Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Small ; : e2401248, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639029

RESUMO

Chlorine has been supplied by the chlor-alkali process that deploys dimensionally stable anodes (DSAs) for the electrochemical chlorine evolution reaction (ClER). The paramount bottlenecks have been ascribed to an intensive usage of precious elements and inevitable competition with the oxygen evolution reaction. Herein, a unique case of Ru2+-O4 active motifs anchored on Magnéli Ti4O7 (Ru-Ti4O7) via a straightforward wet impregnation and mild annealing is reported. The Ru-Ti4O7 performs radically active ClER with minimal deployment of Ru (0.13 wt%), both in 5 m NaCl (pH 2.3) and 0.1 m NaCl (pH 6.5) electrolytes. Scanning electrochemical microscopy demonstrates superior ClER selectivity on Ru-Ti4O7 compared to the DSA. Operando X-ray absorption spectroscopy and density functional theory calculations reveal a universally active ClER (over a wide range of pH and [Cl-]), through a direct adsorption of Cl- on Ru2+-O4 sites as the most plausible pathway, together with stabilized ClO* at low [Cl-] and high pH.

2.
J Am Chem Soc ; 145(36): 19422-19439, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37642501

RESUMO

Wastewater is an underleveraged resource; it contains pollutants that can be transformed into valuable high-purity products. Innovations in chemistry and chemical engineering will play critical roles in valorizing wastewater to remediate environmental pollution, provide equitable access to chemical resources and services, and secure critical materials from diminishing feedstock availability. This perspective envisions electrochemical wastewater refining─the use of electrochemical processes to tune and recover specific products from wastewaters─as the necessary framework to accelerate wastewater-based electrochemistry to widespread practice. We define and prescribe a use-informed approach that simultaneously serves specific wastewater-pollutant-product triads and uncovers a mechanistic understanding generalizable to broad use cases. We use this approach to evaluate research needs in specific case studies of electrocatalysis, stoichiometric electrochemical conversions, and electrochemical separations. Finally, we provide rationale and guidance for intentionally expanding the electrochemical wastewater refining product portfolio. Wastewater refining will require a coordinated effort from multiple expertise areas to meet the urgent need of extracting maximal value from complex, variable, diverse, and abundant wastewater resources.

3.
J Am Chem Soc ; 144(13): 5739-5744, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35315649

RESUMO

The electrochemical nitrate reduction reaction (NO3RR) on titanium introduces significant surface reconstruction and forms titanium hydride (TiHx, 0 < x ≤ 2). With ex situ grazing-incidence X-ray diffraction (GIXRD) and X-ray absorption spectroscopy (XAS), we demonstrated near-surface TiH2 enrichment with increasing NO3RR applied potential and duration. This quantitative relationship facilitated electrochemical treatment of Ti to form TiH2/Ti electrodes for use in NO3RR, thereby decoupling hydride formation from NO3RR performance. A wide range of NO3RR activity and selectivity on TiH2/Ti electrodes between -0.4 and -1.0 VRHE was observed and analyzed with density functional theory (DFT) calculations on TiH2(111). This work underscores the importance of relating NO3RR performance with near-surface electrode structure to advance catalyst design and operation.


Assuntos
Nitratos , Titânio , Eletrodos , Nitratos/química , Oxirredução , Titânio/química , Raios X
4.
Environ Sci Technol ; 56(22): 16134-16143, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36223185

RESUMO

Ion exchange (IX) is a promising technology for selective nitrogen recovery from urine; however, IX requires chemical-intensive regeneration that escalates energy consumption and carbon emissions. To overcome this barrier, we demonstrated and investigated a novel electrified IX stripping process (EXS) enabling electrochemical in situ IX regeneration with simultaneous ammonia stripping. EXS combines a weak acid cation exchange resin (WAC) to concentrate ammonia, a bipolar membrane to produce protons for WAC regeneration, and membrane stripping to recover the eluted ammonium from WAC. We observed over 80% regeneration (elution from resin) and recovery (membrane stripping) efficiencies during multiple adsorption-recovery cycles with synthetic and real urine. Comparing WAC with a strong acid cation exchange resin illustrated the critical role of the proton affinity of resin moieties in regulating resin regenerability and conductivity in EXS, which we distinguished from the rationale for material choice in electrodeionization. Compared to other electrochemical recovery methods using unamended wastewater as an electrolyte, EXS enabled control of electrolyte composition during recovery by separating and equalizing influent ammonium via WAC-mediated removal. This electrolyte engineering facilitated tunable EXS energy efficiency (100-300 MJ/kg N). This study informs the design of electrified, intensified systems that enable decentralized nitrogen recovery from urine.


Assuntos
Compostos de Amônio , Nitrogênio , Troca Iônica , Amônia , Água , Resinas de Troca de Cátion , Águas Residuárias
5.
Environ Sci Technol ; 56(12): 8712-8721, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35656915

RESUMO

Treatment of domestic wastewater can recover valuable resources, including clean water, energy, and ammonia. Important metrics for these systems are greenhouse gas (GHG) emissions and embodied energy, both of which are location- and technology-dependent. Here, we determine the embodied energy and GHG emissions resulting from a conventional process train, and we compare them to a nonconventional process train. The conventional train assumes freshwater conveyance from a pristine source that requires energy for pumping (US average of 0.29 kWh/m3), aerobic secondary treatment with N removal as N2, and Haber-Bosch synthesis of ammonia. Overall, we find that this process train has an embodied energy of 1.02 kWh/m3 and a GHG emission of 0.77 kg-CO2eq/m3. We compare these metrics to those of a nonconventional process train that features anaerobic secondary treatment technology followed by further purification of the effluent by reverse osmosis and air stripping for ammonia recovery. This "short-cut" process train reduces embodied energy to 0.88 kWh/m3 and GHG emissions to 0.42 kg-CO2eq/m3, while offsetting demand for ammonia from the Haber-Bosch process and decreasing reliance upon water transported over long distances. Finally, to assess the potential impacts of nonconventional nitrogen removal technology, we compared the embodied energy and GHG emissions resulting from partial nitritation/anammox coupled to anaerobic secondary treatment. The resulting process train enabled a lower embodied energy but increased GHG emissions, largely due to emissions of N2O, a potent greenhouse gas.


Assuntos
Gases de Efeito Estufa , Águas Residuárias , Amônia , Efeito Estufa , Eliminação de Resíduos Líquidos , Água
6.
Chemistry ; 26(44): 10099-10112, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32500617

RESUMO

Extracting valuable products from wastewaters with nitrogen-selective adsorbents can offset energy-intensive ammonia production, rebalance the nitrogen cycle, and incentivize environmental remediation. Separating nitrogen (N) as ammonium from other wastewater cations (e.g., K+ , Ca2+ ) presents a major challenge to N removal from wastewater and N recovery as high-purity products. High selectivity and capacity were achieved through ligand exchange of ammonia with ammine-complexing transition metals loaded onto polymeric cation exchange resins. Compared to commercial resins, metal-ligand exchange adsorbents exhibited higher ammonia removal capacity (8 mequiv g-1 ) and selectivity (N/K+ equilibrium selectivity of 10.1) in binary equimolar solutions. Considering optimal ammonia concentrations (200-300 mequiv L-1 ) and pH (9-10) for metal-ligand exchange, hydrolyzed urine was identified as a promising candidate for selective TAN recovery. However, divalent cation exchange increased transition metal elution and reduced ammonia adsorption. Ultimately, metal-ligand exchange adsorbents can advance nitrogen-selective separations from wastewaters.

7.
Environ Sci Technol ; 52(21): 12717-12727, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30256626

RESUMO

Algal systems have emerged as a promising strategy for simultaneous treatment and valorization of wastewater. However, further advancement and real-world implementation are hindered by the limited knowledge on the full energetic and nutrient product potentials of such systems and the corresponding value of these products. In this work, an aqueous-based system for the conversion of wastewater-derived algae and upgrading of crude products was designed and demonstrated. Bio-oil, fuel gas, and fertilizer products were generated from algal biomass harvested from a municipal wastewater treatment facility. Experiments showed that 68% of chemical energy contained in the algal biomass could be recovered with 44% in upgraded bio-oil and 23% in fuel gas (calculated as higher heating values), and 44% and 91% of nitrogen and phosphorus element contents in the original feedstock could be recovered as fertilizer products (ammonium sulfate and struvite), respectively. For 1,000 kg of such dry algal biomass, these products had an estimated total value of $427 (in 2014 U.S. dollars). For the first time, experiment-based energy and nutrient recovery potentials of wastewater-derived algae were presented in an integrated manner. Findings also revealed critical research needs and suggested strategies to further improve resource recovery and waste valorization in these systems.


Assuntos
Óleos Combustíveis , Águas Residuárias , Biocombustíveis , Biomassa , Fertilizantes , Óleos de Plantas , Polifenóis
8.
Environ Sci Technol ; 52(3): 1453-1460, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29303251

RESUMO

Recovering nitrogen from separately collected urine can potentially reduce costs and energy of wastewater nitrogen removal and fertilizer production. Through benchtop experiments, we demonstrate the recovery of nitrogen from urine as ammonium sulfate using electrochemical stripping, a combination of electrodialysis and membrane stripping. Nitrogen was selectively recovered with 93% efficiency in batch experiments with real urine and required 30.6 MJ kg N-1 in continuous-flow experiments (slightly less than conventional ammonia stripping). The effects of solution chemistry on nitrogen flux, electrolytic reactions, and reactions with electro-generated oxidants were evaluated using synthetic urine solutions. Fates of urine-relevant trace organic contaminants, including electrochemical oxidation and reaction with electro-generated chlorine, were investigated with a suite of common pharmaceuticals. Trace organics (<0.1 µg L-1) and elements (<30 µg L-1) were not detected at appreciable levels in the ammonium sulfate fertilizer product. This novel approach holds promise for selective recovery of nitrogen from concentrated liquid waste streams such as source-separated urine.


Assuntos
Amônia , Nitrogênio , Eletrólise , Fertilizantes , Urina , Eliminação de Resíduos Líquidos , Águas Residuárias
9.
Environ Sci Technol ; 51(21): 12061-12071, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28948786

RESUMO

Nitrogen standards for discharge of wastewater effluent into aquatic bodies are becoming more stringent, requiring some treatment plants to reduce effluent nitrogen concentrations. This study aimed to assess, from a life-cycle perspective, an innovative decentralized approach to nitrogen recovery: ion exchange of source-separated urine. We modeled an approach in which nitrogen from urine at individual buildings is sorbed onto resins, then transported by truck to regeneration and fertilizer production facilities. To provide insight into impacts from transportation, we enhanced the traditional economic and environmental assessment approach by combining spatial analysis, system-scale evaluation, and detailed last-mile logistics modeling using the city of San Francisco as an illustrative case study. The major contributor to energy intensity and greenhouse gas (GHG) emissions was the production of sulfuric acid to regenerate resins, rather than transportation. Energy and GHG emissions were not significantly sensitive to the number of regeneration facilities. Cost, however, increased with decentralization as rental costs per unit area are higher for smaller areas. The metrics assessed (unit energy, GHG emissions, and cost) were not significantly influenced by facility location in this high-density urban area. We determined that this decentralized approach has lower cost, unit energy, and GHG emissions than centralized nitrogen management via nitrification-denitrification if fertilizer production offsets are taken into account.


Assuntos
Troca Iônica , Nitrogênio , Animais , Cidades , Efeito Estufa , São Francisco , Águas Residuárias
10.
Environ Sci Technol ; 51(4): 2373-2381, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28098981

RESUMO

Separate collection of urine, which is only 1% of wastewater volume but contains the majority of nitrogen humans excrete, can potentially reduce the costs and energy input of wastewater treatment and facilitate recovery of nitrogen for beneficial use. Ion exchange was investigated for recovery of nitrogen as ammonium from urine for use as a fertilizer or disinfectant. Cation adsorption curves for four adsorbents (clinoptilolite, biochar, Dowex 50, and Dowex Mac 3) were compared in pure salt solutions, synthetic urine, and real stored urine. Competition from sodium and potassium present in synthetic and real urine did not significantly decrease ammonium adsorption for any of the adsorbents. Dowex 50 and Dowex Mac 3 showed nearly 100% regeneration efficiencies. Estimated ion exchange reactor volumes to capture the nitrogen for 1 week from a four-person household were lowest for Dowex Mac 3 (5 L) and highest for biochar (19 L). Although Dowex Mac 3 had the highest adsorption capacity, material costs ($/g N removed) were lower for clinoptilolite and biochar because of their substantially lower unit cost.


Assuntos
Troca Iônica , Nitrogênio , Adsorção , Compostos de Amônio , Fertilizantes , Humanos , Urina , Eliminação de Resíduos Líquidos
11.
J Hazard Mater ; 466: 133527, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38241833

RESUMO

Electrochemical methods can help manage sulfide in wastewater, which poses environmental and health concerns due to its toxicity, malodor, and corrosiveness. In addition, sulfur could be recovered as fertilizer and commodity chemicals from sulfide-containing wastewaters. Wastewater characteristics vary widely among wastewaters; however, it remains unclear how these characteristics affect electrochemical sulfate production. In this study, we evaluated how four characteristics of influent wastewaters (electrolyte pH, composition, sulfide concentration, and buffer strength) affect sulfide removal (sulfide removal rate, sulfide removal efficiency) and sulfate production metrics (sulfate production rate, sulfate production selectivity). We identified that electrolyte pH (3 × difference, i.e., 25.1 to 84.9 µM h-1 in average removal rate within the studied pH range) and sulfide concentration (16 × difference, i.e., 82.1 to 1347.2 µM h-1 in average removal rate) were the most influential factors for electrochemical sulfide removal. Sulfate production was most sensitive to buffer strength (6 × difference, i.e., 4.4 to 27.4 µM h-1 in average production rate) and insensitive to electrolyte composition. Together, these results provide recommendations for the design of wastewater treatment trains and the feasibility of applying electrochemical methods to varying sulfide-containing wastewaters. In addition, we investigated a simultaneous multi-nutrient (sulfur and nitrogen) process that leverages electrochemical stripping to further enhance the versatility and compatibility of electrochemical nutrient recovery.

12.
ACS Environ Au ; 4(2): 89-105, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38525023

RESUMO

Nitrogen in wastewater has negative environmental, human health, and economic impacts but can be recovered to reduce the costs and environmental impacts of wastewater treatment and chemical production. To recover ammonia/ammonium (total ammonia nitrogen, TAN) from urine, we operated electrochemical stripping (ECS) for over a month, achieving 83.4 ± 1.5% TAN removal and 73.0 ± 2.9% TAN recovery. With two reactors, we recovered sixteen 500-mL batches (8 L total) of ammonium sulfate (20.9 g/L TAN) approaching commercial fertilizer concentrations (28.4 g/L TAN) and often having >95% purity. While evaluating the operation and maintenance needs, we identified pH, full-cell voltage, product volume, and water flux into the product as informative process monitoring parameters that can be inexpensively and rapidly measured. Characterization of fouled cation exchange and omniphobic membranes informs cleaning and reactor modifications to reduce fouling with organics and calcium/magnesium salts. To evaluate the impact of urine collection and storage on ECS, we conducted experiments with urine at different levels of dilution with flush water, extents of divalent cation precipitation, and degrees of hydrolysis. ECS effectively treated urine under all conditions, but minimizing flush water and ensuring storage until complete hydrolysis would enable energy-efficient TAN recovery. Our experimental results and cost analysis motivate a multifaceted approach to improving ECS's technical and economic viability by extending component lifetimes, decreasing component costs, and reducing energy consumption through material, reactor, and process engineering. In summary, we demonstrated urine treatment as a foothold for electrochemical nutrient recovery from wastewater while supporting the applicability of ECS to seven other wastewaters with widely varying characteristics. Our findings will facilitate the scale-up and deployment of electrochemical nutrient recovery technologies, enabling a circular nitrogen economy that fosters sanitation provision, efficient chemical production, and water resource protection.

13.
Nat Rev Chem ; 8(5): 376-400, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693313

RESUMO

Electrification to reduce or eliminate greenhouse gas emissions is essential to mitigate climate change. However, a substantial portion of our manufacturing and transportation infrastructure will be difficult to electrify and/or will continue to use carbon as a key component, including areas in aviation, heavy-duty and marine transportation, and the chemical industry. In this Roadmap, we explore how multidisciplinary approaches will enable us to close the carbon cycle and create a circular economy by defossilizing these difficult-to-electrify areas and those that will continue to need carbon. We discuss two approaches for this: developing carbon alternatives and improving our ability to reuse carbon, enabled by separations. Furthermore, we posit that co-design and use-driven fundamental science are essential to reach aggressive greenhouse gas reduction targets.

14.
ACS Appl Mater Interfaces ; 15(34): 40369-40377, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37594304

RESUMO

The chlorine evolution reaction (CER) is a key reaction in electrochemical oxidation (EO) of water treatment. Conventional anodes based on platinum group metals can be prohibitively expensive, which hinders further application of EO systems. Crystalline cobalt antimonate (CoSbxOy) was recently identified as a promising alternative to conventional anodes due to its high catalytic activity and stability in acidic media. However, its catalytic sites and reaction mechanism have not yet been elucidated. This study sheds light on the catalytically active sites in crystalline CoSbxOy anodes by using scanning electrochemical microscopy to compare the CER catalytic activities of a series of anode samples with different bulk Sb/Co ratios (from 1.43 to 2.80). The results showed that Sb sites served as more active catalytic sites than the Co sites. The varied Sb/Co ratios were also linked with slightly different electronic states of each element, leading to different CER selectivities in 30 mM chloride solutions under 10 mA cm-2 current density. The high activity of Sb sites toward the CER highlighted the significance of the electronic polarization that changed the oxidation states of Co and Sb.

15.
ACS Appl Mater Interfaces ; 15(40): 47025-47036, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37756387

RESUMO

Electrolyte cations can have significant effects on the kinetics and selectivity of electrocatalytic reactions. We show an atypical mechanism through which electrolyte cations can impact electrocatalyst performance─direct incorporation of the cation into the oxide electrocatalyst lattice. We investigate the transformations of copper electrodes in alkaline electrochemistry through operando X-ray absorption spectroscopy in KOH and Ba(OH)2 electrolytes. In KOH electrolytes, both the near-edge structure and extended fine-structure agree with previous studies; however, the X-ray absorption spectra vary greatly in Ba(OH)2 electrolytes. Through a combination of electronic structure modeling, near-edge simulation, and postreaction characterization, we propose that Ba2+ cations are directly incorporated into the lattice and form an ordered BaCuO2 phase at potentials more oxidizing than 200 mV vs the normal hydrogen electrode (NHE). BaCuO2 formation is followed by further oxidation to a bulk Cu3+-like BaxCuyOz phase at 900 mV vs NHE. Additionally, during reduction in Ba(OH)2 electrolyte, we find both Cu-O bonds and Cu-Ba scattering persist at potentials as low as -400 mV vs NHE. To our knowledge, this is the first evidence for direct oxidative incorporation of an electrolyte cation into the bulk lattice to form a mixed oxide electrode. The oxidative incorporation of electrolyte cations to form mixed oxides could open a new route for the in situ formation of active and selective oxidation electrocatalysts.

16.
Artigo em Inglês | MEDLINE | ID: mdl-35166118

RESUMO

Highly selective separation materials that recover total ammonia nitrogen (i.e., ammonia plus ammonium, or TAN) from wastewaters as a pure product can supplement energy-intensive ammonia production and incentivize pollution mitigation. We recently demonstrated that commercial acrylate cation exchange polymer resins loaded with transition metal cations, or metal-loaded ligand exchangers, can recover TAN from wastewater with high selectivity (TAN/K+ equilibrium selectivity of 10.1) via metal-ammine bond formation. However, the TAN adsorption efficiency required further improvement (35%), and the optimal concentration and pH ranges were limited by both low ammonia fractions and an insufficiently strong resin carboxylate-metal bond that caused metal elution. To overcome these deficiencies, we used a zinc-acrylate ligand exchange resin and a tertiary amine acrylic weak base resin (pH buffer resin) together to achieve resin-mediated pH control for optimal adsorption conditions. The high buffer capacity around pH 9 facilitated gains in the adsorbed TAN per ligand resin mass that enhanced the TAN adsorption efficiency to greater than 90%, and constrained zinc elution (below 0.01% up to 1 M TAN) because of decreased ammonia competition for zinc-carboxylate bonds. During TAN recovery, resin-mediated pH buffering facilitated recovery of greater than 99% of adsorbed TAN with 0.2% zinc elution, holding the pH low enough to favor ammonium but high enough to prevent carboxylate protonation. For selective ion separation, solid phase buffers outperform aqueous buffers because the initial solution pH, the buffering capacity, and the ion purity can be independently controlled. Finally, because preserving the resin-zinc bond is crucial to sustained ligand exchange performance, the properties of an ideal ligand resin functional group were investigated to improve the properties beyond those of carboxylate. Ultimately, ligand exchange adsorbents combined with solid pH buffers can advance the selective recovery of nitrogen and potentially other solutes from wastewaters.

17.
ACS ES T Water ; 2(11): 2125-2133, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37552729

RESUMO

Wastewater-based epidemiology (WBE) has been widely deployed during the COVID-19 pandemic, but with limited evaluation of the utility of discrete sampling for large sewersheds and low COVID-19 incidence. In this study, SARS-CoV-2 RNA was measured in 72 consecutive hourly influent grab samples collected at a wastewater treatment plant serving nearly 500 000 residents when incidence was low (approximately 20 cases per 100 000). We characterized diurnal variability and relationships between SARS-CoV-2 RNA detection and physicochemical covariates [flow rate, total ammonia nitrogen (TAN), and total solids (TS)]. The highest detection rate observed was 82% during the first peak flow, which occurred in the early afternoon (14:00). Higher detection rates were also observed when sampling above median TAN concentrations (71%; p < 0.01; median = 40.26 mg of NH4/L). SARS-CoV-2 RNA concentrations were weakly correlated with flow rate (Kendall's τ = 0.16; p < 0.01), TAN (τ = 0.19; p < 0.05), and TS (τ = 0.18; p < 0.01), suggesting generally low RNA sewer discharges as expected at low incidence. Our results elucidated sensible adjustments to maximize detection rates, including using multiple gene targets, collecting duplicate samples, and sampling during higher flow and TAN discharges. Optimizing the lower-incidence bounds of WBE can help assess its suitability for verifying COVID-19 reemergence or eradication.

18.
Environ Sci Ecotechnol ; 5: 100078, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36158609

RESUMO

By 2050, the societal needs and innovation drivers of the 21st century will be in full swing: mitigating climate change, minimizing anthropogenic effects on natural ecosystems, navigating scarcity of natural resources, and ensuring equitable access to quality of life will have matured from future needs to exigent realities. Water is one such natural resource, and will need to be treated and transported to maximize resource efficiency. In particular, wastewater will be mined for the valuable product precursors it contains, which will require highly selective separation processes capable of capturing specific target compounds from complex solutions. As a case study, we focus on the nitrogen cycle because it plays a central role in both natural and engineered systems. Nitrogen occurs as several species, including ammonia, a fertilizer and precursor to many nitrogen products, and nitrate, a fertilizer and component of explosives. We describe two applications of selective separations: selective materials and electrochemical processes. Ultimately, this perspective outlines the next thirty years of modular, selective, resource-efficient separations that will play a major role in enabling element-specific circular economies and redefining wastewater as a resource.

19.
Water Res ; 184: 116167, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32682079

RESUMO

Removal and recovery of phosphate from wastewater can minimize deleterious environmental impacts and supplement fertilizer supply. Hybrid anion exchangers (HAIX, with doped ferric oxide nanoparticles (FeOnp)) can remove phosphate from complex wastewaters and recover concentrated phosphate solutions. In this study, we integrate HAIX with a weak acid cation exchanger (WAC) to enrich phosphate and calcium in mild regenerants and precipitate both elements for recovery. We demonstrated an electro-assisted regeneration approach to avoid strong acid and base input. Based on demonstrated pH sensitivities of both materials, electrochemically produced mild electrolytes (pH 3 and pH 11), which are 100-1000 times less concentrated than typical regenerants, preserved 80% WAC and 50% HAIX capacities over five batch adsorption-regeneration cycles. FeOnp in HAIX facilitated regeneration due to pH sensitivity and their likely distribution on the resin particle surface, which reduced intraparticle diffusion path length. In column tests, repeatable phosphate removal (> 95%) from synthetic wastewater (3 mg P/L) was achieved with 20 kWh/kg P specific energy consumption. After removal, a similar 50% HAIX regeneration efficiency as batch experiments was achieved. In spent regenerant, more than 95% phosphorus was recovered as hydroxyapatite. This novel approach enhances ion exchange by minimizing chemical inputs.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Concentração de Íons de Hidrogênio , Fosfatos , Fósforo , Águas Residuárias , Poluentes Químicos da Água/análise
20.
Water Res ; 169: 115226, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31765946

RESUMO

Recovering nitrogen from wastewater can simultaneously fulfill the roles of traditional removal technologies such as nitrification-denitrification and fertilizer production processes such as Haber-Bosch. We have recently demonstrated a proof-of-concept for selective recovery of the fertilizer ammonium sulfate via electrochemical stripping, a combination of electrodialysis and membrane stripping. In this study, we furthered electrochemical stripping from concept to informed practice by investigating the effects of influent concentration (30, 300, and 3000 mg N/L), catholyte temperature (15, 23, and 35 °C), and gas permeable membrane choice on electrochemical nitrogen removal and recovery. We also proposed and validated a nitrogen mass transport model for the experimental results, providing mechanistic rationale behind observed effects of varying operating parameters. While changing operating parameters did affect performance, electrochemical stripping exhibited robust performance over a range of realistic ambient temperatures, three gas permeable membranes, and three orders of magnitude of influent concentrations. Practically, these results demonstrate that electrochemical stripping is viable across a range of waste streams and resilient to fluctuations in temperature and nitrogen concentration; they also establish operational trade-offs between residence time and energy consumption. As a result of this work, electrochemical stripping continues to mature from concept to practice and provides lessons for developing other resource recovery technologies.


Assuntos
Nitrogênio , Eliminação de Resíduos Líquidos , Reatores Biológicos , Desnitrificação , Nitrificação , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa