Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 209(6): 703-715, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37972349

RESUMO

Rationale: Acute respiratory distress syndrome (ARDS) has an unacceptably high mortality rate (35%) and is without effective therapy. Orai1 is a Ca2+ channel involved in store-operated Ca2+ entry (SOCE), a process that exquisitely regulates inflammation. Orai1 is considered a druggable target, but no Orai1-specific inhibitors exist to date. Objectives: To evaluate whether ELD607, a first-in-class Orai1 antagonist, can treat ARDS caused by bacterial pneumonia in preclinical models. Methods: ELD607 pharmacology was evaluated in HEK293T cells and freshly isolated immune cells from patients with ARDS. A murine acute lung injury model caused by bacterial pneumonia was then used: mice were infected with Pseudomonas aeruginosa, Staphylococcus aureus, methicillin-resistant S. aureus, or multidrug-resistant P. aeruginosa and then treated with ELD607 intranasally. Measurements and Main Results: ELD607 specifically inhibited SOCE in HEK293T cells with a half-maximal inhibitory concentration of 9 nM. ELD607 was stable in ARDS airway secretions and inhibited SOCE in ARDS immune cells. In vivo, inhaled ELD607 significantly reduced neutrophilia and improved survival. Surprisingly, Orai1 inhibition by ELD607 caused a significant reduction in lung bacteria, including methicillin-resistant S. aureus. ELD607 worked as an immunomodulator that reduced cytokine levels, reduced neutrophilia, and promoted macrophage-mediated resolution of inflammation and clearance of bacteria. Indeed, when alveolar macrophages were depleted with inhaled clodronate, ELD607 was no longer able to resolve inflammation or clear bacteria. Conclusions: These data indicate that specific Orai1 inhibition by ELD607 may be a novel approach to reduce multiorgan inflammation and treat antibiotic-resistant bacteria.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Pneumonia Bacteriana , Síndrome do Desconforto Respiratório , Humanos , Camundongos , Animais , Canais de Cálcio/metabolismo , Canais de Cálcio/farmacologia , Cálcio/metabolismo , Células HEK293 , Staphylococcus aureus Resistente à Meticilina/metabolismo , Sinalização do Cálcio , Inflamação/tratamento farmacológico , Pulmão/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico , Pneumonia Bacteriana/tratamento farmacológico , Proteína ORAI1/metabolismo , Proteína ORAI1/farmacologia
2.
J Cell Sci ; 135(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35178554

RESUMO

Mutations in SPAG1, a dynein axonemal assembly factor (DNAAF) that facilitates the assembly of dynein arms in the cytoplasm before their transport into the cilium, result in primary ciliary dyskinesia (PCD), a genetically heterogenous disorder characterized by chronic oto-sino-pulmonary disease, infertility and laterality defects. To further elucidate the role of SPAG1 in dynein assembly, we examined its expression, interactions and ciliary defects in control and PCD human airway epithelia. Immunoprecipitations showed that SPAG1 interacts with multiple DNAAFs, dynein chains and canonical components of the R2TP complex. Protein levels of dynein heavy chains (DHCs) and interactions between DHCs and dynein intermediate chains (DICs) were reduced in SPAG1 mutants. We also identified a previously uncharacterized 60 kDa SPAG1 isoform, through examination of PCD subjects with an atypical ultrastructural defect for SPAG1 variants, that can partially compensate for the absence of full-length SPAG1 to assemble a reduced number of outer dynein arms. In summary, our data show that SPAG1 is necessary for axonemal dynein arm assembly by scaffolding R2TP-like complexes composed of several DNAAFs that facilitate the folding and/or binding of the DHCs to the DIC complex.


Assuntos
Dineínas do Axonema , Axonema , Antígenos de Superfície/metabolismo , Dineínas do Axonema/genética , Dineínas do Axonema/metabolismo , Axonema/metabolismo , Cílios/metabolismo , Dineínas/genética , Dineínas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Humanos , Mutação/genética , Sistema Respiratório/metabolismo
3.
Circ Res ; 131(3): e70-e82, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35726609

RESUMO

Although the US Food and Drug Administration has not approved e-cigarettes as a cessation aid, industry has at times positioned their products in that way for adults trying to quit traditional cigarettes; however, their novelty and customizability have driven them into the hands of unintended users, particularly adolescents. Most new users of e-cigarette products have never smoked traditional cigarettes; therefore, understanding the respiratory and cardiovascular consequences of e-cigarette use has become of increasing interest to the research community. Most studies have been performed on adult e-cigarette users, but the majority of these study participants are either former traditional smokers or smokers who have used e-cigarettes to switch from traditional smoking. Therefore, the respiratory and cardiovascular consequences in this population are not attributable to e-cigarette use alone. Preclinical studies have been used to study the effects of naive e-cigarette use on various organ systems; however, almost all of these studies have used adult animals, which makes translation of health effects to adolescents problematic. Given that inhalation of any foreign substance can have effects on the respiratory and cardiovascular systems, a more holistic understanding of the pathways involved in toxicity could help to guide researchers to novel therapeutic treatment strategies. The goals of this scientific statement are to provide salient background information on the cardiopulmonary consequences of e-cigarette use (vaping) in adolescents, to guide therapeutic and preventive strategies and future research directions, and to inform public policymakers on the risks, both short and long term, of vaping.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Abandono do Hábito de Fumar , Vaping , American Heart Association , Humanos , Fumantes , Vaping/efeitos adversos
4.
Nicotine Tob Res ; 26(3): 307-315, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-37539752

RESUMO

INTRODUCTION: Evidence suggests that e-liquid flavor and nicotine concentration are important factors in the initiation and maintenance of e-cigarette use (vaping). Flavors may increase the initiation and maintenance of vaping, and nicotine content is a factor in e-cigarette dependence and the efficacy of e-cigarettes for cigarette smoking cessation. Few human laboratory studies have assessed the joint and interactive effects of flavor and nicotine on subjective responses to e-cigarettes. METHODS: Regular e-cigarette users (N = 89) completed a multi-session study involving a paced vaping procedure with e-liquid cartridges containing their preferred flavor (berry, menthol, or tobacco) or no flavor, with or without nicotine (18 mg). Subjective effects of vaping (satisfaction, reward, aversion, airway sensations, and craving relief) were assessed. RESULTS: Nicotine significantly increased psychological reward and craving relief, whereas flavor significantly increased vaping satisfaction and taste. Nicotine dependence severity moderated the effect of nicotine on reward, such that those with the greatest dependence severity reported the greatest reward. CONCLUSIONS: These findings support differential and noninteractive effects of e-liquid nicotine content and flavor on reinforcing effects of e-cigarettes. IMPLICATIONS: E-liquid flavor and nicotine content have independent, non-interactive effects on subjective responses to vaping under controlled laboratory conditions. Among regular e-cigarette users, vaping a preferred flavor increased taste and satisfaction, but did not interact with nicotine to alter reward or craving. Further research on the ways in which these subjective effects may motivate vaping behavior among different populations of e-cigarette users would be useful to inform regulatory policy of ENDS products.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Vaping , Humanos , Nicotina , Aromatizantes , Método Duplo-Cego , Vaping/psicologia
5.
Circulation ; 145(3): 219-232, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35041473

RESUMO

Electronic cigarettes (e-cigarettes) are battery powered electronic nicotine delivery systems that use a propylene glycol/vegetable glycerin base to deliver vaporized nicotine and flavorings to the body. E-cigarettes became commercially available without evidence regarding their risks, long-term safety, or utility in smoking cessation. Recent clinical trials suggest that e-cigarette use with counseling may be effective in reducing cigarette use but not nicotine dependence. However, meta-analyses of observational studies demonstrate that e-cigarette use is not associated with smoking cessation. Cardiovascular studies reported sympathetic activation, vascular stiffening, and endothelial dysfunction, which are associated with adverse cardiovascular events. The majority of pulmonary clinical trials in e-cigarette users included standard spirometry as the primary outcome measure, reporting no change in lung function. However, studies reported increased biomarkers of pulmonary disease in e-cigarette users. These studies were conducted in adults, but >30% of high school-age adolescents reported e-cigarette use. The effects of e-cigarette use on cardiopulmonary endpoints in adolescents and young adults remain unstudied. Because of adverse clinical findings and associations between e-cigarette use and increased incidence of respiratory diseases in people who have never smoked, large longitudinal studies are needed to understand the risk profile of e-cigarettes. Consistent with the Centers for Disease Control and Prevention recommendations, clinicians should monitor the health risks of e-cigarette use, discourage nonsmokers and adolescents from using e-cigarettes, and discourage smokers from engaging in dual use without cigarette reduction or cessation.


Assuntos
Fumar Cigarros/efeitos adversos , Sistemas Eletrônicos de Liberação de Nicotina , Papel do Médico , Vaping/efeitos adversos , Humanos , Fumar/epidemiologia , Tabagismo/prevenção & controle
6.
J Appl Toxicol ; 43(6): 862-873, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36594405

RESUMO

Cigarette smoke (CS) exposure induces both cytotoxicity and inflammation, and often causes COPD, a growing cause of morbidity and mortality. CS also inhibits the CFTR Cl- channel, leading to airway surface liquid dehydration, which is predicated to impair clearance of inhaled pathogens and toxicants. Numerous in vitro studies have been performed that utilize acute (≤24 h) CS exposures. However, CS exposure is typically chronic. We evaluated the feasibility of using British-American Tobacco (BAT)-designed CS exposure chambers for chronically exposing human bronchial epithelial cultures (HBECs) to CS. HBECs are polarized and contain mucosal and serosal sides. In vivo, inhaled CS interacts with mucosal membranes, and BAT chambers are designed to direct CS to HBEC mucosal surfaces while keeping CS away from serosal surfaces via a perfusion system. We found that serosal perfusion was absolutely required to maintain HBEC viability over time following chronic CS exposure. Indeed, with this system, we found that CS increased inflammation and mucin levels, while decreasing CFTR function. Without this serosal perfusion, CS was extremely toxic within 24 h. We therefore propose that 5- and 10-day CS exposures with serosal perfusion are suitable for measuring chronic CS exposure and can be used for monitoring new and emerging tobacco products.


Assuntos
Fumar Cigarros , Regulador de Condutância Transmembrana em Fibrose Cística , Humanos , Brônquios , Nicotiana/toxicidade , Inflamação , Células Epiteliais
7.
J Appl Toxicol ; 43(5): 680-693, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36372912

RESUMO

E-cigarette, or vaping product use-associated lung injury (EVALI), is a severe respiratory disorder that caused a sudden outbreak of hospitalized young people in 2019. Using cannabis oil containing vaping products, including vitamin E acetate contaminants, was found to be strongly associated with EVALI. However, the underlying tissue impacts of the condition are still largely unknown. Here, we focused on the vehicle cannabinoid oil (CBD oil) and contaminant vitamin E acetate (VEA) effects on airway epithelial cells. Primary human bronchial epithelial (HBE) cultures were exposed to e-liquid aerosols that contained CBD oil and VEA in combination or the common e-liquid components PG/VG with and without nicotine. Cell viability analysis indicated dramatically increased cell death counts after 3 days of CBD exposure, and this effect was even higher after CBD + VEA exposure. Microscopic examination of the cultures revealed cannabinoid and VEA depositions on the epithelial surfaces and cannabinoid accumulation in exposed cells, followed by cell death. These observations were supported by proteomic analysis of the cell secretions that exhibited increases in known markers of airway epithelial toxicity, such as xenobiotic enzymes, factors related to oxidative stress response, and cell death indicators. Overall, our study provides insights into the association between cannabinoid oil and vitamin E acetate vaping and lung injury. Collectively, our results suggest that the adherent accumulation of CBD oil on airway surfaces and the cellular uptake of both CBD oil- and VEA-containing condensates cause elevated metabolic stress, leading to increased cell death rates in human airway epithelial cultures.


Assuntos
Canabinoides , Sistemas Eletrônicos de Liberação de Nicotina , Lesão Pulmonar , Vaping , Humanos , Adolescente , Canabinoides/toxicidade , Vaping/efeitos adversos , Lesão Pulmonar/induzido quimicamente , Proteômica , Dronabinol/toxicidade , Aerossóis e Gotículas Respiratórios , Vitamina E/análise , Vitamina E/toxicidade , Epitélio , Acetatos/toxicidade
8.
Altern Lab Anim ; 51(1): 55-79, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36821083

RESUMO

The Institute for In Vitro Sciences (IIVS) is sponsoring a series of workshops to identify, discuss and develop recommendations for optimal scientific and technical approaches for conducting in vitro assays, to assess potential toxicity within and across tobacco and various next generation nicotine and tobacco products (NGPs), including heated tobacco products (HTPs) and electronic nicotine delivery systems (ENDS). The third workshop (24-26 February 2020) summarised the key challenges and made recommendations concerning appropriate methods of test article generation and cell exposure from combustible cigarettes, HTPs and ENDS. Expert speakers provided their research, perspectives and recommendations for the three basic types of tobacco-related test articles: i) pad-collected material (PCM); ii) gas vapour phase (GVP); and iii) whole smoke/aerosol. These three types of samples can be tested individually, or the PCM and GVP can be combined. Whole smoke/aerosol can be bubbled through media or applied directly to cells at the air-liquid interface. Summaries of the speaker presentations and the recommendations developed by the workgroup are presented. Following discussion, the workshop concluded the following: that there needs to be greater standardisation in aerosol generation and collection processes; that methods for testing the NGPs need to be developed and/or optimised, since simply mirroring cigarette smoke testing approaches may be insufficient; that understanding and quantitating the applied dose is fundamental to the interpretation of data and conclusions from each study; and that whole smoke/aerosol approaches must be contextualised with regard to key information, including appropriate experimental controls, environmental conditioning, analytical monitoring, verification and performance criteria.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Nicotiana/toxicidade , Produtos do Tabaco/toxicidade , Nicotina/toxicidade , Aerossóis/toxicidade , Técnicas In Vitro
9.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895029

RESUMO

Proteases such as neutrophil elastase cleave and activate the epithelial sodium channel (ENaC), causing airway dehydration. Our current study explores the impact of increased protease levels in vapers' airways on ENaC activity and airway dehydration. Human bronchial epithelial cultures (HBECs) were exposed to bronchoalveolar lavage fluid (BALF) from non-smokers, smokers and vapers. Airway surface liquid (ASL) height was measured by confocal microscopy as a marker of hydration. ENaC cleavage was measured by Western blotting. Human peripheral blood neutrophils were treated with a menthol-flavored e-liquid (Juul), and the resulting secretions were added to HBECs. BALF from smokers and vapers significantly and equally increased ENaC activity and decreased ASL height. The ASL height decrease was attenuated by protease inhibitors. Non-smokers' BALF had no effect on ENaC or ASL height. BALF from smokers and vapers, but not non-smokers, induced ENaC cleavage. E-liquid-treated neutrophil secretions cleaved ENaC and decreased ASL height. Our study demonstrated that elevated protease levels in vapers' airways have functional significance since they can activate ENaC, resulting in airway dehydration. Lung dehydration contributes to diseases like cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD) and asthma. Thus, our data predict that vaping, like smoking, will cause airway surface dehydration that likely leads to lung disease.


Assuntos
Vaping , Humanos , Vaping/efeitos adversos , Proteólise , Desidratação/metabolismo , Mucosa Respiratória/metabolismo , Pulmão/metabolismo , Canais Epiteliais de Sódio/metabolismo
10.
Am J Respir Cell Mol Biol ; 66(3): 271-282, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34807800

RESUMO

Orai1 is a plasma membrane Ca2+ channel that mediates store-operated Ca2+ entry (SOCE) and regulates inflammation. Short palate lung and nasal epithelial clone 1 (SPLUNC1) is an asthma gene modifier that inhibits Orai1 and SOCE via its C-terminal α6 region. SPLUNC1 levels are diminished in asthma patient airways. Thus, we hypothesized that inhaled α6 peptidomimetics could inhibit Orai1 and reduce airway inflammation in a murine asthma model. To evaluate α6-Orai1 interactions, we used fluorescent assays to measure Ca2+ signaling, Förster resonance energy transfer, fluorescent recovery after photobleaching, immunostaining, total internal reflection microscopy, and Western blotting. To test whether α6 peptidomimetics inhibited SOCE and decreased inflammation in vivo, wild-type and SPLUNC1-/- mice were exposed to house dust mite (HDM) extract with or without α6 peptide. We also performed nebulization, jet milling, and scanning electron microscopy to evaluate α6 for inhalation. SPLUNC1-/- mice had an exaggerated response to HDM. In BAL-derived immune cells, Orai1 levels increased after HDM exposure in SPLUNC1-/- but not wild-type mice. Inhaled α6 reduced Orai1 levels in mice regardless of genotype. In HDM-exposed mice, α6 dose-dependently reduced eosinophilia and neutrophilia. In vitro, α6 inhibited SOCE in multiple immune cell types, and α6 could be nebulized or jet milled without loss of function. These data suggest that α6 peptidomimetics may be a novel, effective antiinflammatory therapy for patients with asthma.


Assuntos
Asma , Peptidomiméticos , Animais , Asma/tratamento farmacológico , Cálcio/metabolismo , Glicoproteínas , Humanos , Inflamação , Pulmão/metabolismo , Camundongos , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Fosfoproteínas
11.
Nicotine Tob Res ; 24(3): 395-399, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-34519792

RESUMO

INTRODUCTION: Alveolar macrophages (AMs) are lung-resident immune cells that phagocytose inhaled particles and pathogens, and help coordinate the lung's immune response to infection. Little is known about the impact of chronic e-cigarette use (ie, vaping) on this important pulmonary cell type. Thus, we determined the effect of vaping on AM phenotype and gene expression. AIMS AND METHODS: We recruited never-smokers, smokers, and e-cigarette users (vapers) and performed research bronchoscopies to isolate AMs from bronchoalveolar lavage fluid samples and epithelial cells from bronchial brushings. We then performed morphological analyses and used the Nanostring platform to look for changes in gene expression. RESULTS: AMs obtained from smokers and vapers were phenotypically distinct from those obtained from nonsmokers, and from each other. Immunocytochemistry revealed that vapers AMs had significantly elevated inducible nitric oxide synthase (M1) expression and significantly reduced CD301a (M2) expression compared with nonsmokers or smokers. Vapers' AMs and bronchial epithelia exhibited unique changes in gene expression compared with nonsmokers or smokers. Moreover, vapers' AMs were the most affected of all groups and had 124 genes uniquely downregulated. Gene ontology analysis revealed that vapers and smokers had opposing changes in biological processes. CONCLUSIONS: These data indicate that vaping causes unique changes to AMs and bronchial epithelia compared with nonsmokers and smokers which may impact pulmonary host defense. IMPLICATIONS: These data indicate that normal "healthy" vapers have altered AMs and may be at risk of developing abnormal immune responses to inflammatory stimuli.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Vaping , Expressão Gênica , Humanos , Macrófagos Alveolares , Vaping/efeitos adversos
12.
Am J Physiol Cell Physiol ; 321(6): C954-C963, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34613844

RESUMO

Airway secretions contain many signaling molecules and peptides/proteins that are not found in airway surface liquid (ASL) generated by normal human bronchial epithelial cells (NHBEs) in vitro. These play a key role in innate defense and mediate communication between the epithelium, the immune cells, and the external environment. We investigated how culture of NHBE with apically applied secretions from healthy or diseased (cystic fibrosis, CF) lungs affected epithelial function with a view to providing better in vitro models of the in vivo environment. NHBEs from 6 to 8 different donors were cultured at air-liquid interface (ALI), with apically applied sputum from normal healthy donors (normal lung sputum; NLS) or CF donors (CFS) for 2-4 h, 48 h, or with sputum reapplied over 48 h. Proteomics analysis was carried out on the sputa and on the NHBE ASL before and after culture with sputa. Transepithelial electrical resistance (TEER), short circuit current (Isc), and changes to ASL height were measured. There were 71 proteins common to both sputa but not ASL. The protease:protease inhibitor balance was increased in CFS compared with NLS and ASL. Culture of NHBE with sputa for 48 h identified additional factors not present in NLS, CFS, or ASL alone. Culture with either NLS or CFS for 48 h increased cystic fibrosis transmembrane regulator (CFTR) activity, calcium-activated chloride channel (CaCC) activity, and changed ASL height. These data indicate that culture with healthy or disease sputum changes the proteomic profile of ASL and ion transport properties of NHBE and this may increase physiological relevance when using in vitro airway models.


Assuntos
Brônquios/metabolismo , Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteoma , Proteômica , Escarro/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Fibrose Cística/diagnóstico , Impedância Elétrica , Humanos , Transporte de Íons , Fatores de Tempo
13.
Eur Respir J ; 58(5)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33958427

RESUMO

BACKGROUND: Acute pulmonary exacerbations (AE) are episodes of clinical worsening in cystic fibrosis (CF), often precipitated by infection. Timely detection is critical to minimise morbidity and lung function declines associated with acute inflammation during AE. Based on our previous observations that airway protein short palate lung nasal epithelium clone 1 (SPLUNC1) is regulated by inflammatory signals, we investigated the use of SPLUNC1 fluctuations to diagnose and predict AE in CF. METHODS: We enrolled CF participants from two independent cohorts to measure AE markers of inflammation in sputum and recorded clinical outcomes for a 1-year follow-up period. RESULTS: SPLUNC1 levels were high in healthy controls (n=9, 10.7 µg·mL-1), and significantly decreased in CF participants without AE (n=30, 5.7 µg·mL-1; p=0.016). SPLUNC1 levels were 71.9% lower during AE (n=14, 1.6 µg·mL-1; p=0.0034) regardless of age, sex, CF-causing mutation or microbiology findings. Cytokines interleukin-1ß and tumour necrosis factor-α were also increased in AE, whereas lung function did not decrease consistently. Stable CF participants with lower SPLUNC1 levels were much more likely to have an AE at 60 days (hazard ratio (HR)±se 11.49±0.83; p=0.0033). Low-SPLUNC1 stable participants remained at higher AE risk even 1 year after sputum collection (HR±se 3.21±0.47; p=0.0125). SPLUNC1 was downregulated by inflammatory cytokines and proteases increased in sputum during AE. CONCLUSION: In acute CF care, low SPLUNC1 levels could support a decision to increase airway clearance or to initiate pharmacological interventions. In asymptomatic, stable patients, low SPLUNC1 levels could inform changes in clinical management to improve long-term disease control and clinical outcomes in CF.


Assuntos
Fibrose Cística , Glicoproteínas , Humanos , Pulmão , Mucosa Nasal , Fosfoproteínas
14.
PLoS Biol ; 16(3): e2003904, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29584716

RESUMO

The e-liquids used in electronic cigarettes (E-cigs) consist of propylene glycol (PG), vegetable glycerin (VG), nicotine, and chemical additives for flavoring. There are currently over 7,700 e-liquid flavors available, and while some have been tested for toxicity in the laboratory, most have not. Here, we developed a 3-phase, 384-well, plate-based, high-throughput screening (HTS) assay to rapidly triage and validate the toxicity of multiple e-liquids. Our data demonstrated that the PG/VG vehicle adversely affected cell viability and that a large number of e-liquids were more toxic than PG/VG. We also performed gas chromatography-mass spectrometry (GC-MS) analysis on all tested e-liquids. Subsequent nonmetric multidimensional scaling (NMDS) analysis revealed that e-liquids are an extremely heterogeneous group. Furthermore, these data indicated that (i) the more chemicals contained in an e-liquid, the more toxic it was likely to be and (ii) the presence of vanillin was associated with higher toxicity values. Further analysis of common constituents by electron ionization revealed that the concentration of cinnamaldehyde and vanillin, but not triacetin, correlated with toxicity. We have also developed a publicly available searchable website (www.eliquidinfo.org). Given the large numbers of available e-liquids, this website will serve as a resource to facilitate dissemination of this information. Our data suggest that an HTS approach to evaluate the toxicity of multiple e-liquids is feasible. Such an approach may serve as a roadmap to enable bodies such as the Food and Drug Administration (FDA) to better regulate e-liquid composition.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Aromatizantes/toxicidade , Glicerol/toxicidade , Nicotina/toxicidade , Propilenoglicol/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Biologia Computacional , Células Epiteliais/efeitos dos fármacos , Aromatizantes/química , Cromatografia Gasosa-Espectrometria de Massas , Células HEK293 , Humanos , Testes de Toxicidade
15.
Am J Respir Crit Care Med ; 202(6): 795-802, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32243764

RESUMO

The NHLBI convened a working group on October 23, 2019, to identify the most relevant and urgent research priorities and prevailing challenges in e-cigarette or vaping product use-associated lung injury (EVALI). Experts across multiple disciplines discussed the complexities of the EVALI outbreak, identified research priorities, and recommended strategies to address most effectively its causal factors and improve diagnosis, treatment, and prevention of this disease. Many research priorities were identified, including the need to create national and international registries of patients with EVALI, to track accurately those affected and assess outcomes. The group concluded that biospecimens from subjects with EVALI are urgently needed to help define EVALI pathogenesis and that vaping has disease risks that are disparate from smoking, with the occurrence of EVALI highlighting the importance of broadening e-cigarette research beyond comparators to smoking-related diseases.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/epidemiologia , Lesão Pulmonar/terapia , Guias de Prática Clínica como Assunto , Terapia Respiratória/normas , Vaping/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Congressos como Assunto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , National Heart, Lung, and Blood Institute (U.S.) , National Institutes of Health (U.S.) , Relatório de Pesquisa , Estados Unidos/epidemiologia
16.
J Appl Toxicol ; 41(3): 493-505, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33034066

RESUMO

"Pod-based" e-cigarettes such as JUUL are currently the most prevalent electronic nicotine delivery systems (ENDS) in the United States. JUUL-type ENDS utilize nicotine salts protonated with benzoic acid rather than freebase nicotine. However, limited information is available on the cellular effects of these products. Cytoplasmic Ca2+ is a universal second messenger that controls many cellular functions including cell growth and cell death. Of note, dysregulation of cell Ca2+ homeostasis has been linked with several disease processes including autoimmune disease and several types of cancer. We exposed HEK293T cells and THP-1 macrophage-like cells to different JUUL e-liquids. We evaluated their effects on cellular viability and Ca2+ signaling by measuring fluorescence from calcein-AM/propidium iodide and Fluo-4, respectively. E-liquid autofluorescence was used to look for e-liquid permeation into cells. To identify the mechanisms behind the Ca2+ responses, different inhibitors of Ca2+ channels and phospholipase C signaling were used. JUUL e-liquids caused significant cytotoxic effects, with "Mint" flavor being the most cytotoxic. The Mint flavored e-liquid also caused a significant elevation in cytoplasmic Ca2+ . Using autofluorescence, the permeation of JUUL e-liquids into live cells was confirmed, indicating that intracellular organelles are directly exposed to e-liquids. Further studies identified the endoplasmic reticulum as being the source of e-liquid-induced changes in cytoplasmic Ca2+ . Nicotine salt-based e-liquids cause cytotoxicity and elevate cytoplasmic Ca2+ , indicating that they can exert biological effects beyond what would be expected with nicotine alone. These effects are flavor-dependent, and we propose that flavored e-liquids be reassessed for potential lung toxicity.


Assuntos
Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Vapor do Cigarro Eletrônico/toxicidade , Sistemas Eletrônicos de Liberação de Nicotina , Aromatizantes/toxicidade , Nicotina/toxicidade , Humanos , Estados Unidos
17.
Am J Respir Cell Mol Biol ; 63(3): 374-385, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32437238

RESUMO

Cystic fibrosis (CF) is caused by loss-of-function mutations in the CFTR (CF transmembrane regulator) gene. Pharmacologic therapies directed at CFTR have been developed but are not effective for mutations that result in little or no mRNA or protein expression. Cell therapy is a potential mutation-agnostic approach to treatment. One strategy is to harvest human bronchial epithelial cells (HBECs) for gene addition or genetic correction, followed by expansion and engraftment. This approach will require cells to grow extensively while retaining their ability to reconstitute CFTR activity. We hypothesized that conditionally reprogrammed cell (CRC) technology, namely growth in the presence of irradiated feeder cells and a Rho kinase inhibitor, would enable expansion while maintaining cell capacity to express functional CFTR. Our goal was to compare expression of the basal cell marker NGFR (nerve growth factor receptor) and three-dimensional bronchosphere colony-forming efficiency (CFE) in early- and later-passage HBECs grown using nonproprietary bronchial epithelial growth medium or the CRC method. Cell number and CFTR activity were determined in a competitive repopulation assay employing chimeric air-liquid interface cultures. HBECs expanded using the CRC method expressed the highest NGFR levels, had the greatest 3D colony-forming efficiency at later passage, generated greater cell numbers in chimeric cultures, and most effectively reconstituted CFTR activity. In our study, the HBEC air-liquid interface model, an informative testing platform proven vital for the development of other CF therapies, illustrated that cells grown by CRC technology or equivalent methods may be useful for cell therapy of CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Brônquios/metabolismo , Terapia Baseada em Transplante de Células e Tecidos/métodos , Humanos , Células-Tronco/citologia
18.
Am J Respir Cell Mol Biol ; 63(6): 767-779, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32877614

RESUMO

Smoking remains a leading cause of preventable morbidity and mortality worldwide. Despite a downward trend in cigarette use, less-regulated tobacco products, such as cigarillos, which are often flavored to appeal to specific demographics, such as younger people, are becoming increasingly popular. Cigar/cigarillo smoking has been considered a safer alternative to cigarettes; however, the health risks associated with cigar in comparison with cigarette smoking are not well understood. To address this knowledge gap, we characterized the effects of multiple brands of cigarillos on the airway epithelium using ex vivo and in vivo models. To analyze these effects, we assessed the cellular viability and integrity of smoke-exposed primary airway cell cultures. We also investigated the protein compositions of apical secretions from cigarillo-exposed airway epithelial cultures and BAL fluid of cigarillo-exposed mice through label-free quantitative proteomics and determined the chemical composition of smoke collected from the investigated cigarillo products. We found that cigarillo smoke exerts similar or greater effects than cigarette smoke in terms of reduced cell viability; altered protein levels, including those of innate immune proteins; induced oxidative-stress markers; and greater nicotine delivery to cells. The analysis of the chemical composition of the investigated cigarillo products revealed differences that might be linked to the differential effects of these products on cell viability and protein abundance profiles, which have been associated with a range of health risks in the context of airway biology. These findings contradict the assumption that cigarillos might be safer and less harmful than cigarettes. Instead, our results indicate that cigarillo smoke is associated with equal or greater health risks and the same or increased airway toxicity compared with cigarette smoke.


Assuntos
Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Nicotina/farmacologia , Sistema Respiratório/metabolismo , Animais , Fumar Cigarros/efeitos adversos , Aromatizantes/farmacologia , Humanos , Camundongos Endogâmicos C57BL , Sistema Respiratório/efeitos dos fármacos , Fumar/efeitos adversos , Nicotiana/efeitos adversos , Produtos do Tabaco/efeitos adversos
19.
J Physiol ; 598(22): 5063-5071, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32515030

RESUMO

Tobacco smoking is highly addictive and causes respiratory disease, cardiovascular disease and multiple types of cancer. Electronic-cigarettes (e-cigarettes) are non-combustible tobacco alternatives that aerosolize nicotine and flavouring agents in a propylene glycol-vegetable glycerine vehicle. They were originally envisaged as a tobacco cessation aid, but whether or not they help people to quit tobacco use is controversial. In this review, we have compared and contrasted what is known regarding the effects of nicotine on the lungs vs. the effects of nicotine in the brain in the context of addiction. Critically, both combustible tobacco products and e-cigarettes contain nicotine, a highly addictive, plant-derived alkaloid that binds to nicotinic acetylcholine receptors (nAChRs). Nicotine's reinforcing properties are primarily mediated by activation of the brain's mesolimbic reward circuitry and release of the neurotransmitter dopamine that contribute to the development of addiction. Moreover, nicotine addiction drives repeated intake that results in chronic pulmonary exposure to either tobacco smoke or e-cigarettes despite negative respiratory symptoms. Beyond the brain, nAChRs are also highly expressed in peripheral neurons, epithelia and immune cells, where their activation may cause harmful effects. Thus, nicotine, a key ingredient of both conventional and electronic cigarettes, produces neurological effects that drive addiction and may damage the lungs in the process, producing a complex, multilevel pathological state. We conclude that vaping needs to be studied by multi-disciplinary teams that include pulmonary and neurophysiologists as well as behaviourists and addiction specialists to fully understand their impact on human physiology.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Abandono do Hábito de Fumar , Encéfalo , Humanos , Pulmão , Nicotina
20.
Am J Physiol Lung Cell Mol Physiol ; 318(2): L226-L241, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31693394

RESUMO

E-cigarettes are noncombustible, electronic nicotine-delivery devices that aerosolize an e-liquid, i.e., nicotine, in a propylene glycol-vegetable glycerin vehicle that also contains flavors. While the effects of nicotine are relatively well understood, more information regarding the potential biological effects of the other e-liquid constituents is needed. This is a serious concern, because e-liquids are available in >7,000 distinct flavors. We previously demonstrated that many e-liquids affect cell growth/viability through an unknown mechanism. Since Ca2+ is a ubiquitous second messenger that regulates cell growth, we characterized the effects of e-liquids on cellular Ca2+ homeostasis. To better understand the extent of this effect, we screened e-liquids for their ability to alter cytosolic Ca2+ levels and found that 42 of 100 flavored e-liquids elicited a cellular Ca2+ response. Banana Pudding (BP) e-liquid, a representative e-liquid from this group, caused phospholipase C activation, endoplasmic reticulum (ER) Ca2+ release, store-operated Ca2+ entry (SOCE), and protein kinase C (PKCα) phosphorylation. However, longer exposures to BP e-liquid depleted ER Ca2+ stores and inhibited SOCE, suggesting that this e-liquid may alter Ca2+ homeostasis by short- and long-term mechanisms. Since dysregulation of Ca2+ signaling can cause chronic inflammation, ER stress, and abnormal cell growth, flavored e-cigarette products that can elicit cell Ca2+ responses should be further screened for potential toxicity.


Assuntos
Cálcio/metabolismo , Citoplasma/metabolismo , Sistemas Eletrônicos de Liberação de Nicotina , Epitélio/metabolismo , Aromatizantes/efeitos adversos , Sistema Respiratório/metabolismo , Citoplasma/efeitos dos fármacos , Citosol/efeitos dos fármacos , Citosol/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Epitélio/efeitos dos fármacos , Células HEK293 , Humanos , Fosfatos de Inositol/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Musa , Proteína ORAI1/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Quinase C-alfa/metabolismo , Sistema Respiratório/efeitos dos fármacos , Molécula 1 de Interação Estromal/metabolismo , Tapsigargina/farmacologia , Fosfolipases Tipo C/metabolismo , Vaping
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa