Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 17(10): 5962-5968, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28920701

RESUMO

High quality electrical contact to semiconducting transition metal dichalcogenides (TMDCs) such as MoS2 is key to unlocking their unique electronic and optoelectronic properties for fundamental research and device applications. Despite extensive experimental and theoretical efforts reliable ohmic contact to doped TMDCs remains elusive and would benefit from a better understanding of the underlying physics of the metal-TMDC interface. Here we present measurements of the atomic-scale energy band diagram of junctions between various metals and heavily doped monolayer MoS2 using ultrahigh vacuum scanning tunneling microscopy (UHV-STM). Our measurements reveal that the electronic properties of these junctions are dominated by two-dimensional metal-induced gap states (MIGS). These MIGS are characterized by a spatially growing measured gap in the local density of states (L-DOS) of the MoS2 within 2 nm of the metal-semiconductor interface. Their decay lengths extend from a minimum of ∼0.55 nm near midgap to as long as 2 nm near the band edges and are nearly identical for Au, Pd, and graphite contacts, indicating that it is a universal property of the monolayer semiconductor. Our findings indicate that even in heavily doped semiconductors, the presence of MIGS sets the ultimate limit for electrical contact.

2.
ACS Appl Mater Interfaces ; 13(1): 1930-1942, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33351577

RESUMO

The development of a controllable, selective, and repeatable etch process is crucial for controlling the layer thickness and patterning of two-dimensional (2D) materials. However, the atomically thin dimensions and high structural similarity of different 2D materials make it difficult to adapt conventional thin-film etch processes. In this work, we propose a selective, damage-free atomic layer etch (ALE) that enables layer-by-layer removal of monolayer WSe2 without altering the physical, optical, and electronic properties of the underlying layers. The etch uses a top-down approach where the topmost layer is oxidized in a self-limited manner and then removed using a selective etch. Using a comprehensive set of material, optical, and electrical characterization, we show that the quality of our ALE processed layers is comparable to that of pristine layers of similar thickness. The ALE processed WSe2 layers preserve their bright photoluminescence characteristics and possess high room-temperature hole mobilities of 515 cm2/V·s, essential for fabricating high-performance 2D devices. Further, using graphene as a testbed, we demonstrate the fabrication of ultra-clean 2D devices using a sacrificial monolayer WSe2 layer to protect the channel during processing, which is etched in the final process step in a technique we call sacrificial WSe2 with ALE processing (SWAP). The graphene transistors made using the SWAP technique demonstrate high room-temperature field-effect mobilities, up to 200,000 cm2/V·s, better than previously reported unencapsulated graphene devices.

3.
Nanoscale ; 11(37): 17368-17375, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31524214

RESUMO

Tungsten diselenide (WSe2) has received significant attention because it shows the pristine ambipolar property arising from the Fermi level located near the midgap and can be converted to uni-polar form. In this study, we observe the formation of tungsten oxide (WOx) on the WSe2 surface after oxygen plasma treatment and show that the p-type WOx dopes WSe2. In our devices that underwent plasma treatment, it was interesting to find a strong correlation between the changes in the work function of WSe2 and a gold electrode, and the channel and contact resistances. The channel resistance changes very sensitively at a rate of 64 meV per dec with the increase in the WSe2 channel work function, which is close to the thermal limit; this indicates the defect-free oxidized WSe2 channel. The carrier transport in the oxidized WSe2 FET is shown to change to a high performance p-type device with greatly reduced channel and contact resistances with the increase in the plasma oxidation time.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa