Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(8): e1012463, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39146353

RESUMO

Circular RNAs (circRNAs) are involved in various physiological and pathological processes in both vertebrates and invertebrates. However, most studies on circRNAs have focused on their roles as endogenous competitive RNAs. Here, we report a novel function of circRNA derived from the Fibrinogen-like protein 1 gene (circ-FGL1) that inhibits coelomocyte apoptosis via competing with the deubiquitinase AjOTUB1 to bind AjMyc in Apostichopus japonicus during Vibrio splendidus infection. The results showed that circ-FGL1 is significantly downregulated in coelomocytes of V. splendidus-induced A. japonicus and negatively regulates coelomocyte apoptosis through the AjBax-AjCyt c pathway. Mechanistically, the deubiquitinase AjOTUB1 and circ-FGL1 could interact with the transcription factor protein AjMyc in the same region with circ-FGL1/AjMyc having greater affinity. Under normal conditions, high levels of circ-FGL1 bind directly to AjMyc, inhibiting the deubiquitylation of AjMyc by AjOTUB1 and leading to the degradation of AjMyc. After V. splendidus infection, AjMyc disassociates from the depressed expression of circ-FGL1, promoting its deubiquitylation by binding to the induced deubiquitinase AjOTUB1 to inhibit its degradation. AjMyc is then transferred to the nucleus and promotes the transcription of AjCyt c and AjBax to induce coelomocyte apoptosis. The new finding will expand our present outstanding on the functional role of circRNAs and suggest new therapeutic targets for the treatment of echinoderms during bacterial invasion.


Assuntos
Apoptose , RNA Circular , Stichopus , Vibrioses , Vibrio , Animais , RNA Circular/metabolismo , RNA Circular/genética , Stichopus/microbiologia , Stichopus/metabolismo , Stichopus/genética , Vibrioses/metabolismo , Ligação Competitiva , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética
2.
Biochem Biophys Res Commun ; 708: 149802, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38520913

RESUMO

METTL16 is a well-characterized m6A methyltransferase that has been reported to contribute to tumorigenesis in various types of cancer. However, the effect of METTL16 on tumor progression under restricted nutrient conditions, which commonly occur in tumor microenvironment, has yet to be elucidated. Herein, our study initially reported the inhibitory effect of METTL16 depletion on apoptosis under amino acid starvation conditions. Mechanistically, we determined that the METTL16 knockdown represses the expression of extrinsic death receptors at both transcription and translation levels. Depletion of METTL16 prevented protein synthesis of GCN2, resulting in diminished ATF4 expression in a GCN2-eIF2α-dependent manner. Reduction of ATF4 further declined the expression of apoptotic receptor protein DR5. Meanwhile, METTL16 deficiency directly hampered protein synthesis of FADD and DR5, thereby impairing apoptosis and promoting cancer cell survival. Taken together, our study provides novel evidence for the involvement of METTL16 in regulating cancer progression, suggesting that METTL16 as a potential therapeutic target for cancer treatment.


Assuntos
Aminoácidos , Neoplasias , Humanos , Aminoácidos/metabolismo , Apoptose/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Neoplasias/genética , Nutrientes , Receptores de Morte Celular , Microambiente Tumoral
3.
Fish Shellfish Immunol ; 153: 109804, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39102970

RESUMO

The c-Jun N-terminal kinase (JNK) constitutes an evolutionarily conserved family of serine/threonine protein kinases, pivotal in regulating various physiological processes in vertebrates, encompassing apoptosis and antibacterial immunity. Nevertheless, the involvement of JNK in the innate immune response remains largely unexplored in pathogen-induced echinoderms. We isolated and characterized the JNK gene from Apostichopus japonicus (AjJNK) in our investigation. The full-length cDNA sequences of AjJNK spanned 1806 bp, comprising a 1299 bp open reading frame (ORF) encoding 432 amino acids, a 274 bp 5'-untranslated region (UTR), and a 233 bp 3'-UTR. Structural analysis revealed the presence of a classical S_TKc domain (37-335 amino acids) within AjJNK and contains several putative immune-related transcription factor-binding sites, including Elk-1, NF-κB, AP-1, and STAT5. Spatial expression analysis indicated ubiquitous expression of AjJNK across all examined tissues, with the highest expression noted in coelomocytes. The mRNA, protein, and phosphorylation levels of AjJNK were obviously induced in coelomocytes upon V. splendidus challenge and lipopolysaccharide stimulation. Immunofluorescence analysis demonstrated predominant cytoplasmic localization of AjJNK in coelomocytes with subsequent nuclear translocation following the V. splendidus challenge in vivo. Moreover, siRNA-mediated knockdown of AjJNK led to a significant increase in intracellular bacterial load, as well as elevated levels of Ajcaspase 3 and coelomocyte apoptosis post V. splendidus infection. Furthermore, the phosphorylation levels of AjJNK inhibited by its specific inhibitor SP600125 and also significantly suppressed the expression of Ajcaspase 3 and coelomocyte apoptosis during pathogen infection. Collectively, these data underscored the pivotal role of AjJNK in immune defense, specifically in the regulation of coelomocyte apoptosis in V. splendidus-challenged A. japonicus.

4.
Fish Shellfish Immunol ; 149: 109592, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685443

RESUMO

Akirin2 is pivotal for regulating host immunological responses in vertebrates, including antibacterial immunity and inflammation. However, the functional significance of Akirin2 in invertebrates remains largely unexplored. In this study, we cloned the complete cDNA sequence of Akirin2 from A. japonicus (AjAkirin2) and elucidated its immunological mechanism upon pathogen infection. The whole AjAkirin2 cDNA sequence spanned 1014 bp, which comprised a 630 bp open reading frame encoding 209 amino acids, a 230 bp 5'-untranslated region (UTR), and a 154 bp 3'-UTR. Spatial expression analysis displayed constitutive expression of AjAkirin2 in all examined tissues. Both mRNA and protein expression abundance of the AjAkirin2 showed considerably high in coelomocytes of sea cucumbers challenged with Vibrio splendidus or stimulated with lipopolysaccharide. In addition, we found that sea cucumbers with 107 CFU/mL V. splendidus infection had a lower survival rate upon AjAkirin2 knockdown. Mechanistically, the result of GST-pull down and co-IP assays indicated that AjAkirin2 directly interacted with Aj14-3-3ζ. Moreover, we also detected that AjAkirin2 positively regulated Aj14-3-3ζ expression in sea cucumber coelomocytes. Furthermore, the knockdown of AjAkirin2 or Aj14-3-3ζ resulted in increasing intracellular bacteria load and suppressed the expression of key genes of the NF-κB signaling pathway (p65 and p105) and inflammatory cytokines including IL-17, VEGF, and MMP-1. In summary, these results confirmed the critical role of AjAkirin2 in mediating innate immune responses against V. splendidus infection via interaction with Aj14-3-3ζ and thereby exerting antibacterial function.


Assuntos
Imunidade Inata , Filogenia , Stichopus , Vibrio , Animais , Vibrio/fisiologia , Stichopus/imunologia , Stichopus/genética , Imunidade Inata/genética , Sequência de Aminoácidos , Proteínas 14-3-3/genética , Proteínas 14-3-3/imunologia , Proteínas 14-3-3/metabolismo , Regulação da Expressão Gênica/imunologia , Alinhamento de Sequência/veterinária , Perfilação da Expressão Gênica/veterinária , Sequência de Bases
5.
Fish Shellfish Immunol ; 141: 109073, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37709179

RESUMO

Circular RNAs (circRNAs) function as immune regulators in many biological processes in mammals, while their function and underlying mechanisms in invertebrates are largely unexplored. In this study, the competing endogenous RNA (ceRNA) mechanism of circRNA that sponges miR-375 and thus regulates AjBAG2-mediated coelomocyte apoptosis was evaluated in Apostichopus japonicus. The results showed that circRNA254 (circ254) was significantly down-regulated in the intestines and coelomocytes after Vibrio splendidus challenge or Lipopolysaccharide exposure, which matched the RNA-seq results in A. japonicus within skin ulceration syndrome. Dual-luciferase and RNA FISH assays indicated that circ254 could directly combine with miR-375, in which circ254 possesses three binding sites of miR-375. Moreover, circ254 knockdown significantly promoted the coelomocyte apoptosis levels upon pathogen infection in vivo and in vitro. Furthermore, circ254 silencing could also down-regulate AjBAG2 expression and thereby promoting the levels of coelomocyte apoptosis levels and the expression of caspase 3, which the phenomenon could be reversed by treatment with miR-375 inhibitors. Taken together, our results confirmed that circ254 functions as a ceRNA of AjBAG2 by sponging miR-375, resulting in the inhibition of coelomocyte apoptosis in A. japonicus.

6.
Circ Res ; 122(5): 730-741, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29301853

RESUMO

RATIONALE: An elevated level of plasma LDL (low-density lipoprotein) is an established risk factor for cardiovascular disease. Recently, we reported that the (pro)renin receptor ([P]RR) regulates LDL metabolism in vitro via the LDLR (LDL receptor) and SORT1 (sortilin-1), independently of the renin-angiotensin system. OBJECTIVES: To investigate the physiological role of (P)RR in lipid metabolism in vivo. METHODS AND RESULTS: We used N-acetylgalactosamine modified antisense oligonucleotides to specifically inhibit hepatic (P)RR expression in C57BL/6 mice and studied the consequences this has on lipid metabolism. In line with our earlier report, hepatic (P)RR silencing increased plasma LDL-C (LDL cholesterol). Unexpectedly, this also resulted in markedly reduced plasma triglycerides in a SORT1-independent manner in C57BL/6 mice fed a normal- or high-fat diet. In LDLR-deficient mice, hepatic (P)RR inhibition reduced both plasma cholesterol and triglycerides, in a diet-independent manner. Mechanistically, we found that (P)RR inhibition decreased protein abundance of ACC (acetyl-CoA carboxylase) and PDH (pyruvate dehydrogenase). This alteration reprograms hepatic metabolism, leading to reduced lipid synthesis and increased fatty acid oxidation. As a result, hepatic (P)RR inhibition attenuated diet-induced obesity and hepatosteatosis. CONCLUSIONS: Collectively, our study suggests that (P)RR plays a key role in energy homeostasis and regulation of plasma lipids by integrating hepatic glucose and lipid metabolism.


Assuntos
Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Metabolismo dos Lipídeos , Obesidade/metabolismo , Receptores de Superfície Celular/metabolismo , Acetil-CoA Carboxilase/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/etiologia , Inativação Gênica , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Complexo Piruvato Desidrogenase/metabolismo , Receptores de Superfície Celular/genética , Receptor de Pró-Renina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa