Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Cell Biochem ; 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36791213

RESUMO

The FK506-binding protein 51 (FKBP51) is a high-molecular-weight immunophilin that emerged as an important drug target for stress-related disorders, chronic pain, and obesity. It has been implicated in a plethora of molecular pathways but remains best characterized as a co-chaperone of Hsp90 in the steroid hormone receptor (SHR) maturation cycle. However, the mechanistic and structural basis for the regulation of SHRs by FKBP51 and the usually antagonistic function compared with its closest homolog FKBP52 remains enigmatic. Here we review recent structural and biochemical studies of FKBPs as regulators in the Hsp90 machinery. These advances provide important insights into the roles of FKBP51 and FKBP52 in SHR regulation.

2.
Blood ; 136(21): 2442-2456, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32589720

RESUMO

The interaction of menin (MEN1) and MLL (MLL1, KMT2A) is a dependency and provides a potential opportunity for treatment of NPM1-mutant (NPM1mut) and MLL-rearranged (MLL-r) leukemias. Concomitant activating driver mutations in the gene encoding the tyrosine kinase FLT3 occur in both leukemias and are particularly common in the NPM1mut subtype. In this study, transcriptional profiling after pharmacological inhibition of the menin-MLL complex revealed specific changes in gene expression, with downregulation of the MEIS1 transcription factor and its transcriptional target gene FLT3 being the most pronounced. Combining menin-MLL inhibition with specific small-molecule kinase inhibitors of FLT3 phosphorylation resulted in a significantly superior reduction of phosphorylated FLT3 and transcriptional suppression of genes downstream of FLT3 signaling. The drug combination induced synergistic inhibition of proliferation, as well as enhanced apoptosis, compared with single-drug treatment in models of human and murine NPM1mut and MLL-r leukemias harboring an FLT3 mutation. Primary acute myeloid leukemia (AML) cells harvested from patients with NPM1mutFLT3mut AML showed significantly better responses to combined menin and FLT3 inhibition than to single-drug or vehicle control treatment, whereas AML cells with wild-type NPM1, MLL, and FLT3 were not affected by either of the 2 drugs. In vivo treatment of leukemic animals with MLL-r FLT3mut leukemia reduced leukemia burden significantly and prolonged survival compared with results in the single-drug and vehicle control groups. Our data suggest that combined menin-MLL and FLT3 inhibition represents a novel and promising therapeutic strategy for patients with NPM1mut or MLL-r leukemia and concurrent FLT3 mutation.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Proteína de Leucina Linfoide-Mieloide/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Cocultura , Sinergismo Farmacológico , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Camundongos Endogâmicos NOD , Proteína Meis1/biossíntese , Proteína Meis1/genética , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Nucleofosmina , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional , Distribuição Aleatória , Transcrição Gênica/efeitos dos fármacos , Tirosina Quinase 3 Semelhante a fms/biossíntese , Tirosina Quinase 3 Semelhante a fms/genética
3.
Angew Chem Int Ed Engl ; 60(24): 13257-13263, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33843131

RESUMO

Subtype selectivity represents a challenge in many drug discovery campaigns. A typical example is the FK506 binding protein 51 (FKBP51), which has emerged as an attractive drug target. The most advanced FKBP51 ligands of the SAFit class are highly selective vs. FKBP52 but poorly discriminate against the homologs and off-targets FKBP12 and FKBP12.6. During a macrocyclization pilot study, we observed that many of these macrocyclic analogs have unanticipated and unprecedented preference for FKBP51 over FKBP12 and FKBP12.6. Structural studies revealed that these macrocycles bind with a new binding mode featuring a transient conformation, which is disfavored for the small FKBPs. Using a conformation-sensitive assay we show that this binding mode occurs in solution and is characteristic for this new class of compounds. The discovered macrocycles are non-immunosuppressive, engage FKBP51 in cells, and block the cellular effect of FKBP51 on IKKα. Our findings provide a new chemical scaffold for improved FKBP51 ligands and the structural basis for enhanced selectivity.


Assuntos
Ligantes , Proteínas de Ligação a Tacrolimo/metabolismo , Sítios de Ligação , Ciclização , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Rodaminas/química , Rodaminas/metabolismo , Especificidade por Substrato , Tacrolimo/química , Tacrolimo/metabolismo , Proteína 1A de Ligação a Tacrolimo/química , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteínas de Ligação a Tacrolimo/química
4.
Nat Struct Mol Biol ; 30(12): 1857-1866, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945739

RESUMO

The Hsp90 co-chaperones FKBP51 and FKBP52 play key roles in steroid-hormone-receptor regulation, stress-related disorders, and sexual embryonic development. As a prominent target, glucocorticoid receptor (GR) signaling is repressed by FKBP51 and potentiated by FKBP52, but the underlying molecular mechanisms remain poorly understood. Here we present the architecture and functional annotation of FKBP51-, FKBP52-, and p23-containing Hsp90-apo-GR pre-activation complexes, trapped by systematic incorporation of photoreactive amino acids inside human cells. The identified crosslinking sites clustered in characteristic patterns, depended on Hsp90, and were disrupted by GR activation. GR binding to the FKBPFK1, but not the FKBPFK2, domain was modulated by FKBP ligands, explaining the lack of GR derepression by certain classes of FKBP ligands. Our findings show how FKBPs differentially interact with apo-GR, help to explain the differentiated pharmacology of FKBP51 ligands, and provide a structural basis for the development of improved FKBP ligands.


Assuntos
Receptores de Glucocorticoides , Proteínas de Ligação a Tacrolimo , Humanos , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/metabolismo , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/metabolismo , Ligação Proteica , Proteínas de Choque Térmico HSP90/metabolismo
5.
Cell Chem Biol ; 28(9): 1253-1255, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34534467

RESUMO

Bone morphogenetic protein (BMP) signaling contributes to acute kidney injury (AKI), a common disease without adequate treatment options. In this issue of Cell Chemical Biology, Larraufie, Gao and colleagues (Larraufie et al., 2021) show that FKBP12 inhibition can be a target for treatment of AKI via activation of BMP signaling.


Assuntos
Transdução de Sinais , Proteína 1A de Ligação a Tacrolimo , Proteína 1A de Ligação a Tacrolimo/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa