Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38794040

RESUMO

Malaria is a disease that affects millions of people worldwide, particularly in developing countries. The development of accurate and efficient methods for the detection of malaria-infected cells is crucial for effective disease management and control. This paper presents the electrical impedance spectroscopy (EIS) of normal and malaria-infected red blood cells. An EIS microfluidic device, comprising a microchannel and a pair of coplanar electrodes, was fabricated for single-cell measurements in a continuous manner. Based on the EIS results, the aim of this work is to discriminate Plasmodium falciparum-infected red blood cells from the normal ones. Different from typical impedance spectroscopy, our measurement was performed for the cells in a low-conductivity medium in a frequency range between 50 kHz and 800 kHz. Numerical simulation was utilized to study the suitability parameters of the microchannel and electrodes for the EIS experiment over the measurement frequencies. The measurement results have shown that by using the low-conductivity medium, we could focus on the change in the conductance caused by the presence of a cell in the sensing electrode gap. The results indicated a distinct frequency spectrum of the conductance between the normal and infected red blood cells, which can be further used for the detection of the disease.


Assuntos
Espectroscopia Dielétrica , Eritrócitos , Plasmodium falciparum , Eritrócitos/parasitologia , Espectroscopia Dielétrica/métodos , Espectroscopia Dielétrica/instrumentação , Humanos , Plasmodium falciparum/fisiologia , Plasmodium falciparum/patogenicidade , Eletrodos , Dispositivos Lab-On-A-Chip , Malária Falciparum/diagnóstico , Malária Falciparum/parasitologia , Impedância Elétrica , Malária/diagnóstico , Malária/parasitologia
2.
Electrophoresis ; 44(23): 1837-1846, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37753817

RESUMO

Malaria is a tropical disease caused by parasites in the genus Plasmodium, which still presents 241 million cases and nearly 627,000 deaths recently. In this work, we used the dielectrophoresis (DEP) to characterize red blood cells in a microchannel. The purpose of this work is to determine the difference between the normal and the malaria-infected cells based on the DEP characteristics. The samples were infected cells and normal red blood cells, which were either prepared in culture or obtained from volunteers. Diamond-shaped and curved micropillars were used to create different degrees of DEP in the gap between them. The DEP crossover frequencies were observed with the diamond-shaped micropillars. The cell velocity under negative dielectrophoresis (nDEP) at a low frequency was examined with the curved micropillars. The measured lower crossover frequencies were remarkably different between the malaria-infected cells and the normal cells, whereas the higher crossover frequencies were similar among the samples. The velocity under nDEP was lower for the infected cells than the normal cells. The results imply that the malaria infection significantly decreases the capacitance but increases the conductance of the cell membrane, whereas a change in cytoplasmic conductivity may occur in a later stage of infection.


Assuntos
Eritrócitos , Malária , Humanos , Citoplasma , Membrana Celular , Condutividade Elétrica , Eletroforese/métodos
3.
Electrophoresis ; 43(12): 1347-1356, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35338790

RESUMO

Malaria is a serious disease caused by Plasmodium parasites that infect red blood cells (RBCs). This paper presents the continuous separation of malaria-infected RBCs (iRBCs) from normal blood cells. The proposed method employed the discrete dielectrophoresis (DEP) in a microfluidic device with interdigitated electrodes. Our aim is to treat a sample having high concentration of cells to realize high throughput and to prevent the clogging of the microchannel with the use of the discrete DEP. The discrete DEP force for deflecting cells in the device was controlled by adjusting the magnitude, frequency, and duty cycle of the applied voltage. The effectiveness of the proposed method was demonstrated by separating the malaria-infected cells in samples having a cell concentration of 106 cells/µl. From experimental results, we determined the enrichment that is needed to enhance the detection in the case of low parasitemia. The enrichment of the infected cells at the device output was 3000 times as high as that of the input containing 1 infected cell to 106 normal cells. Therefore, the proposed method is highly effective and can significantly facilitate the detection of the infected cells for the identification of Malaria patients.


Assuntos
Malária , Técnicas Analíticas Microfluídicas , Separação Celular/métodos , Eletrodos , Eletroforese/métodos , Eritrócitos , Humanos , Dispositivos Lab-On-A-Chip
4.
Electrophoresis ; 41(10-11): 991-1001, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32060955

RESUMO

This paper presents the application of the discrete dielectrophoretic force to separate polystyrene particles from red blood cells. The separation process employs a simple microfluidic device that is composed of interdigitated electrodes and a microchannel. The discrete dielectrophoretic force is generated by adjusting the duty cycle of the applied voltage. The electrodes make a tilt angle with the microchannel to change the moving direction of the red blood cells. By adjusting the voltage magnitude and duty cycle, we investigate the deflection of red blood cells and the variation of cell velocity along electrode edge under positive dielectrophoresis. The experiments with polystyrene particles show that the enrichment of the particles is greater than 150 times. The maximum separation efficiency is 97% for particle-to-cell number ratio equal to 1:2000 in the sample having high cell concentration. Using the appropriate applied voltage magnitude and duty cycle, the discrete dielectrophoretic force can prevent the clogging of microchannel while successfully separating the particles from the cells with high enrichment and efficiency. The proposed principle can be readily applied to dielectrophoresis-based devices for biomedical sample preparation or diagnosis such as the separation of rare or infected cells from a blood sample.


Assuntos
Separação Celular/instrumentação , Eletroforese/instrumentação , Separação Celular/métodos , Eritrócitos/citologia , Humanos , Microesferas , Tamanho da Partícula , Poliestirenos
5.
Electrophoresis ; 32(18): 2496-501, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21874655

RESUMO

In this paper, we present a novel electrofusion device that enables massive parallelism, using an electrically insulating sheet having a two-dimensional micro-orifice array. The sheet is sandwiched by a pair of micro-chambers with immersed electrodes, and each chamber is filled with the suspensions of the two types of cells to be fused. Dielectrophoresis, assisted by sedimentation, is used to position the cells in the upper chamber down onto the orifices, then the device is flipped over to position the cells on the other side, so that cell pairs making contact in the orifice are formed. When a pulse voltage is applied to the electrodes, most voltage drop occurs around the orifice and impressed on the cell membrane in the orifice. This makes possible the application of size-independent voltage to fuse two cells in contact at all orifices exclusively in 1:1 manner. In the experiment, cytoplasm of one of the cells is stained with a fluorescence dye, and the transfer of the fluorescence to the other cell is used as the indication of fusion events. The two-dimensional orifice arrangement at the pitch of 50 µm realizes simultaneous fusion of 6 × 10³ cells on a 4 mm diameter chip, and the fusion yield of 78-90% is achieved for various sizes and types of cells.


Assuntos
Fusão Celular/instrumentação , Fusão Celular/métodos , Eletroforese/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Análise Serial de Tecidos/instrumentação , Animais , Linhagem Celular Tumoral , Eletrodos , Desenho de Equipamento , Fluoresceínas/química , Humanos , Camundongos , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa