Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 117(12): 127001, 2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27689292

RESUMO

The in-plane resistivity anisotropy is studied in strain-detwinned single crystals of FeSe. In contrast to other iron-based superconductors, FeSe does not develop long-range magnetic order below the tetragonal-to-orthorhombic transition at T_{s}≈90 K. This allows for the disentanglement of the contributions to the resistivity anisotropy due to nematic and magnetic orders. Comparing direct transport and elastoresistivity measurements, we extract the intrinsic resistivity anisotropy of strain-free samples. The anisotropy peaks slightly below T_{s} and decreases to nearly zero on cooling down to the superconducting transition. This behavior is consistent with a scenario in which the in-plane resistivity anisotropy is dominated by inelastic scattering by anisotropic spin fluctuations.

2.
Phys Rev Lett ; 114(23): 236601, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-26196814

RESUMO

We present magnetic susceptibility, resistivity, specific heat, and thermoelectric power measurements on (Ce(1-x)La(x))Cu2Ge2 single crystals (0≤x≤1). With La substitution, the antiferromagnetic temperature TN is suppressed in an almost linear fashion and moves below 0.36 K, the base temperature of our measurements for x>0.8. Surprisingly, in addition to robust antiferromagnetism, the system also shows low temperature coherent scattering below Tcoh up to ∼0.9 of La, indicating a small percolation limit ∼9% of Ce. Tcoh as a function of magnetic field was found to have different behavior for x<0.9 and x>0.9. Remarkably, (Tcoh)(2) at H=0 was found to be linearly proportional to TN. The jump in the magnetic specific heat δCm at TN as a function of TK/TN for (Ce(1-x)La(x))Cu2Ge2 follows the theoretical prediction based on the molecular field calculation for the S=1/2 resonant level model.

3.
NPJ Quantum Mater ; 8(1): 60, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38666239

RESUMO

FeSe1-xSx remains one of the most enigmatic systems of Fe-based superconductors. While much is known about the orthorhombic parent compound, FeSe, the tetragonal samples, FeSe1-xSx with x > 0.17, remain relatively unexplored. Here, we provide an in-depth investigation of the electronic states of tetragonal FeSe0.81S0.19, using scanning tunneling microscopy and spectroscopy (STM/S) measurements, supported by angle-resolved photoemission spectroscopy (ARPES) and theoretical modeling. We analyze modulations of the local density of states (LDOS) near and away from Fe vacancy defects separately and identify quasiparticle interference (QPI) signals originating from multiple regions of the Brillouin zone, including the bands at the zone corners. We also observe that QPI signals coexist with a much stronger LDOS modulation for states near the Fermi level whose period is independent of energy. Our measurements further reveal that this strong pattern appears in the STS measurements as short range stripe patterns that are locally two-fold symmetric. Since these stripe patterns coexist with four-fold symmetric QPI around Fe-vacancies, the origin of their local two-fold symmetry must be distinct from that of nematic states in orthorhombic samples. We explore several aspects related to the stripes, such as the role of S and Fe-vacancy defects, and whether they can be explained by QPI. We consider the possibility that the observed stripe patterns may represent incipient charge order correlations, similar to those observed in the cuprates.

4.
Rev Sci Instrum ; 92(4): 043706, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243365

RESUMO

We describe an oblique-incidence zero-area Sagnac interferometric microscope for studying spatial and temperature dependence of magneto-optic (MO) effects in samples under cryogenic conditions. The microscope is capable of independently measuring Kerr effects from three Cartesian components of a magnetization and thus can be used to map out the magnetization vector across the sample. For illustration, we present MO Kerr effect images of magnetic domains at 77 K of a LaCrGe3 crystal terminated with an a-c plane (the plane that contains the lattice a-axis and c-axis). We further present measurements of magnetization in these domains from 90 to 77 K during zero-field cooling and field cooling in an external magnetic field from 20 to 150 Oe. The inherently high sensitivity and the capability of detecting a magnetization without external modulation makes such a Sagnac interferometric microscope particularly useful for studying magnetic effects in novel materials at low temperatures.

5.
Phys Rev Lett ; 105(21): 217201, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-21231345

RESUMO

Precise resistivity measurements on the ferromagnetic superconductor UGe2 under pressure p and magnetic field H reveal a previously unobserved change of the anomaly at the Curie temperature. Therefore, the tricritical point (TCP) where the paramagnetic-to-ferromagnetic transition changes from a second order to a first order transition is located in the p-T phase diagram. Moreover, the evolution of the TCP can be followed under the magnetic field in the same way. It is the first report of the boundary of the first order plane which appears in the p-T-H phase diagram of weak itinerant ferromagnets. This line of critical points starts from the TCP and will terminate at a quantum critical point. These measurements provide the first estimation of the location of the quantum critical point in the p-H plane and will inspire similar studies of the other weak itinerant ferromagnets.

6.
Phys Rev Lett ; 105(21): 216409, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-21231334

RESUMO

Shubnikov-de Haas measurements of high quality URu2Si2 single crystals reveal two previously unobserved Fermi surface branches in the so-called hidden order phase. Therefore, about 55% of the enhanced mass is now detected. Under pressure in the antiferromagnetic state, the Shubnikov-de Haas frequencies for magnetic fields applied along the crystalline c axis show little change compared with the zero pressure data. This implies a similar Fermi surface in both the hidden order and antiferromagnetic states, which strongly suggests that the lattice doubling in the antiferromagnetic phase due to the ordering vector Q(AF)=(001) already occurs in the hidden order. These measurements provide a good test for existing or future theories of the hidden order parameter.

7.
J Phys Condens Matter ; 33(6): 065301, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33231198

RESUMO

A method is presented for synthesizing core-shell nanoparticles with a magnetic core and a porous shell suitable for drug delivery and other medical applications. The core contains multiple γ-Fe2O3 nanoparticles (∼15 nm) enclosed in a SiO2 (∼100-200 nm) matrix using either methyl (denoted TMOS-γ-Fe2O3) or ethyl (TEOS-γ-Fe2O3) template groups. Low-temperature Mössbauer spectroscopy showed that the magnetic nanoparticles have the maghemite structure, γ-Fe2O3, with all the vacancies in the octahedral sites. Saturation magnetization measurements revealed that the density of γ-Fe2O3 was greater in the TMOS-γ-Fe2O3 nanoparticles than TEOS-γ-Fe2O3 nanoparticles, presumably because of the smaller methyl group. Magnetization measurements showed that the blocking temperature is around room temperature for the TMOS-γ-Fe2O3 and around 250 K for the TEOS-γ-Fe2O3. Three dimensional topography analysis shows clearly that the magnetic nanoparticles are not only at the surface but have penetrated deep in the silica to form the core-shell structure.

8.
Science ; 357(6346): 75-80, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28684522

RESUMO

The superconductor iron selenide (FeSe) is of intense interest owing to its unusual nonmagnetic nematic state and potential for high-temperature superconductivity. But its Cooper pairing mechanism has not been determined. We used Bogoliubov quasiparticle interference imaging to determine the Fermi surface geometry of the electronic bands surrounding the Γ = (0, 0) and X = (π/aFe, 0) points of FeSe and to measure the corresponding superconducting energy gaps. We show that both gaps are extremely anisotropic but nodeless and that they exhibit gap maxima oriented orthogonally in momentum space. Moreover, by implementing a novel technique, we demonstrate that these gaps have opposite sign with respect to each other. This complex gap configuration reveals the existence of orbital-selective Cooper pairing that, in FeSe, is based preferentially on electrons from the d yz orbitals of the iron atoms.

9.
Nat Commun ; 7: 12728, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27582003

RESUMO

A hallmark of the iron-based superconductors is the strong coupling between magnetic, structural and electronic degrees of freedom. However, a universal picture of the normal state properties of these compounds has been confounded by recent investigations of FeSe where the nematic (structural) and magnetic transitions appear to be decoupled. Here, using synchrotron-based high-energy x-ray diffraction and time-domain Mössbauer spectroscopy, we show that nematicity and magnetism in FeSe under applied pressure are indeed strongly coupled. Distinct structural and magnetic transitions are observed for pressures between 1.0 and 1.7 GPa and merge into a single first-order transition for pressures ≳1.7 GPa, reminiscent of what has been found for the evolution of these transitions in the prototypical system Ba(Fe1-xCox)2As2. Our results are consistent with a spin-driven mechanism for nematic order in FeSe and provide an important step towards a universal description of the normal state properties of the iron-based superconductors.

10.
Nat Commun ; 5: 3333, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24566374

RESUMO

Large magnetic anisotropy and coercivity are key properties of functional magnetic materials and are generally associated with rare earth elements. Here we show an extreme, uniaxial magnetic anisotropy and the emergence of magnetic hysteresis in Li2(Li(1-x)Fe(x))N. An extrapolated, magnetic anisotropy field of 220 T and a coercivity field of over 11 T at 2 K outperform all known hard ferromagnets and single-molecular magnets. Steps in the hysteresis loops and relaxation phenomena in striking similarity to single-molecular magnets are particularly pronounced for x≪1 and indicate the presence of nanoscale magnetic centres. Quantum tunnelling, in the form of temperature-independent relaxation and coercivity, deviation from Arrhenius behaviour and blocking of the relaxation, dominates the magnetic properties up to 10 K. The simple crystal structure, the availability of large single crystals and the ability to vary the Fe concentration make Li2(Li(1-x)Fe(x))N an ideal model system to study macroscopic quantum effects at elevated temperatures and also a basis for novel functional magnetic materials.

11.
J Phys Condens Matter ; 22(16): 164205, 2010 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21386411

RESUMO

We succeeded in growing high quality single crystals of URu(2)Si(2) and performed thermal expansion measurements under pressure. Applying a magnetic field along the [001] direction in the tetragonal structure, the so-called hidden-order phase reappears after the suppression of the antiferromagnetic phase above the critical pressure P(x). We determined the pressure-temperature-field phase diagram for the paramagnetic, hidden-order and antiferromagnetic states for the [Formula: see text] direction. We also present the temperature dependence of the upper critical field H(c2) for [Formula: see text] and [100] determined by the AC specific heat measurements, corresponding to the bulk superconductivity in a high quality single crystal.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa