Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Appl Microbiol Biotechnol ; 98(20): 8413-31, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25204861

RESUMO

The environmental impact of agricultural waste from the processing of food and feed crops is an increasing concern worldwide. Concerted efforts are underway to develop sustainable practices for the disposal of residues from the processing of such crops as coffee, sugarcane, or corn. Coffee is crucial to the economies of many countries because its cultivation, processing, trading, and marketing provide employment for millions of people. In coffee-producing countries, improved technology for treatment of the significant amounts of coffee waste is critical to prevent ecological damage. This mini-review discusses a multi-stage biorefinery concept with the potential to convert waste produced at crop processing operations, such as coffee pulping stations, to valuable biofuels and bioproducts using biochemical and thermochemical conversion technologies. The initial bioconversion stage uses a mutant Kluyveromyces marxianus yeast strain to produce bioethanol from sugars. The resulting sugar-depleted solids (mostly protein) can be used in a second stage by the oleaginous yeast Yarrowia lipolytica to produce bio-based ammonia for fertilizer and are further degraded by Y. lipolytica proteases to peptides and free amino acids for animal feed. The lignocellulosic fraction can be ground and treated to release sugars for fermentation in a third stage by a recombinant cellulosic Saccharomyces cerevisiae, which can also be engineered to express valuable peptide products. The residual protein and lignin solids can be jet cooked and passed to a fourth-stage fermenter where Rhodotorula glutinis converts methane into isoprenoid intermediates. The residues can be combined and transferred into pyrocracking and hydroformylation reactions to convert ammonia, protein, isoprenes, lignins, and oils into renewable gas. Any remaining waste can be thermoconverted to biochar as a humus soil enhancer. The integration of multiple technologies for treatment of coffee waste has the potential to contribute to economic and environmental sustainability.


Assuntos
Biocombustíveis , Resíduos Industriais , Biotecnologia/métodos , Biotransformação , Café , Manipulação de Alimentos/métodos , Kluyveromyces/crescimento & desenvolvimento , Kluyveromyces/metabolismo , Rhodotorula/crescimento & desenvolvimento , Rhodotorula/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Saccharum , Yarrowia/crescimento & desenvolvimento , Yarrowia/metabolismo , Zea mays
2.
Bioresour Bioprocess ; 8(1): 60, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38650285

RESUMO

Protein is becoming an increasingly important resource for a variety of commercial applications. Yet, a large volume of protein is being wasted. Notably, livestock manure solids have a significant content of protein which is not only underutilized, but prone to runoff and eventual breakdown to reactive nitrogen compounds, contributing to eutrophication. It would be desirable to remove protein before it causes environmental hazards and then convert it to value-added commercial applications. We have developed a novel thermal hydrolysis process (THP) to extract crude protein from livestock manure solid, or manure digestate solid (MDS) in particular, without the use of any chemical. We demonstrate the versatility of our new process to control the molecular weight (MW) distribution of the extracted protein hydrolysate (PH). The antioxidant activity of the crude protein hydrolysate (CPH) has been examined through Oxygen Radical Absorbance Capacity Assay. The results have shown that our CPH had its antioxidant capacity against the peroxyl radical similar to that of vitamin E and exhibited almost 7 times as strong inhibition against the hydroxyl radical as vitamin E. We also evaluated the nutritional value of our PH by analyzing its amino acid composition and the MW distribution through amino acid analysis, SDS-PAGE, and MALDI-TOF mass spectroscopy. The characterizations have revealed that the PH recovered from MDS had 2.5 times as much essential amino acids as soybean meal on dry matter basis, with the MW distribution ranging from over a 100 Da to 100 KDa. Finally, the protein powder was prepared from the extracted CPH solution and its composition was analyzed.

3.
Waste Manag ; 104: 33-41, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31958663

RESUMO

We have developed a novel thermal hydrolysis process (THP) to extract and hydrolyze keratin from keratinous animal body wastes without using any chemicals. Our process consists of two heating steps: one is to swell and denature the keratin protein network in the intermediate filaments, while the other is to cleavage the disulfide bonds that connect the tight keratinous fibrils together. Using hog hair as an example, the two-step process achieved a nearly 70% keratin recovery yield, with respect to the original keratin in the hog hair, which is comparable to one of the best recovery yields by conventional chemical processes. The extracted keratin hydrolysate by THP was filtered by the shear wave-induced membrane ultrafiltation for characterization. The molecular weight (MW) analysis using SDS-PAGE and MALDI-TOF mass spectroscopy has demonstrated that our keratin hydrolysis obtained by our two-step THP has a wide range of MW distribution, similar to those already in the hair-care product market. The amino acid composition analysis has shown that our keratin hydrolysate by THP had twice as much essential amino acids as soybean meals on a dry mattter basis. As to the cysteine residue content, we have shown that it can be controlled by adjusting the 2nd heating temperature.


Assuntos
Cabelo , Queratinas , Aminoácidos , Animais , Hidrólise , Suínos , Temperatura
4.
J Phys Chem B ; 109(7): 2920-33, 2005 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-16851305

RESUMO

The density functional theory (DFT) calculations have been performed for the reduction decompositions of solvents widely used in Li-ion secondary battery electrolytes, ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonates (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC), including a typical electrolyte additive, vinylene carbonate (VC), at the level of B3LYP/6-311+G(2d,p), both in the gas phase and solution using the polarizable conductor calculation model. In the gas phase, the first electron reduction for the cyclic carbonates and for the linear carbonates is found to be exothermic and endothermic, respectively, while the second electron reduction is endothermic for all the compounds examined. On the contrary, in solution both first and second electron reductions are exothermic for all the compounds. Among the solvents and the additive examined, the likelihood of undergoing the first electron reduction in solution was found in the order of EC > PC > VC > DMC > EMC > DEC with EC being the most likely reduced. VC, on the other hand, is most likely to undergo the second electron reduction among the compounds, in the order of VC > EC > PC. Based on the results, the experimentally demonstrated effectiveness of VC as an excellent electrolyte additive was discussed. The bulk thermodynamic properties of two dilithium alkylene glycol dicarbonates, dilithium ethylene glycol dicarbonate (Li-EDC) and dilithium 1,2-propylene glycol dicarbonate (Li-PDC), as the major component of solid-electrolyte interface (SEI) films were also examined through molecular dynamics (MD) simulations in order to understand the stability of the SEI film. It was found that film produced from a decomposition of EC, modeled by Li-EDC, has a higher density, more cohesive energy, and less solubility to the solvent than the film produced from decomposition of PC, Li-PDC. Further, MD simulations of the interface between the decomposition compound and graphite suggested that Li-EDC has more favorable interactions with the graphite surface than Li-PDC. The difference in the SEI film stability and the behavior of Li-ion battery cycling among the solvents were discussed in terms of the molecular structures.

5.
J Biotechnol ; 159(1-2): 69-77, 2012 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-22342374

RESUMO

A gene encoding a synthetic truncated Candida antarctica lipase B (CALB) was generated via automated PCR and expressed in Saccharomyces cerevisiae. Western blot analysis detected five truncated CALB variants, suggesting multiple translation starts from the six in-frame ATG codons. The longest open reading frame, which corresponds to amino acids 35-317 of the mature lipase, appeared to be expressed in the greatest amount. The truncated CALB was immobilized on Sepabeads® EC-EP resin and used to produce ethyl and butyl esters from crude corn oil and refined soybean oil. The yield of ethyl esters was 4-fold greater from corn oil than from soybean oil and was 36% and 50% higher, respectively, when compared to a commercially available lipase resin (Novozym 435) using the same substrates. A 5:1 (v/v) ratio of ethanol to corn oil produced 3.7-fold and 8.4-fold greater yields than ratios of 15:1 and 30:1, respectively. With corn oil, butyl ester production was 56% higher than ethyl ester production. Addition of an ionic catalytic resin step prior to the CALB resin increased yields of ethyl esters from corn oil by 53% compared to CALB resin followed by ionic resin. The results suggest resin-bound truncated CALB has potential application in biodiesel production using biocatalysts.


Assuntos
1-Butanol/metabolismo , Enzimas Imobilizadas/metabolismo , Etanol/metabolismo , Ácidos Graxos/metabolismo , Proteínas Fúngicas/metabolismo , Lipase/metabolismo , Proteínas Recombinantes/metabolismo , 1-Butanol/química , Sequência de Aminoácidos , Sequência de Bases , Reatores Biológicos , Óleo de Milho/química , Óleo de Milho/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/genética , Esterificação , Etanol/química , Ácidos Graxos/química , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Lipase/química , Lipase/genética , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Resinas Sintéticas , Saccharomyces cerevisiae/genética , Óleo de Soja/química , Óleo de Soja/metabolismo
6.
J Lab Autom ; 16(1): 17-37, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21609683

RESUMO

A synthetic Candida antarctica lipase B (CALB) gene open reading frame (ORF) for expression in yeast was constructed, and the lycotoxin-1 (Lyt-1) C3 variant gene ORF, potentially to improve the availability of the active enzyme at the surface of the yeast cell, was added in frame with the CALB ORF using an automated PCR assembly and DNA purification protocol on an integrated robotic workcell. Saccharomyces cerevisiae strains expressing CALB protein or CALB Lyt-1 fusion protein were first grown on 2% (w/v) glucose, producing 9.3 g/L ethanol during fermentation. The carbon source was switched to galactose for GAL1-driven expression, and the CALB and CALB Lyt-1 enzymes expressed were tested for fatty acid ethyl ester (biodiesel) production. The synthetic enzymes catalyzed the formation of fatty acid ethyl esters from ethanol and either corn or soybean oil. It was further demonstrated that a one-step-charging resin, specifically selected for binding to lipase, was capable of covalent attachment of the CALB Lyt-1 enzyme, and that the resin-bound enzyme catalyzed the production of biodiesel. High-level expression of lipase in an ethanologenic yeast strain has the potential to increase the profitability of an integrated biorefinery by combining bioethanol production with coproduction of a low-cost biocatalyst that converts corn oil to biodiesel.


Assuntos
Automação Laboratorial/métodos , Biocombustíveis , Enzimas Imobilizadas/metabolismo , Expressão Gênica , Engenharia Genética/métodos , Lipase/genética , Lipase/metabolismo , Óleo de Milho/metabolismo , Etanol/metabolismo , Proteínas Fúngicas , Fases de Leitura Aberta , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Óleo de Soja/metabolismo
7.
J Am Chem Soc ; 124(16): 4408-21, 2002 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-11960470

RESUMO

To elucidate the role of vinylene carbonate (VC) as a solvent additive in organic polar solutions for lithium-ion batteries, reductive decompositions for vinylene carbonate (VC) and ethylene carbonate (EC) molecules have been comprehensively investigated both in the gas phase and in solution by means of density functional theory calculations. The salt and solvent effects are incorporated with the clusters (EC)nLi+(VC) (n = 0-3), and further corrections that account for bulk solvent effects are added using the polarized continuum model (PCM). The electron affinities of (EC)nLi+(VC) (n = 0-3) monotonically decrease when the number of EC molecules increases; a sharp decrease of about 20.0 kcal/mol is found from n = 0 to 1 and a more gentle variation for n > 1. For (EC)nLi+(VC) (n = 1-3), the reduction of VC brings about more stable ion-pair intermediates than those due to reduction of the EC molecule by 3.1, 6.1, and 5.3 kcal/mol, respectively. This finding qualitatively agrees with the experimental fact that the reduction potential of VC in the presence of Li salt is more negative than that of EC. The calculated reduction potentials corresponding to radical anion formation are close to the experimental potentials determined with cyclic voltammetry on a gold electrode surface (-2.67, -3.19 eV on the physical scale for VC and EC respectively vs experimental values -2.96 and -2.94 eV). Regarding the decomposition mechanisms, the VC and EC moieties undergo homolytic ring opening from their respective reduction intermediates, and the energy barrier of VC is about one time higher than that of EC (e.g., 20.1 vs 8.8 kcal/mol for (EC)2Li+(VC)); both are weakly affected by the explicit solvent molecules and by a bulk solvent represented by a continuum model. Alternatively, starting from the VC-reduction intermediate, the ring opening of the EC moiety via an intramolecular electron-transfer transition state has also been located; its barrier lies between those of EC and VC (e.g., 17.2 kcal/mol for (EC)2Li+(VC)). On the basis of these results, we suggest the following explanation about the role that VC may play as additive in EC-based lithium-ion battery electrolytes; VC is initially reduced to a more stable intermediate than that from EC reduction. One possibility then is that the reduced VC decomposes to form a radical anion via a barrier of about 20 kcal/mol, which undergoes a series of reactions to give rise to more active film-forming products than those resulting from EC reduction, such as lithium divinylene dicarbonate, Li-C carbides, lithium vinylene dicarbonate, R-O-Li compound, and even oligomers with repeated vinylene and carbonate-vinylene units. Another possibility starting from the VC-reduction intermediate is that the ring opening occurs on the unreduced EC moiety instead of being on the reduced VC, via an intramolecular electron transfer transition state, the energy barrier of which is lower than that of the former, in which VC just helps the intermediate formation and is not consumed. The factors that determine the additive functioning mechanism are briefly discussed, and consequently a general rule for the selection of electrolyte additive is proposed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa