Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain ; 147(9): 3083-3098, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38808482

RESUMO

Comprehensive understanding of the neural circuits involving the ventral tegmental area is essential for elucidating the anatomofunctional mechanisms governing human behaviour, in addition to the therapeutic and adverse effects of deep brain stimulation for neuropsychiatric diseases. Although the ventral tegmental area has been targeted successfully with deep brain stimulation for different neuropsychiatric diseases, the axonal connectivity of the region is not fully understood. Here, using fibre microdissections in human cadaveric hemispheres, population-based high-definition fibre tractography and previously reported deep brain stimulation hotspots, we find that the ventral tegmental area participates in an intricate network involving the serotonergic pontine nuclei, basal ganglia, limbic system, basal forebrain and prefrontal cortex, which is implicated in the treatment of obsessive-compulsive disorder, major depressive disorder, Alzheimer's disease, cluster headaches and aggressive behaviours.


Assuntos
Estimulação Encefálica Profunda , Mesencéfalo , Vias Neurais , Área Tegmentar Ventral , Humanos , Estimulação Encefálica Profunda/métodos , Vias Neurais/fisiologia , Mesencéfalo/fisiologia , Área Tegmentar Ventral/fisiologia , Área Tegmentar Ventral/diagnóstico por imagem , Masculino , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Imagem de Tensor de Difusão , Córtex Pré-Frontal/fisiologia , Feminino , Gânglios da Base/fisiologia
2.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37762046

RESUMO

Radiation therapy (RT) has recently demonstrated promise at stimulating an enhanced immune response. The recent success of immunotherapies, such as checkpoint inhibitors, CART cells, and other immune modulators, affords new opportunities for combination with radiation. The aim of this study is to evaluate whether and to what extent blockade of VISTA, an immune checkpoint, can potentiate the tumor control ability of radiation therapy. Our study is novel in that it is the first comparison of two VISTA-blocking methods (antibody inhibition and genetic knockout) in combination with RT. VISTA was blocked either through genetic knockout (KO) or an inhibitory antibody and combined with RT in two syngeneic murine flank tumor models (B16 and MC38). Selected mRNA, immune cell infiltration, and tumor growth delay were used to assess the biological effects. When combined with a single 15Gy radiation dose, VISTA blockade via genetic knockout in the B16 model and via anti-VISTA antibodies in the MC38 model significantly improved survival compared to RT alone by an average of 5.5 days and 6.3 days, respectively (p < 0.05). The gene expression data suggest that the mechanism behind the enhanced tumor control is primarily a result of increased apoptosis and immune-mediated cytotoxicity. VISTA blockade significantly enhances the anti-tumor effect of a single dose of 15Gy radiation through increased expression and stimulation of cell-mediated apoptosis pathways. These results suggest that VISTA is a biologically relevant immune promoter that has the potential to enhance the efficacy of a large single radiation dose in a synergic manner.


Assuntos
Adenocarcinoma , Melanoma , Animais , Camundongos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/radioterapia , Anticorpos , Modelos Animais de Doenças , Melanoma/tratamento farmacológico , Melanoma/radioterapia , Linfócitos T , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico
3.
Artigo em Inglês | MEDLINE | ID: mdl-39461597

RESUMO

PURPOSE: This study aimed to assess the impact of tissue oxygen levels on transient oxygen consumption induced by ultra-high dose rate (UHDR) electron radiation in murine flank and to examine the effect of dose rate variations on this relationship. METHODS: Real-time oximetry using the phosphorescence quenching method and Oxyphor PdG4 molecular probe was employed. Continuous measurements were taken during radiation delivery on a UHDR-capable Mobetron linear accelerator (linac). Oxyphor PdG4 was administered into the subcutaneous tissue of the flank skin one hour before irradiation. Skin oxygen tension (pO2) was manipulated by adjusting oxygen content in the inhaled gas mixture and/or by vasculature compression. A skin surface radiation dose of 19.8±0.3Gy was verified using a calibrated semiconductor diode dosimeter. Dose rate was varied across the UHDR range by changing linac cone length and pulse repetition frequency (PRF). RESULTS: The decrease in pO2 per unit dose during radiation delivery, termed oxygen consumption g-value (gO2, mmHg/Gy), was significantly influenced by tissue oxygen levels in the range 0-65mmHg under UHDR conditions. Within the 0-20mmHg range, gO2 exhibited a sharp increase with rising baseline pO2, plateauing at 0.26mmHg/Gy. Dose rate variations (mean values 25-1170Gy/s, per-pulse doses of 2.5-9.8Gy) were explored by varying both cone length and PRF (10-120Hz) with no significant changes in gO2. Conventional dose rate irradiation resulted in no discernible changes in pO2. CONCLUSIONS: The results show significant differences in the radiation-chemical effects of UHDR radiation between hypoxic and well-oxygenated tissues. Similar trends between earlier published in vitro and in vivo experiments presented herein suggest the chemical mechanisms driving the dependencies of gO2 on pO2 are similar, potentially underpinning the FLASH effect. Importantly, significant variations in baseline pO2 were observed in animals kept under identical conditions, underscoring the necessity to control and monitor tissue oxygen levels for preclinical investigations and future clinical applications of FLASH-RT.

4.
Res Sq ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39257989

RESUMO

Tissue oxygenation is well understood to impact radiosensitivity, with reports demonstrating a significant effect of breathing condition and anesthesia type on tissue oxygenation levels and radiobiological response. However, the temporal kinetics of intracellular and extracellular oxygenation have never been quantified, on the timescale that may affect radiotherapy studies. C57BL/6 mice were anesthetized using isoflurane at various percentages or ketamine/xylazine (ket/xyl: 100/10 mg/kg) (N = 48). Skin pO2 was measured using Oxyphor PdG4 and tracked after anesthetization began. Oxyphor data was validated with relative measurements of intracellular oxygen via protoporphyrin IX (PpIX) delayed fluorescence (DF) imaging. Ex vivo localization of both PdG4 Oxyphor and PpIX were quantified. Under all isoflurane anesthesia conditions, leg skin pO2 levels significantly increased from 12-15 mmHg at the start of anesthesia induction (4-6 minutes) to 24-27 mmHg after 10 minutes (p < 0.05). Ketamine/xylazine anesthesia led to skin pO2 maintained at 15-16 mmHg throughout the 10-minute study period (p < 0.01). An increase of pO2 in mice breathing isoflurane was demonstrated with Oxyphor and PpIX DF, indicating similar intracellular and extracellular oxygenation. These findings demonstrate the importance of routine anesthesia administration, where consistency in the timing between induction and irradiation may be crucial to minimizing variability in radiation response.

5.
Cancer Treat Res Commun ; 38: 100789, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38262125

RESUMO

BACKGROUND: Glioblastoma is the most common primary malignant and treatment-resistant human brain tumor. Rodent models have played an important role in understanding brain cancer biology and treatment. However, due to their small cranium and tumor volume mismatch, relative to human disease, they have been less useful for translational studies. Therefore, development of a consistent and simple large animal glioma xenograft model would have significant translational benefits. METHODS: Immunosuppression was induced in twelve standard Yucatan minipigs. 3 pigs received cyclosporine only, while 9 pigs received a combined regimen including cyclosporine (55 mg/kg q12 h), prednisone (25 mg, q24 h) and mycophenolate (500 mg q24 h). U87 cells (2 × 106) were stereotactically implanted into the left frontal cortex. The implanted brains were imaged by MRI for monitoring. In a separate study, tumors were grown in 5 additional pigs using the combined regimen, and pigs underwent tumor resection with intra-operative image updating to determine if the xenograft model could accurately capture the spatial tumor resection challenges seen in humans. RESULTS: Tumors were successfully implanted and grown in 11 pigs. One animal in cyclosporine only group failed to show clinical tumor growth. Clinical tumor growth, assessed by MRI, progressed slowly over the first 10 days, then rapidly over the next 10 days. The average tumor growth latency period was 20 days. Animals were monitored twice daily and detailed records were kept throughout the experimental period. Pigs were sacrificed humanely when the tumor reached 1 - 2 cm. Some pigs experienced decreased appetite and activity, however none required premature euthanasia. In the image updating study, all five pigs demonstrated brain shift after craniotomy, consistent with what is observed in humans. Intraoperative image updating was able to accurately capture and correct for this shift in all five pigs. CONCLUSION: This report demonstrates the development and use of a human intracranial glioma model in an immunosuppressed, but nongenetically modified pig. While the immunosuppression of the model may limit its utility in certain studies, the model does overcome several limitations of small animal or genetically modified models. For instance, we demonstrate use of this model for guiding surgical resection with intraoperative image-updating technologies. We further report use of a surrogate extracranial tumor that indicates growth of the intracranial tumor, allowing for relative growth assessment without radiological imaging.


Assuntos
Neoplasias Encefálicas , Ciclosporinas , Glioma , Humanos , Suínos , Animais , Xenoenxertos , Reprodutibilidade dos Testes , Porco Miniatura , Glioma/tratamento farmacológico , Glioma/cirurgia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Terapia de Imunossupressão , Modelos Animais de Doenças
6.
Adv Radiat Oncol ; 9(6): 101492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38711960

RESUMO

Purpose: Ultra High Dose-Rate (UHDR) radiation has been reported to spare normal tissue, compared with Conventional Dose-Rate (CDR) radiation. However, important work remains to be done to improve the reproducibility of the FLASH effect. A better understanding of the biologic factors that modulate the FLASH effect may shed light on the mechanism of FLASH sparing. Here, we evaluated whether sex and/or the use of 100% oxygen as a carrier gas during irradiation contribute to the variability of the FLASH effect. Methods and Materials: C57BL/6 mice (24 male, 24 female) were anesthetized using isoflurane mixed with either room air or 100% oxygen. Subsequently, the mice received 27 Gy of either 9 MeV electron UHDR or CDR to a 1.6 cm2 diameter area of the right leg skin using the Mobetron linear accelerator. The primary postradiation endpoint was time to full thickness skin ulceration. In a separate cohort of mice (4 male, 4 female), skin oxygenation was measured using PdG4 Oxyphor under identical anesthesia conditions. Results: Neither supplemental oxygen nor sex affected time to ulceration in CDR irradiated mice. In the UHDR group, skin damage occured earlier in male and female mice that received 100% oxygen compared room air and female mice ulcerated sooner than male mice. However, there was no significant difference in time to ulceration between male and female UHDR mice that received room air. Oxygen measurements showed that tissue oxygenation was significantly higher when using 100% oxygen as the anesthesia carrier gas than when using room air, and female mice showed higher levels of tissue oxygenation than male mice under 100% oxygen. Conclusions: The skin FLASH sparing effect is significantly reduced when using oxygen during anesthesia rather than room air. FLASH sparing was also reduced in female mice compared to male mice. Both tissue oxygenation and sex are likely sources of variability in UHDR studies. These results suggest an oxygen-based mechanism for FLASH, as well as a key role for sex in the FLASH skin sparing effect.

7.
bioRxiv ; 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37961549

RESUMO

Introduction: Ultra-high dose-rate (UHDR) radiation has been reported to spare normal tissue compared to conventional dose-rate (CDR) radiation. However, reproducibility of the FLASH effect remains challenging due to varying dose ranges, radiation beam structure, and in-vivo endpoints. A better understanding of these inconsistencies may shed light on the mechanism of FLASH sparing. Here, we evaluate whether sex and/or use of 100% oxygen as carrier gas during irradiation contribute to the variability of the FLASH effect. Methods: C57BL/6 mice (24 male, 24 female) were anesthetized using isoflurane mixed with either room air or 100% oxygen. Subsequently, the mice received 27 Gy of either 9 MeV electron UHDR or CDR to a 1.6 cm2 diameter area of the right leg skin using the Mobetron linear accelerator. The primary post-radiation endpoint was time to full thickness skin ulceration. In a separate cohort of mice (4 male, 4 female) skin oxygenation was measured using PdG4 Oxyphor under identical anesthesia conditions. Results: In the UHDR group, time to ulceration was significantly shorter in mice that received 100% oxygen compared to room air, and amongst them female mice ulcerated sooner compared to males. However, no significant difference was observed between male and female UHDR mice that received room air. Oxygen measurements showed significantly higher tissue oxygenation using 100% oxygen as the anesthesia carrier gas compared to room air, and female mice showed higher levels of tissue oxygenation compared to males under 100% oxygen. Conclusion: The FLASH sparing effect is significantly reduced using oxygen during anesthesia compared to room air. The FLASH sparing was significantly lower in female mice compared to males. Both tissue oxygenation and sex are likely sources of variability in UHDR studies. These results suggest an oxygen-based mechanism for FLASH, as well as a key role for sex in the FLASH skin sparing effect.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa