 25-Hydroxycholesterol (25HC) plays a critical role in regulating lipid metabolism, modulating immune responses, and suppressing viral pathogens. In this study, we showed that 25HC and its synthesizing enzyme cholesterol 25-hydroxylase (CH25H) efficiently inhibit HCV infection at a postentry stage. CH25H inhibits HCV infection by suppressing the maturation of SREBPs, critical transcription factors for host lipid biosynthesis. Interestingly, CH25H is upregulated upon poly(I · C) treatment or HCV infection in hepatocytes, which triggers type I and III interferon responses, suggesting that the CH25H induction constitutes a part of host innate immune response. To our surprise, in contrast to studies in mice, CH25H is not induced by interferons in human cells and knockdown of STAT-1 has no effect on the induction of CH25H, suggesting CH25H is not an interferon-stimulated gene in humans but rather represents a primary and direct host response to viral infection. Finally, knockdown of CH25H in human hepatocytes significantly increases HCV infection. In summary, our results demonstrate that CH25H constitutes a primary innate response against HCV infection through regulating host lipid metabolism. Manipulation of CH25H expression and function should provide a new strategy for anti-HCV therapeutics. IMPORTANCE: Recent studies have expanded the critical roles of oxysterols in regulating immune response and antagonizing viral pathogens. Here, we showed that one of the oxysterols, 25HC and its synthesizing enzyme CH25H efficiently inhibit HCV infection at a postentry stage via suppressing the maturation of transcription factor SREBPs that regulate lipid biosynthesis. Furthermore, we found that CH25H expression is upregulated upon poly(I·C) stimulation or HCV infection, suggesting CH25H induction constitutes a part of host innate immune response. Interestingly, in contrast to studies in mice showing that ch25h is an interferon-stimulated gene, CH25H cannot be induced by interferons in human cells but rather represents a primary and direct host response to viral infection. Our studies demonstrate that the induction of CH25H represents an important host innate response against virus infection and highlight the role of lipid effectors in host antiviral strategy.


Assuntos
Hepacivirus/imunologia , Hidroxicolesteróis/metabolismo , Imunidade Inata , Fatores Imunológicos/metabolismo , Esteroide Hidroxilases/metabolismo , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Técnicas de Silenciamento de Genes , Hepacivirus/efeitos dos fármacos , Hepacivirus/fisiologia , Hepatócitos/imunologia , Hepatócitos/virologia , Humanos
9.
J Immunol ; 193(2): 783-96, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24928988

RESUMO

Human ficolin-2 (L-ficolin/p35) is a lectin-complement pathway activator that is present in normal human plasma and is associated with infectious diseases; however, little is known regarding the roles and mechanisms of ficolin-2 during chronic hepatitis C virus (HCV) infection. In this study, we found that ficolin-2 inhibits the entry of HCV at an early stage of viral infection, regardless of the viral genotype. Ficolin-2 neutralized and inhibited the initial attachment and infection of HCV by binding to the HCV envelope surface glycoproteins E1 and E2, blocking HCV attachment to low-density lipoprotein receptor (LDLR) and scavenger receptor B1, and weakly interfering with CD81 receptor attachment. However, no interference with claudin-1 and occludin receptor attachment was observed. The C-terminal fibrinogen domain (201-313 aa) of ficolin-2 was identified as the critical binding region for the HCV-E1-E2 N-glycans, playing a critical role in the anti-HCV activity. More importantly, we found that apolipoprotein E (ApoE)3, which is enriched in the low-density fractions of HCV RNA-containing particles, promotes HCV infection and inhibits ficolin-2-mediated antiviral activity. ApoE3, but not ApoE2 and ApoE4, blocked the interaction between ficolin-2 and HCV-E2. Our data suggest that the HCV entry inhibitor ficolin-2 is a novel and promising antiviral innate immune molecule, whereas ApoE3 blocks the effect of ficolin-2 and mediates an immune escape mechanism during chronic HCV infection. HCV may be neutralized using compounds directed against the lipoprotein moiety of the viral particle, and ApoE3 may be a new target to combat HCV infection.


Assuntos
Apolipoproteína E3/imunologia , Hepacivirus/imunologia , Lectinas/imunologia , Evasão Tumoral/imunologia , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Ligação Competitiva/imunologia , Western Blotting , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Hepacivirus/genética , Hepacivirus/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Lectinas/genética , Lectinas/metabolismo , Mananas/imunologia , Mananas/metabolismo , Microscopia Confocal , Polissacarídeos/imunologia , Polissacarídeos/metabolismo , Ligação Proteica/imunologia , Interferência de RNA , Receptores de LDL/genética , Receptores de LDL/imunologia , Receptores de LDL/metabolismo , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/imunologia , Receptores Depuradores Classe B/metabolismo , Tetraspanina 28/genética , Tetraspanina 28/imunologia , Tetraspanina 28/metabolismo , Evasão Tumoral/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Ficolinas
10.
J Hepatol ; 62(4): 771-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25463548

RESUMO

BACKGROUND & AIMS: Hepatitis C virus (HCV) is a human pathogen that can evade host immunity to cause persistent infection, leading to liver cirrhosis and hepatocellular carcinoma. The transfected 3'UTR of HCV genomic RNA can be recognized by host protein RIG-I to activate interferon production in hepatocytes. However, it is difficult to demonstrate the RIG-I mediated sensing of HCV genomic RNA in the context of HCV infection because HCV-encoded NS3-4A protease can inactivate MAVS, a critical adaptor protein in interferon signaling. Our aim was to identify the viral sensor that triggers interferon response in hepatocytes during HCV infection. METHODS: We generated a hepatic cell line that stably expressed mutant MAVS resistant to the NS3-4A cleavage. This cell line allowed us to investigate the interferon signaling pathway in the context of HCV infection. By using the knockdown and knockout technology together with biochemical approaches, we were able to identify the actual viral sensor in hepatocytes during HCV infection. RESULTS: We showed that HCV infection induced robust interferon response in the cells expressing MAVS resistant to the NS3-4A cleavage. Unexpectedly, the interaction between HCV's 3'UTR and RIG-I seemed to play a minor role in this activation, while another helicase MDA5 played a more important role in sensing HCV infection to trigger interferon response. CONCLUSIONS: Our data demonstrate that MDA5 recognizes HCV to initiate host innate immune response during HCV infection. This study provides insight into how host senses HCV to initiate innate immunity during HCV infection.


Assuntos
RNA Helicases DEAD-box/imunologia , RNA Helicases DEAD-box/metabolismo , Hepacivirus/genética , Hepatite C Crônica , Hepatócitos , Interferons/metabolismo , Proteínas não Estruturais Virais/metabolismo , Regiões 3' não Traduzidas/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular , Proteína DEAD-box 58 , Hepatite C Crônica/imunologia , Hepatite C Crônica/virologia , Hepatócitos/imunologia , Hepatócitos/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Fatores Reguladores de Interferon/metabolismo , Helicase IFIH1 Induzida por Interferon , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Imunológicos , Serina Endopeptidases/metabolismo , Transdução de Sinais
11.
J Virol ; 88(3): 1484-91, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24227861

RESUMO

Hepatitis C virus (HCV) infection is a leading cause of chronic liver diseases. Progress in the HCV field was greatly enhanced by constructing infectious cDNA clone of JFH-1. Since then, JFH-1-based intra- and intergenotypic recombinants have been developed, and this permitted the study of vaccines and antiviral inhibitors for all genotypes. Recently, highly efficient HCV culture systems have been established by using consensus sequence-based clones. We developed a novel strategy to construct infectious HCV cDNA clone by combining functional screening of sequences directly from a genotype 2a clinical isolate (PR63) and cell culture adaptation. Using JFH-1 cDNA as the starting backbone, we sequentially replaced the JFH-1 fragments with a sequence from the pools of PR63 sequences. Through engineering adaptive mutations that improve HCV infectivity, we finally established a full-length cell culture-derived infectious clone of PR63, named PR63cc, that could efficiently produce virus particles in Huh7-derived cells, with peak titers of 1.6 × 10(5) focus-forming units/ml. The PR63cc could be neutralized by an anti-E2 antibody and inhibited by antiviral agents but appeared more resistant to an NS5A inhibitor than JFH-1. In summary, we developed a new approach to construct an infectious HCV cDNA clone that can produce viruses efficiently in cell culture. This approach could be applied to other viral isolates, with potential implications for individualized treatments of HCV patients.


Assuntos
Técnicas de Cultura de Células/métodos , Engenharia Genética/métodos , Hepacivirus/fisiologia , Hepatite C/virologia , Replicação Viral , Linhagem Celular Tumoral , DNA Complementar/genética , DNA Complementar/metabolismo , Hepacivirus/classificação , Hepacivirus/genética , Hepacivirus/isolamento & purificação , Humanos , Dados de Sequência Molecular , Mutação , Filogenia , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Cultura de Vírus
12.
Sci Adv ; 9(5): eadd5005, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36735791

RESUMO

RNA helicase DHX9 has been extensively characterized as a transcriptional regulator, which is consistent with its mostly nucleic localization. It is also involved in recognizing RNA viruses in the cytoplasm. However, there is no in vivo data to support the antiviral role of DHX9; meanwhile, as a nuclear protein, if and how nucleic DHX9 promotes antiviral immunity remains largely unknown. Here, we generated myeloid-specific and hepatocyte-specific DHX9 knockout mice and confirmed that DHX9 is crucial for host resistance to RNA virus infections in vivo. By additional knockout MAVS or STAT1 in DHX9-deficient mice, we demonstrated that nucleic DHX9 plays a positive role in regulating interferon-stimulated gene (ISG) expression downstream of type I interferon. Mechanistically, upon interferon stimulation, DHX9 is directly bound to STAT1 and recruits Pol II to the ISG promoter region to participate in STAT1-mediated transcription of ISGs. Collectively, these findings uncover an important role for nucleic DHX9 in antiviral immunity.


Assuntos
Interferon Tipo I , Replicação Viral , Animais , Camundongos , Antivirais , Camundongos Knockout , Fator de Transcrição STAT1/genética , Replicação Viral/genética
13.
Cell Res ; 33(5): 372-388, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37055591

RESUMO

Inflammatory bowel diseases (IBD) are known to have complex, genetically influenced etiologies, involving dysfunctional interactions between the intestinal immune system and the microbiome. Here, we characterized how the RNA transcript from an IBD-associated long non-coding RNA locus ("CARINH-Colitis Associated IRF1 antisense Regulator of Intestinal Homeostasis") protects against IBD. We show that CARINH and its neighboring gene coding for the transcription factor IRF1 together form a feedforward loop in host myeloid cells. The loop activation is sustained by microbial factors, and functions to maintain the intestinal host-commensal homeostasis via the induction of the anti-inflammatory factor IL-18BP and anti-microbial factors called guanylate-binding proteins (GBPs). Extending these mechanistic insights back to humans, we demonstrate that the function of the CARINH/IRF1 loop is conserved between mice and humans. Genetically, the T allele of rs2188962, the most probable causal variant of IBD within the CARINH locus from the human genetics study, impairs the inducible expression of the CARINH/IRF1 loop and thus increases genetic predisposition to IBD. Our study thus illustrates how an IBD-associated lncRNA maintains intestinal homeostasis and protects the host against colitis.


Assuntos
Colite , Doenças Inflamatórias Intestinais , RNA Longo não Codificante , Humanos , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Intestinos , Colite/metabolismo , Mucosa Intestinal/metabolismo
14.
J Virol ; 85(5): 2138-47, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21159872

RESUMO

Hepatitis C virus (HCV) infection is a major worldwide health problem. The envelope glycoproteins are the major components of viral particles. Here we developed a trans-complementation system that allows the production of infectious HCV particles in whose genome the regions encoding envelope proteins are deleted (HCVΔE). The lack of envelope proteins could be efficiently complemented by the expression of homologous envelope proteins in trans. HCVΔE production could be enhanced significantly by previously described adaptive mutations in NS3 and NS5A. Moreover, HCVΔE could be propagated and passaged in packaging cells stably expressing HCV envelope proteins, resulting in only single-round infection in wild-type cells. Interestingly, we found that vesicular stomatitis virus (VSV) glycoproteins could efficiently rescue the production of HCV lacking endogenous envelope proteins, which no longer required apolipoprotein E for virus production. VSV glycoprotein-mediated viral entry could allow for the bypass of the natural HCV entry process and the delivery of HCV replicon RNA into HCV receptor-deficient cells. Our development provides a new tool for the production of single-cycle infectious HCV particles, which should be useful for studying individual steps of the HCV life cycle and may also provide a new strategy for HCV vaccine development.


Assuntos
Hepacivirus/fisiologia , Vesiculovirus/fisiologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Vírion/fisiologia , Linhagem Celular Tumoral , Vírus Defeituosos/genética , Vírus Defeituosos/fisiologia , Hepacivirus/genética , Hepatite C/virologia , Humanos , Vesiculovirus/genética , Vírion/genética , Montagem de Vírus , Cultura de Vírus , Replicação Viral
15.
Nat Biomed Eng ; 6(7): 867-881, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798834

RESUMO

Orally delivered antibiotics can reach the caecum and colon, and induce gut dysbiosis. Here we show that the encapsulation of antibiotics in orally administered positively charged polymeric nanoparticles with a glucosylated surface enhances absorption by the proximal small intestine through specific interactions of glucose and the abundantly expressed sodium-dependent glucose transporter 1. This improves bioavailability of the antibiotics, and limits their exposure to flora in the large intestine and their accumulation in caecal and faecal contents. Compared with the standard administration of the same antibiotics, the oral administration of nanoparticle-encapsulated ampicillin, chloramphenicol or vancomycin in mice with bacterial infections in the lungs effectively eliminated the infections, decreased adverse effects on the intestinal microbiota by protecting the animals from dysbiosis-associated metabolic syndromes and from opportunistic pathogen infections, and reduced the accumulation of known antibiotic-resistance genes in commensal bacteria. Glucosylated nanocarriers may be suitable for the oral delivery of other drugs causing gut dysbiosis.


Assuntos
Microbioma Gastrointestinal , Nanopartículas , Animais , Antibacterianos/farmacologia , Disbiose/induzido quimicamente , Disbiose/prevenção & controle , Intestino Delgado , Camundongos
16.
J Exp Med ; 219(5)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35348580

RESUMO

Type 1 innate lymphoid cells (ILC1s) represent the predominant population of liver ILCs and function as important effectors and regulators of immune responses, but the cellular heterogeneity of ILC1s is not fully understood. Here, single-cell RNA sequencing and flow cytometric analysis demonstrated that liver ILC1s could be dissected into Ly49E+ and Ly49E- populations with unique transcriptional and phenotypic features. Genetic fate-mapping analysis revealed that liver Ly49E+ ILC1s with strong cytotoxicity originated from embryonic non-bone marrow hematopoietic progenitor cells (HPCs), persisted locally during postnatal life, and mediated protective immunity against cytomegalovirus infection in newborn mice. However, Ly49E- ILC1s developed from BM and extramedullary HPCs after birth, gradually replaced Ly49E+ ILC1s in the livers with age, and contained the memory subset in recall response to hapten challenge. Thus, our study shows that Ly49E dissects liver ILC1s into two unique subpopulations, with distinct origins and a bias toward neonatal innate or adult immune memory responses.


Assuntos
Células Matadoras Naturais , Linfócitos , Animais , Células-Tronco Hematopoéticas , Imunidade Inata , Fígado , Camundongos
17.
Nat Rev Gastroenterol Hepatol ; 18(4): 269-283, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33589829

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to more than 200 countries and regions globally. SARS-CoV-2 is thought to spread mainly through respiratory droplets and close contact. However, reports have shown that a notable proportion of patients with coronavirus disease 2019 (COVID-19) develop gastrointestinal symptoms and nearly half of patients confirmed to have COVID-19 have shown detectable SARS-CoV-2 RNA in their faecal samples. Moreover, SARS-CoV-2 infection reportedly alters intestinal microbiota, which correlated with the expression of inflammatory factors. Furthermore, multiple in vitro and in vivo animal studies have provided direct evidence of intestinal infection by SARS-CoV-2. These lines of evidence highlight the nature of SARS-CoV-2 gastrointestinal infection and its potential faecal-oral transmission. Here, we summarize the current findings on the gastrointestinal manifestations of COVID-19 and its possible mechanisms. We also discuss how SARS-CoV-2 gastrointestinal infection might occur and the current evidence and future studies needed to establish the occurrence of faecal-oral transmission.


Assuntos
COVID-19/fisiopatologia , Diarreia/fisiopatologia , Disbiose/fisiopatologia , Gastroenterite/fisiopatologia , Microbioma Gastrointestinal , Náusea/fisiopatologia , Vômito/fisiopatologia , Dor Abdominal/fisiopatologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anorexia/fisiopatologia , COVID-19/transmissão , Linhagem Celular , Colo/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Fezes/química , Gastroenterite/virologia , Humanos , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Complexo Antígeno L1 Leucocitário/metabolismo , Organoides , RNA Viral , Receptores de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , Serina Endopeptidases/metabolismo , Carga Viral , Eliminação de Partículas Virais
18.
Pathogens ; 10(7)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34358031

RESUMO

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global concern. Immunoglobin A (IgA) contributes to virus neutralization at the early stage of infection. Longitudinal studies are needed to assess whether SARS-CoV-2-specific IgA production persists for a longer time in patients recovered from severe COVID-19 and its lasting symptoms that can have disabling consequences should also be alerted to susceptible hosts. Here, we tracked the anti-SARS-CoV-2 spike protein receptor-binding domain (RBD) antibody levels in a cohort of 88 COVID-19 patients. We found that 52.3% of the patients produced more anti-SARS-CoV-2 RBD IgA than IgG or IgM, and the levels of IgA remained stable during 4-41 days of infection. One of these IgA-dominant COVID-19 patients, concurrently with IgA nephropathy (IgAN), presented with elevated serum creatinine and worse proteinuria during the infection, which continued until seven months post-infection. The serum levels of anti-SARS-CoV-2 RBD and total IgA were higher in this patient than in healthy controls. Changes in the composition of the intestinal microbiota, increased IgA highly coated bacteria, and elevated concentration of the proinflammatory cytokine IL-18 were indicative of potential involvement of intestinal dysbiosis and inflammation to the systemic IgA level and, consequently, the disease progression. Collectively, our work highlighted the potential adverse effect of the mucosal immune response to SARS-CoV-2 infection, and that additional care should be taken with COVID-19 patients presenting with chronic diseases such as IgAN.

19.
Sci Adv ; 7(2)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523994

RESUMO

Hepatitis C virus (HCV) remains a major human pathogen that requires better understanding of virus-host interactions. In this study, we performed a genome-wide CRISPR-Cas9 screening and identified TRIM26, an E3 ligase, as a critical HCV host factor. Deficiency of TRIM26 specifically impairs HCV genome replication. Mechanistic studies showed that TRIM26 interacts with HCV-encoded NS5B protein and mediates its K27-linked ubiquitination at residue K51, and thus promotes the NS5B-NS5A interaction. Moreover, mouse TRIM26 does not support HCV replication because of its unique six-amino acid insert that prevents its interaction with NS5B. Ectopic expression of human TRIM26 in a mouse hepatoma cell line that has been reconstituted with other essential HCV host factors promotes HCV infection. In conclusion, we identified TRIM26 as a host factor for HCV replication and a new determinant of host tropism. These results shed light on HCV-host interactions and may facilitate the development of an HCV animal model.

20.
Med Microecol ; 5: 100023, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34173452

RESUMO

The ongoing global pandemic of COVID-19 disease, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), mainly infect lung epithelial cells, and spread mainly through respiratory droplets. However, recent studies showed potential intestinal infection of SARS-CoV-2, implicated the possibility that the intestinal infection of SARS-CoV-2 may correlate with the dysbiosis of gut microbiota, as well as the severity of COVID-19 symptoms. Here, we investigated the alteration of the gut microbiota in COVID-19 patients, as well as analyzed the correlation between the altered microbes and the levels of intestinal inflammatory cytokine IL-18, which was reported to be elevated in the serum of in COVID-19 patients. Comparing with healthy controls or seasonal flu patients, the gut microbiota showed significantly reduced diversity, with increased opportunistic pathogens in COVID-19 patients. Also, IL-18 level was higher in the fecal samples of COVID-19 patients than in those of either healthy controls or seasonal flu patients. Moreover, the IL-18 levels were even higher in the fecal supernatants obtained from COVID-19 patients that tested positive for SARS-CoV-2 RNA than those that tested negative in fecal samples. These results indicate that changes in gut microbiota composition might contribute to SARS-CoV-2-induced production of inflammatory cytokines in the intestine and potentially also to the onset of a cytokine storm.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa